Adivarahan,, S., Livingston,, N., Nicholson,, B., Rahman,, S., Wu,, B., Rissland,, O. S., & Zenklusen,, D. (2018). Spatial organization of single mRNPs at different stages of the gene expression pathway. Molecular Cell, 72(4), 727–738. https://doi.org/10.1016/j.molcel.2018.10.010
Alberti,, S. (2018). Guilty by association: Mapping out the molecular sociology of droplet compartments. Molecular Cell, 69(3), 349–351. https://doi.org/10.1016/j.molcel.2018.01.020
Andrei,, M. A., Ingelfinger,, D., Heintzmann,, R., Achsel,, T., Rivera‐Pomar,, R., & Lührmann,, R. (2005). A role for eIF4E and eIF4E‐transporter in targeting mRNPs to mammalian processing bodies. RNA, 11(5), 717–727. https://doi.org/10.1261/rna.2340405
Angarica,, E. V., Ventura,, S., & Sancho,, J. (2013). Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N‐rich domains. BMC Genomics, 14(1), 1–17. https://doi.org/10.1186/1471-2164-14-316
Archer,, S. K., Shirokikh,, N. E., Beilharz,, T. H., & Preiss,, T. (2016). Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature, 535, 570–574. https://doi.org/10.1038/nature18647
Ashburner,, M., Ball,, C. A., Blake,, J. A., Botstein,, D., Butler,, H., Cherry,, J. M., … Sherlock,, G. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556
Aumiller,, W. M., & Keating,, C. D. (2015). Phosphorylation‐mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nature Chemistry, 8(2), 129–137. https://doi.org/10.1038/nchem.2414
Ayache,, J., Bénard,, M., Ernoult‐Lange,, M., Minshall,, N., Standart,, N., Kress,, M., & Weil,, D. (2015). P‐body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Molecular Biology of the Cell, 26(14), 2579–2595. https://doi.org/10.1091/mbc.e15-03-0136
Banani,, S. F., Rice,, A. M., Peeples,, W. B., Lin,, Y., Jain,, S., Parker,, R., & Rosen,, M. K. (2016). Compositional control of phase‐separated cellular bodies. Cell, 166(3), 651–663. https://doi.org/10.1016/j.cell.2016.06.010
Bashkirov,, V. I., Scherthan,, H., Solinger,, J. A., Buerstedde,, J. M., & Heyer,, W. D. (1997). A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. Journal of Cell Biology, 136, 761–773. https://doi.org/10.1083/jcb.136.4.761
Beckmann,, B. M., Horos,, R., Fischer,, B., Castello,, A., Eichelbaum,, K., Alleaume,, A. M., … Hentze,, M. W. (2015). The RNA‐binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 6(1), 10127. https://doi.org/10.1038/ncomms10127
Bley,, N., Lederer,, M., Pfalz,, B., Reinke,, C., Fuchs,, T., Glaß,, M., … Hüttelmaier,, S. (2015). Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Research, 43(4), e26. https://doi.org/10.1093/nar/gku1275
Brangwynne,, C. P., Eckmann,, C. R., Courson,, D. S., Rybarska,, A., Hoege,, C., Gharakhani,, J., … Hyman,, A. A. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 324(5935), 1729–1732. https://doi.org/10.1126/science.1172046
Brengues,, M., Teixeira,, D., & Parker,, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science, 310(5747), 486–8075.
