Akiyama,, B. M., Laurence,, H. M., Massey,, A. R., Costantino,, D. A., Xie,, X., Yang,, Y., … Kieft,, J. S. (2016). Zika virus produces noncoding RNAs using a multi‐pseudoknot structure that confounds a cellular exonuclease. Science, 354(6316), 1148–1152. https://doi.org/10.1126/science.aah3963
Al‐Hashimi,, H. M. (2013). NMR studies of nucleic acid dynamics. Journal of Magnetic Resonance, 237, 191–204. https://doi.org/10.1016/j.jmr.2013.08.014
Al‐Hashimi,, H. M., & Walter,, N. G. (2008). RNA dynamics: It is about time. Current Opinion in Structural Biology, 18(3), 321–329. https://doi.org/10.1016/j.sbi.2008.04.004
Alvarado,, L. J., LeBlanc,, R. M., Longhini,, A. P., Keane,, S. C., Jain,, N., Yildiz,, Z. F., … Dayie,, T. K. (2014). Regio‐selective chemical‐enzymatic synthesis of pyrimidine nucleotides facilitates RNA structure and dynamics studies. Chembiochem, 15(11), 1573–1577. https://doi.org/10.1002/cbic.201402130
Au,, H. H., Cornilescu,, G., Mouzakis,, K. D., Ren,, Q., Burke,, J. E., Lee,, S., … Jan,, E. (2015). Global shape mimicry of tRNA within a viral internal ribosome entry site mediates translational reading frame selection. Proceedings of the National Academy of Sciences of the United States of America, 112(47), E6446–E6455. https://doi.org/10.1073/pnas.1512088112
Bailor,, M. H., Musselman,, C., Hansen,, A. L., Gulati,, K., Patel,, D. J., & Al‐Hashimi,, H. M. (2007). Characterizing the relative orientation and dynamics of RNA A‐form helices using NMR residual dipolar couplings. Nature Protocols, 2(6), 1536–1546. https://doi.org/10.1038/nprot.2007.221
Baird,, N. J., Ludtke,, S. J., Khant,, H., Chiu,, W., Pan,, T., & Sosnick,, T. R. (2010). Discrete structure of an RNA folding intermediate revealed by cryo‐electron microscopy. Journal of the American Chemical Society, 132(46), 16352–16353. https://doi.org/10.1021/ja107492b
Barnwal,, R. P., Loh,, E., Godin,, K. S., Yip,, J., Lavender,, H., Tang,, C. M., & Varani,, G. (2016). Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by Neisseria meningitidis. Nucleic Acids Research, 44(19), 9426–9437. https://doi.org/10.1093/nar/gkw584
Barton,, S., Heng,, X., Johnson,, B. A., & Summers,, M. F. (2013). Database proton NMR chemical shifts for RNA signal assignment and validation. Journal of Biomolecular NMR, 55(1), 33–46. https://doi.org/10.1007/s10858-012-9683-9
Batey,, R. T., Battiste,, J. L., & Williamson,, J. R. (1995). Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods in Enzymology, 261, 300–322.
Batey,, R. T., Inada,, M., Kujawinski,, E., Puglisi,, J. D., & Williamson,, J. R. (1992). Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Research, 20(17), 4515–4523.
Berman,, H. M., Westbrook,, J., Feng,, Z., Gilliland,, G., Bhat,, T. N., Weissig,, H., … Bourne,, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242.