Buchan,, J. R., Muhlrad,, D., & Parker,, R. (2008). P bodies promote stress granule assembly in Saccharomyces cerevisiae. Journal of Cell Biology, 183(3), 441–455. https://doi.org/10.1083/jcb.200807043
Buchan,, J. R., & Parker,, R. (2009). Eukaryotic stress granules: The ins and outs of translation. Molecular Cell, 36(6), 932–941. https://doi.org/10.1016/j.molcel.2009.11.020
Carbon,, S., Dietze,, H., Lewis,, S. E., Mungall,, C. J., Munoz‐Torres,, M. C., Basu,, S., … Westerfield,, M. (2017). Expansion of the gene ontology knowledgebase and resources: The gene ontology consortium. Nucleic Acids Research, 45(D1), D331–D338. https://doi.org/10.1093/nar/gkw1108
Dang,, Y., Kedersha,, N., Low,, W. K., Romo,, D., Gorospe,, M., Kaufman,, R., … Liu,, J. O. (2006). Eukaryotic initiation factor 2alpha‐independent pathway of stress granule induction by the natural product pateamine A. Journal of Biological Chemistry, 281, 32870–32878. https://doi.org/10.1074/jbc.M606149200
Damgaard,, C. K., & Lykke‐Andersen,, J. (2011). Translational coregulation of 5′TOP mRNAs by TIA‐1 and TIAR. Genes and Development, 25, 2057–2068. https://doi.org/10.1101/gad.17355911
De Leeuw,, F., Zhang,, T., Wauquier,, C., Huez,, G., Kruys,, V., & Gueydan,, C. (2007). The cold‐inducible RNA‐binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation‐dependent mechanism and acts as a translational repressor. Experimental Cell Research, 313, 4130–4144. https://doi.org/10.1016/j.yexcr.2007.09.017
Decker,, C. J., Teixeira,, D., & Parker,, R. (2007). Edc3p and a glutamine/asparagine‐rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. Journal of Cell Biology, 179(3), 437–449. https://doi.org/10.1083/jcb.200704147
Ditlev,, J. A., Case,, L. B., & Rosen,, M. K. (2018). Who`s in and Who`s out—Compositional control of biomolecular condensates. Journal of Molecular Biology, 430, 4666–4684. https://doi.org/10.1016/j.jmb.2018.08.003
Eisinger‐Mathason,, T. S. K., Andrade,, J., Groehler,, A. L., Clark,, D. E., Muratore‐Schroeder,, T. L., Pasic,, L., … Lannigan,, D. A. (2008). Codependent functions of RSK2 and the apoptosis‐promoting factor TIA‐1 in stress granule assembly and cell survival. Molecular Cell, 31, 722–736. https://doi.org/10.1016/j.molcel.2008.06.025
Eulalio,, A., Behm‐Ansmant,, I., Schweizer,, D., & Izaurralde,, E. (2007). P‐body formation is a consequence, not the cause, of RNA‐mediated gene silencing. Molecular and Cellular Biology, 27(11), 3970–3981. https://doi.org/10.1128/MCB.00128-07
Fazal,, F. M., Han,, S., Kaewsapsak,, P., Parker,, K. R., Xu,, J., Boettiger,, A. N., Chang,, H. Y., & Ting,, A. Y. (2018). Atlas of subcellular RNA localization revealed by APEX‐seq. bioRxiv. https://doi.org/10.1101/454470
Franks,, T. M., & Lykke‐Andersen,, J. (2008). The control of mRNA decapping and P‐body formation. Molecular Cell, 32(5), 605–615. https://doi.org/10.1016/j.molcel.2008.11.001
Fromm,, S. A., Kamenz,, J., Noldeke,, E. R., Neu,, A., Zocher,, G., & Sprangers,, R. (2014). In vitro reconstitution of a cellular phase‐transition process that involves the mRNA decapping machinery. Angewandte Chemie (International Ed. in English), 53(28), 7354–7359. https://doi.org/10.1002/anie.201402885
Gilks,, N. (2004). Stress granule assembly is mediated by prion‐like aggregation of TIA‐1. Molecular Biology of the Cell, 15, 5383–5398. https://doi.org/10.1091/mbc.E04-08-0715
Goulet,, I., Boisvenue,, S., Mokas,, S., Mazroui,, R., & Cote,, J. (2008). TDRD3, a novel Tudor domain‐containing protein, localizes to cytoplasmic stress granules. Human Molecular Genetics, 17(19), 3055–3074. https://doi.org/10.1093/hmg/ddn203
Gowrishankar,, G., Winzen,, R., Dittrich‐Breiholz,, O., Redich,, N., Kracht,, M., & Holtmann,, H. (2006). Inhibition of mRNA deadenylation and degradation by different types of cell stress. Biological Chemistry, 387, 323–327. https://doi.org/10.1515/BC.2006.043
Han,, T. W., Kato,, M., Xie,, S., Wu,, L. C., Mirzaei,, H., Pei,, J., … McKnight,, S. L. (2012). Cell‐free formation of RNA granules: Bound RNAs identify features and components of cellular assemblies. Cell, 149, 768–779. https://doi.org/10.1016/j.cell.2012.04.016
Helder,, S., Blythe,, A. J., Bond,, C. S., & Mackay,, J. P. (2016). Determinants of affinity and specificity in RNA‐binding proteins. Current Opinion in Structural Biology, 38, 83–91. https://doi.org/10.1016/j.sbi.2016.05.005
Hilgers,, V., Teixeira,, D., & Parker,, R. (2006). Translation‐independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA, 12, 1835–1845. https://doi.org/10.1261/rna.241006
Horvathova,, I., Voigt,, F., Kotrys,, A. V., Zhan,, Y., Artus‐Revel,, C. G., Eglinger,, J., … Chao,, J. A. (2017). The dynamics of mRNA turnover revealed by single‐molecule imaging in single cells. Molecular Cell, 68(3), 615–625. https://doi.org/10.1016/j.molcel.2017.09.030
Hubstenberger,, A., Courel,, M., Benard,, M., Souquere,, S., Ernoult‐Lange,, M., Chouaib,, R., … Weil,, D. (2017). P‐body purification reveals the condensation of repressed mRNA regulons. Molecular Cell, 68(1), 144–157.e5. https://doi.org/10.1016/j.molcel.2017.09.003
Ingolia,, N. T., Ghaemmaghami,, S., Newman,, J. R., & Weissman,, J. S. (2009). Genome‐wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324(5924), 218–223. https://doi.org/10.1126/science.1168978
Ishigaki,, S., Masuda,, A., Fujioka,, Y., Iguchi,, Y., Katsuno,, M., Shibata,, A., … Ohno,, K. (2012). Position‐dependent FUS‐RNA interactions regulate alternative splicing events and transcriptions. Scientific Reports, 2, 529. https://doi.org/10.1038/srep00529
Jain,, A., & Vale,, R. D. (2017). RNA phase transitions in repeat expansion disorders. Nature, 546, 243–247. https://doi.org/10.1038/nature22386
Jain,, S., Wheeler,, J. R., Walters,, R. W., Agrawal,, A., Barsic,, A., & Parker,, R. (2016). ATPase‐modulated stress granules contain a diverse proteome and substructure. Cell, 164(3), 487–498. https://doi.org/10.1016/j.cell.2015.12.038
Jayabalan,, A. K., Sanchez,, A., Park,, R. Y., Yoon,, S. P., Kang,, G. Y., Baek,, J. H., … Ohn,, T. (2016). NEDDylation promotes stress granule assembly. Nature Communications, 7, 12125. https://doi.org/10.1038/ncomms12125
Kedersha,, N., & Anderson,, P. (2002). Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability. Biochemical Society Transactions, 30, 963–969. https://doi.org/10.1042/bst0300963
Kedersha,, N., Cho,, M. R., Li,, W., Yacono,, P. W., Chen,, S., Gilks,, N., … Anderson,, P. (2000). Dynamic shuttling of Tia‐1 accompanies the recruitment of mRNA to mammalian stress granules. Journal of Cell Biology, 151(6), 1257–1268. https://doi.org/10.1083/jcb.151.6.1257