Bermejo,, G. A., Clore,, G. M., & Schwieters,, C. D. (2016). Improving NMR structures of RNA. Structure, 24(5), 806–815. https://doi.org/10.1016/j.str.2016.03.007
Bevilacqua,, P. C., Ritchey,, L. E., Su,, Z., & Assmann,, S. M. (2016). Genome‐wide analysis of RNA secondary structure. Annual Review of Genetics, 50, 235–266. https://doi.org/10.1146/annurev-genet-120215-035034
Bonasio,, R., & Shiekhattar,, R. (2014). Regulation of transcription by long noncoding RNAs. Annual Review of Genetics, 48, 433–455. https://doi.org/10.1146/annurev-genet-120213-092323
Bothe,, J. R., Nikolova,, E. N., Eichhorn,, C. D., Chugh,, J., Hansen,, A. L., & Al‐Hashimi,, H. M. (2011). Characterizing RNA dynamics at atomic resolution using solution‐state NMR spectroscopy. Nature Methods, 8(11), 919–931. https://doi.org/10.1038/nmeth.1735
Brown,, J. D., Summers,, M. F., & Johnson,, B. A. (2015). Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression. Journal of Biomolecular NMR, 63(1), 39–52. https://doi.org/10.1007/s10858-015-9961-4
Burke,, J. E., Sashital,, D. G., Zuo,, X., Wang,, Y. X., & Butcher,, S. E. (2012). Structure of the yeast U2/U6 snRNA complex. RNA, 18(4), 673–683. https://doi.org/10.1261/rna.031138.111
Chan,, R. T., Peters,, J. K., Robart,, A. R., Wiryaman,, T., Rajashankar,, K. R., & Toor,, N. (2018). Structural basis for the second step of group II intron splicing. Nature Communications, 9(1), 4676. https://doi.org/10.1038/s41467-018-06678-0
Clore,, G. M., Starich,, M. R., & Gronenborn,, A. M. (1998). Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod‐shaped viruses. Journal of the American Chemical Society, 120(40), 10571–10572. https://doi.org/10.1021/ja982592f
Cordero,, P., Kladwang,, W., VanLang,, C. C., & Das,, R. (2012). Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry, 51(36), 7037–7039. https://doi.org/10.1021/bi3008802
Cornilescu,, G., Didychuk,, A. L., Rodgers,, M. L., Michael,, L. A., Burke,, J. E., Montemayor,, E. J., … Butcher,, S. E. (2016). Structural analysis of multi‐helical RNAs by NMR‐SAXS/WAXS: Application to the U4/U6 di‐snRNA. Journal of Molecular Biology, 428(5 Pt A), 777–789. https://doi.org/10.1016/j.jmb.2015.11.026
Costa,, M., Walbott,, H., Monachello,, D., Westhof,, E., & Michel,, F. (2016). Crystal structures of a group II intron lariat primed for reverse splicing. Science, 354(6316), aaf9258. https://doi.org/10.1126/science.aaf9258
Dallmann,, A., Simon,, B., Duszczyk,, M. M., Kooshapur,, H., Pardi,, A., Bermel,, W., & Sattler,, M. (2013). Efficient detection of hydrogen bonds in dynamic regions of RNA by sensitivity‐optimized NMR pulse sequences. Angewandte Chemie (International Ed. in English), 52(40), 10487–10490. https://doi.org/10.1002/anie.201304391
Davis,, J. H., Tonelli,, M., Scott,, L. G., Jaeger,, L., Williamson,, J. R., & Butcher,, S. E. (2005). RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop‐receptor complex. Journal of Molecular Biology, 351(2), 371–382. https://doi.org/10.1016/j.jmb.2005.05.069
Deigan,, K. E., Li,, T. W., Mathews,, D. H., & Weeks,, K. M. (2009). Accurate SHAPE‐directed RNA structure determination. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 97–102. https://doi.org/10.1073/pnas.0806929106
Dethoff,, E. A., Chugh,, J., Mustoe,, A. M., & Al‐Hashimi,, H. M. (2012). Functional complexity and regulation through RNA dynamics. Nature, 482(7385), 322–330. https://doi.org/10.1038/nature10885
Dethoff,, E. A., Petzold,, K., Chugh,, J., Casiano‐Negroni,, A., & Al‐Hashimi,, H. M. (2012). Visualizing transient low‐populated structures of RNA. Nature, 491(7426), 724–728. https://doi.org/10.1038/nature11498
Dingley,, A. J., & Grzesiek,, S. (1998). Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide (2)J(NN) couplings. Journal of the American Chemical Society, 120(33), 8293–8297. https://doi.org/10.1021/ja981513x
Dong,, Y., Zhang,, S., Wu,, Z., Li,, X., Wang,, W. L., Zhu,, Y., … Mao,, Y. (2019). Cryo‐EM structures and dynamics of substrate‐engaged human 26S proteasome. Nature, 565(7737), 49–55. https://doi.org/10.1038/s41586-018-0736-4
D`Souza,, V., Dey,, A., Habib,, D., & Summers,, M. F. (2004). NMR structure of the 101‐nucleotide core encapsidation signal of the Moloney murine leukemia virus. Journal of Molecular Biology, 337(2), 427–442. https://doi.org/10.1016/j.jmb.2004.01.037
D`Souza,, V., & Summers,, M. F. (2004). Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature, 431(7008), 586–590. https://doi.org/10.1038/nature02944
Duss,, O., Maris,, C., von Schroetter,, C., & Allain,, F. H. (2010). A fast, efficient and sequence‐independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage. Nucleic Acids Research, 38(20), e188. https://doi.org/10.1093/nar/gkq756
Ehresmann,, C., Baudin,, F., Mougel,, M., Romby,, P., Ebel,, J. P., & Ehresmann,, B. (1987). Probing the structure of RNAs in solution. Nucleic Acids Research, 15(22), 9109–9128.