Kedersha,, N., Panas,, M. D., Achorn,, C. A., Lyons,, S., Tisdale,, S., Hickman,, T., … Anderson,, P. (2016). G3BP‐Caprin1‐USP10 complexes mediate stress granule condensation and associate with 40S subunits. Journal of Cell Biology, 212(7), 845–860. https://doi.org/10.1083/jcb.201508028
Kedersha,, N., Stoecklin,, G., Ayodele,, M., Yacono,, P., Lykke‐Andersen,, J., Fitzler,, M. J., … Anderson,, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. Journal of Cell Biology, 169, 871–884. https://doi.org/10.1083/jcb.200502088
Kedersha,, N. L., Gupta,, M., Li,, W., Miller,, I., & Anderson,, P. (1999). RNA‐binding proteins TIA‐1 and TIAR link the phosphorylation of eIF‐2α to the assembly of mammalian stress granules. Journal of Cell Biology, 147, 1431–1442. https://doi.org/10.1083/jcb.147.7.1431
Kershaw,, C. J., & Ashe,, M. P. (2017). Untangling P‐bodies: Dissecting the complex web of interactions that enable tiered control of gene expression. Molecular Cell, 68(1), 3–4. https://doi.org/10.1016/j.molcel.2017.09.032
Khong,, A., & Parker,, R. (2018). mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction. Journal of Cell Biology, 217(12), 4124–4140. https://doi.org/10.1083/jcb.201806183
Khong,, A., Matheny,, T., Jain,, S., Mitchell,, S. F., Wheeler,, J. R., & Parker,, R. (2017). The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Molecular Cell, 68, 808–820.e5. https://doi.org/10.1016/j.molcel.2017.10.015
Kim,, Y., & Myong,, S. (2016). RNA remodeling activity of DEAD box proteins tuned by protein concentration, RNA length, and ATP. Molecular Cell, 63(5), 865–876. https://doi.org/10.1016/j.molcel.2016.07.010
Kroschwald,, S., Maharana,, S., Mateju,, D., Malinovska,, L., Nuske,, E., Poser,, I., … Alberti,, S. (2015). Promiscuous interactions and protein disaggregases determine the material state of stress‐inducible RNP granules. eLife, 4, e06807. https://doi.org/10.7554/eLife.06807
Kroschwald,, S., Munder,, M. C., Maharana,, S., Franzmann,, T. M., Richter,, D., Ruer,, M., … Alberti,, S. (2018). Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery. Cell Reports, 23(11), 3327–3339. https://doi.org/10.1016/j.celrep.2018.05.041
Kwon,, S., Zhang,, Y., & Matthias,, P. (2007). The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes and Development, 21, 3381–3394. https://doi.org/10.1101/gad.461107
Lancaster,, A. K., Nutter‐Upham,, A., Lindquist,, S., & King,, O. D. (2014). PLAAC: A web and command‐line application to identify proteins with prion‐like amino acid composition. Bioinformatics, 30(17), 2501–2502. https://doi.org/10.1093/bioinformatics/btu310
Langdon,, E. M., Qiu,, Y., Niaki,, A. G., McLaughlin,, G. A., Weidmann,, C., Gerbich,, T. M., … Gladfelter,, A. S. (2018). mRNA structure determines specificity of a polyQ‐driven phase separation. Science, 360(6391), 922–927. http://doi.org/10.1126/science.aar7432
Lavut,, A., & Raveh,, D. (2012). Sequestration of highly expressed mRNAs in cytoplasmic granules, p‐bodies, and stress granules enhances cell viability. PLoS Genetics, 8, e1002527. https://doi.org/10.1371/journal.pgen.1002527
Li,, P., Banjade,, S., Cheng,, H. C., Kim,, S., Chen,, B., Guo,, L., … Rosen,, M. K. (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature, 483(7389), 336–340. https://doi.org/10.1038/nature10879