Esteller,, M. (2011). Non‐coding RNAs in human disease. Nature Reviews. Genetics, 12(12), 861–874. https://doi.org/10.1038/nrg3074
Farjon,, J., Boisbouvier,, J., Schanda,, P., Pardi,, A., Simorre,, J. P., & Brutscher,, B. (2009). Longitudinal‐relaxation‐enhanced NMR experiments for the study of nucleic acids in solution. Journal of the American Chemical Society, 131(24), 8571–8577. https://doi.org/10.1021/ja901633y
Gao,, X. L., & Patel,, D. J. (1987). NMR studies of A.C mismatches in DNA dodecanucleotides at acidic pH. Wobble A(anti).C(anti) pair formation. The Journal of Biological Chemistry, 262(35), 16973–16984.
Garmann,, R. F., Gopal,, A., Athavale,, S. S., Knobler,, C. M., Gelbart,, W. M., & Harvey,, S. C. (2015). Visualizing the global secondary structure of a viral RNA genome with cryo‐electron microscopy. RNA, 21(5), 877–886. https://doi.org/10.1261/rna.047506.114
Gherghe,, C. M., Shajani,, Z., Wilkinson,, K. A., Varani,, G., & Weeks,, K. M. (2008). Strong correlation between SHAPE chemistry and the generalized NMR order parameter (S2) in RNA. Journal of the American Chemical Society, 130(37), 12244–12245. https://doi.org/10.1021/ja804541s
Gong,, Z., Schwieters,, C. D., & Tang,, C. (2015). Conjoined use of EM and NMR in RNA structure refinement. PLoS One, 10(3), e0120445. https://doi.org/10.1371/journal.pone.0120445
Gopal,, A., Zhou,, Z. H., Knobler,, C. M., & Gelbart,, W. M. (2012). Visualizing large RNA molecules in solution. RNA, 18(2), 284–299. https://doi.org/10.1261/rna.027557.111
Grishaev,, A., Ying,, J., Canny,, M. D., Pardi,, A., & Bax,, A. (2008). Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data. Journal of Biomolecular NMR, 42(2), 99–109. https://doi.org/10.1007/s10858-008-9267-x
Guil,, S., & Esteller,, M. (2015). RNA‐RNA interactions in gene regulation: The coding and noncoding players. Trends in Biochemical Sciences, 40(5), 248–256. https://doi.org/10.1016/j.tibs.2015.03.001
Hansen,, A. L., & Al‐Hashimi,, H. M. (2006). Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: Towards new long‐range orientational constraints. Journal of Magnetic Resonance, 179(2), 299–307. https://doi.org/10.1016/j.jmr.2005.12.012
Hansen,, A. L., Nikolova,, E. N., Casiano‐Negroni,, A., & Al‐Hashimi,, H. M. (2009). Extending the range of microsecond‐to‐millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R‐1 rho NMR spectroscopy. Journal of the American Chemical Society, 131(11), 3818–3819. https://doi.org/10.1021/ja8091399
Hansen,, M. R., Hanson,, P., & Pardi,, A. (2000). Pf1 filamentous phage as an alignment tool for generating local and global structural information in nucleic acids. Journal of Biomolecular Structure %26 Dynamics, 17, 365–369. https://doi.org/10.1080/07391102.2000.10506642
Hansen,, M. R., Mueller,, L., & Pardi,, A. (1998). Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nature Structural Biology, 5(12), 1065–1074. https://doi.org/10.1038/4176
Hao,, Y., Bohon,, J., Hulscher,, R., Rappe,, M. C., Gupta,, S., Adilakshmi,, T., & Woodson,, S. A. (2018). Time‐resolved hydroxyl radical footprinting of RNA with X‐rays. Current Protocols in Nucleic Acid Chemistry, 73(1), e52. https://doi.org/10.1002/cpnc.52
Helmling,, C., Wacker,, A., Wolfinger,, M. T., Hofacker,, I. L., Hengesbach,, M., Furtig,, B., & Schwalbe,, H. (2017). NMR structural profiling of transcriptional intermediates reveals riboswitch regulation by metastable RNA conformations. Journal of the American Chemical Society, 139(7), 2647–2656. https://doi.org/10.1021/jacs.6b10429