Luo,, Y., Na,, Z., & Slavoff,, S. A. (2018). P‐bodies: Composition, properties, and functions. Biochemistry, 57(17), 2424–2431. https://doi.org/10.1021/acs.biochem.7b01162
Markmiller,, S., Soltanieh,, S., Server,, K. L., Mak,, R., Jin,, W., Fang,, M. Y., … Yeo,, G. W. (2018). Context‐dependent and disease‐specific diversity in protein interactions within stress granules. Cell, 172(3), 590–604.e13. https://doi.org/10.1016/j.cell.2017.12.032
Marnef,, A., Maldonado,, M., Bugaut,, A., Balasubramanian,, S., Kress,, M., Weil,, D., & Standart,, N. (2010). Distinct functions of maternal and somatic Pat1 protein paralogs. RNA, 16(11), 2094–2107. https://doi.org/10.1261/rna.2295410
Mateju,, D., Franzmann,, T. M., Patel,, A., Kopach,, A., Boczek,, E. E., Maharana,, S., … Alberti,, S. (2017). An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO Journal, 36, 1669–1687. https://doi.org/10.15252/embj.201695957
Mazroui,, R., Di Marco,, S., Kaufman,, R. J., & Gallouzi,, I.‐E. (2007). Inhibition of the ubiquitin‐proteasome system induces stress granule formation. Molecular Biology of the Cell, 18, 2603–2618. https://doi.org/10.1091/mbc.E06
Mazroui,, R., Sukarieh,, R., Bordeleau,, M.‐E., Kaufman,, R. J., Northcote,, P., Tanaka,, J., … Pelletier,, J. (2006). Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2α phosphorylation. Molecular Biology of the Cell, 17, 4212–4219. https://doi.org/10.1091/mbc.e06-04-0318
Mitchell,, S. F., Jain,, S., She,, M., & Parker,, R. (2013). Global analysis of yeast mRNPs. Nature Structural %26 Molecular Biology, 20(1), 127–133. https://doi.org/10.1038/nsmb.2468
Moeller,, B. J., Cao,, Y., Li,, C. Y., & Dewhirst,, M. W. (2004). Radiation activates HIF‐1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules. Cancer Cell, 5, 429–441. https://doi.org/10.1016/S1535-6108(04)00115-1
Mokas,, S., Mills,, J. R., Garreau,, C., Fournier,, M.‐J., Robert,, F., Arya,, P., … Mazroui,, R. (2009). Uncoupling stress granule assembly and translation initiation inhibition. Molecular Biology of the Cell, 20, 2673–2683. https://doi.org/10.1091/mbc.E08-10-1061
Mollet,, S., Cougot,, N., Wilczynska,, A., Dautry,, F., Kress,, M., Bertrand,, E., & Weil,, D. (2008). Translationally repressed mRNA transiently cycles through stress granules during stress. Molecular Biology of the Cell, 19, 4469–4479. https://doi.org/10.1091/mbc.E08-05-0499
Molliex,, A., Temirov,, J., Lee,, J., Coughlin,, M., Kanagaraj,, A. P., Kim,, H. J., … Taylor,, J. P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell, 163(1), 123–133. https://doi.org/10.1016/j.cell.2015.09.015
Moon,, S. L., Morisaki,, T., Khong,, A., Lyon,, K., Parker,, R., & Stasevich,, T. J. (2019). Multicolour single‐molecule tracking of mRNA interactions with RNP granules. Nature Cell Biology, 21, 162–168. https://doi.org/10.1038/s41556-018-0263-4
Mugler,, C. F., Hondele,, M., Heinrich,, S., Sachdev,, R., Vallotton,, P., Koek,, A. Y., … Weis,, K. (2016). ATPase activity of the DEAD‐box protein Dhh1 controls processing body formation. eLife, 5, e18746. https://doi.org/10.7554/eLife.18746
Namkoong,, S., Ho,, A., Woo,, Y. M., Kwak,, H., & Lee,, J. H. (2018). Systematic characterization of stress‐induced RNA granulation. Molecular Cell, 70, 175–187.e8. https://doi.org/10.1016/j.molcel.2018.02.025
Ohn,, T., Kedersha,, N., Hickman,, T., Tisdale,, S., & Anderson,, P. (2008). A functional RNAi screen links O‐GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nature Cell Biology, 10(10), 1224–1231. https://doi.org/10.1038/ncb1783
Padròn,, A., Iwasaki,, S., & Ingolia,, N. T. (2018). Proximity RNA labeling by APEX‐Seq reveals the organization of translation initiation complexes and repressive RNA granules. bioRxiv. https://doi.org/10.1101/454066
Parker,, R., & Sheth,, U. (2007). P bodies and the control of mRNA translation and degradation. Molecular Cell, 25(5), 635–646. https://doi.org/10.1016/j.molcel.2007.02.011
Patel,, A., Malinovska,, L., Saha,, S., Wang,, J., Alberti,, S., Krishnan,, Y., & Hyman,, A. A. (2017). Biochemistry: ATP as a biological hydrotrope. Science, 356, 753–756. https://doi.org/10.1126/science.aaf6846
Pitchiaya,, S., Mourao,, M. D. A., Jalihal,, A. P., Xiao,, L., Jiang,, X., Chinnaiyan,, A. M., … Walter,, N. G. (2018). Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality. bioRxiv. https://doi.org/10.1101/375295
Protter,, D. S. W., Rao,, B. S., Van Treeck,, B., Lin,, Y., Mizoue,, L., Rosen,, M. K., & Parker,, R. (2018). Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Reports, 22(6), 1401–1412. https://doi.org/10.1016/j.celrep.2018.01.036
Rao,, B. S., & Parker,, R. (2017). Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 114, E9569–E9578. https://doi.org/10.1073/pnas.1712396114
Riback,, J. A., Katanski,, C. D., Kear‐Scott,, J. L., Pilipenko,, E. V., Rojek,, A. E., Sosnick,, T. R., & Drummond,, D. A. (2017). Stress‐triggered phase separation is an adaptive, evolutionarily tuned response. Cell, 168(6), 1028–1040.e19. https://doi.org/10.1016/j.cell.2017.02.027
Rogelj,, B., Easton,, L. E., Bogu,, G. K., Stanton,, L. W., Rot,, G., Curk,, T., … Ule,, J. (2012). Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Scientific Reports, 2, 603. https://doi.org/10.1038/srep00603
Saad,, S., Cereghetti,, G., Feng,, Y., Picotti,, P., Peter,, M., & Dechant,, R. (2017). Reversible protein aggregation is a protective mechanism to ensure cell cycle restart after stress. Nature Cell Biology, 19, 1202–1213. https://doi.org/10.1038/ncb3600
Schütz,, S., Nöldeke,, E. R., & Sprangers,, R. (2017). A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping. Nucleic Acids Research, 45(11), 6911–6922. https://doi.org/10.1093/nar/gkx353
Serman,, A., Le Roy,, F., Aigueperse,, C., Kress,, M., Dautry,, F., & Weil,, D. (2007). GW body disassembly triggered by siRNAs independently of their silencing activity. Nucleic Acids Research, 35(14), 4715–4727. https://doi.org/10.1093/nar/gkm491
Shah,, K. H., Zhang,, B., Ramachandran,, V., & Herman,, P. K. (2013). Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics, 193(1), 109–123. https://doi.org/10.1534/genetics.112.146993
Sheth,, U., & Parker,, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science, 300(5620), 805–808. https://doi.org/10.1126/science.1082320
Shin,, Y., Berry,, J., Pannucci,, N., Haataja,, M. P., Toettcher,, J. E., & Brangwynne,, C. P. (2017). Spatiotemporal control of intracellular phase transitions using light‐activated optoDroplets. Cell, 168(1–2), 159–171.e14. https://doi.org/10.1016/j.cell.2016.11.054
Stöhr,, N., Lederer,, M., Reinke,, C., Meyer,, S., Hatzfeld,, M., Singer,, R. H., & Hüttelmaier,, S. (2006). ZBP1 regulates mRNA stability during cellular stress. Journal of Cell Biology, 175, 527–534. https://doi.org/10.1083/jcb.200608071
Taylor,, J. P., Zhang,, P., Fan,, B., Yang,, P., Temirov,, J., Messing,, J., & Kim,, H. J. (2018). OptoGranules reveal the evolution of stress granules to ALS‐FTD pathology. bioRxiv. https://doi.org/10.1101/348870
Teixeira,, D., Sheth,, U., Valencia‐Sanchez,, M. A., Brengues,, M., & Parker,, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA, 11(4), 371–382. https://doi.org/10.1261/rna.7258505
Tourriere,, H., Chebli,, K., Zekri,, L., Courselaud,, B., Blanchard,, J. M., Bertrand,, E., & Tazi,, J. (2003). The RasGAP‐associated endoribonuclease G3BP assembles stress granules. Journal of Cell Biology, 160(6), 823–831. https://doi.org/10.1083/jcb.200212128
Tsai,, N. P., Ho,, P. C., & Wei,, L. N. (2008). Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. EMBO Journal, 27, 715–726. https://doi.org/10.1038/emboj.2008.19
Van Treeck,, B., & Parker,, R. (2018). Emerging roles for intermolecular RNA–RNA interactions in RNP assemblies. Cell, 174(4), 791–802. https://doi.org/10.1016/j.cell.2018.07.023
Wang,, C., Schmich,, F., Srivatsa,, S., Weidner,, J., Beerenwinkel,, N., & Spang,, A. (2018). Context‐dependent deposition and regulation of mRNAs in P‐bodies. eLife, 7, e29815. https://doi.org/10.7554/eLife.29815.001
Wang,, X., Lu,, Z., Gomez,, A., Hon,, G. C., Yue,, Y., Han,, D., … He,, C. (2013). N6‐methyladenosine‐dependent regulation of messenger RNA stability. Nature, 505(7481), 117–120. https://doi.org/10.1038/nature12730
Wilbertz,, J. H., Voigt,, F., Horvathova,, I., Roth,, G., Zhan,, Y., & Chao,, J. A. (2019). Single‐molecule imaging of mRNA localization and regulation during the integrated stress response. Molecular Cell. https://doi.org/10.1016/j.molcel.2018.12.006
Wilczynska,, A. (2005). The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. Journal of Cell Science, 118, 981–992. https://doi.org/10.1242/jcs.01692
Xing,, W., Muhlrad,, D., Parker,, R., & Rosen,, M. K. (2018). A quantitative inventory of yeast P body proteins reveals principles of compositional specificity. bioRxiv, 489658. https://doi.org/10.1101/489658
Yang,, X., Shen,, Y., Garre,, E., Hao,, X., Krumlinde,, D., Cvijovic,, M., … Sunnerhagen,, P. (2014). Stress granule‐defective mutants deregulate stress responsive transcripts. PLoS Genetics, 10(11), e1004763. https://doi.org/10.1371/journal.pgen.1004763
Youn,, J. Y., Dunham,, W. H., Hong,, S. J., Knight,, J. D. R., Bashkurov,, M., Chen,, G. I., … Gingras,, A. C. (2018). High‐density proximity mapping reveals the subcellular organization of mRNA‐associated granules and bodies. Molecular Cell, 69(3), 517–532.e11. https://doi.org/10.1016/j.molcel.2017.12.020
Zhang,, H., Elbaum‐Garfinkle,, S., Langdon,, E. M., Taylor,, N., Occhipinti,, P., Bridges,, A. A., … Gladfelter,, A. S. (2015). RNA controls PolyQ protein phase transitions. Molecular Cell, 60(2), 220–230. https://doi.org/10.1016/j.molcel.2015.09.017
Zid,, B. M., & O`Shea,, E. K. (2014). Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. Nature, 514, 117–121. https://doi.org/10.1038/nature13578