Homan,, P. J., Favorov,, O. V., Lavender,, C. A., Kursun,, O., Ge,, X., Busan,, S., … Weeks,, K. M. (2014). Single‐molecule correlated chemical probing of RNA. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13858–13863. https://doi.org/10.1073/pnas.1407306111
Houck‐Loomis,, B., Durney,, M. A., Salguero,, C., Shankar,, N., Nagle,, J. M., Goff,, S. P., & D`Souza,, V. M. (2011). An equilibrium‐dependent retroviral mRNA switch regulates translational recoding. Nature, 480(7378), 561–564. https://doi.org/10.1038/nature10657
Huang,, X., Yu,, P., LeProust,, E., & Gao,, X. (1997). An efficient and economic site‐specific deuteration strategy for NMR studies of homologous oligonucleotide repeat sequences. Nucleic Acids Research, 25(23), 4758–4763.
Imai,, S., Kumar,, P., Hellen,, C. U., D`Souza,, V. M., & Wagner,, G. (2016). An accurately preorganized IRES RNA structure enables eIF4G capture for initiation of viral translation. Nature Structural %26 Molecular Biology, 23(9), 859–864. https://doi.org/10.1038/nsmb.3280
Jain,, N., Morgan,, C. E., Rife,, B. D., Salemi,, M., & Tolbert,, B. S. (2016). Solution structure of the HIV‐1 intron splicing silencer and its interactions with the UP1 domain of heterogeneous nuclear ribonucleoprotein (hnRNP) A1. The Journal of Biological Chemistry, 291(5), 2331–2344. https://doi.org/10.1074/jbc.M115.674564
Johnson,, J. E., Jr., & Hoogstraten,, C. G. (2008). Extensive backbone dynamics in the GCAA RNA tetraloop analyzed using 13C NMR spin relaxation and specific isotope labeling. Journal of the American Chemical Society, 130(49), 16757–16769. https://doi.org/10.1021/ja805759z
Jones,, C. P., & Ferre‐D`Amare,, A. R. (2017). Long‐range interactions in riboswitch control of gene expression. Annual Review of Biophysics, 46, 455–481. https://doi.org/10.1146/annurev-biophys-070816-034042
Kang,, M., Eichhorn,, C. D., & Feigon,, J. (2014). Structural determinants for ligand capture by a class II preQ1 riboswitch. Proceedings of the National Academy of Sciences of the United States of America, 111(6), E663–E671. https://doi.org/10.1073/pnas.1400126111
Kappel,, K., Liu,, S., Larsen,, K. P., Skiniotis,, G., Puglisi,, E. V., Puglisi,, J. D., … Das,, R. (2018). De novo computational RNA modeling into cryo‐EM maps of large ribonucleoprotein complexes. Nature Methods, 15(11), 947–954. https://doi.org/10.1038/s41592-018-0172-2
Keane,, S. C., Heng,, X., Lu,, K., Kharytonchyk,, S., Ramakrishnan,, V., Carter,, G., … Summers,, M. F. (2015). RNA structure. Structure of the HIV‐1 RNA packaging signal. Science, 348(6237), 917–921. https://doi.org/10.1126/science.aaa9266
Keane,, S. C., Van,, V., Frank,, H. M., Sciandra,, C. A., McCowin,, S., Santos,, J., … Summers,, M. F. (2016). NMR detection of intermolecular interaction sites in the dimeric 5′‐leader of the HIV‐1 genome. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 13033–13038. https://doi.org/10.1073/pnas.1614785113
Kim,, I., Lukavsky,, P. J., & Puglisi,, J. D. (2002). NMR study of 100 kDa HCV IRES RNA using segmental isotope labeling. Journal of the American Chemical Society, 124(32), 9338–9339.
Kim,, N. K., Zhang,, Q., & Feigon,, J. (2014). Structure and sequence elements of the CR4/5 domain of medaka telomerase RNA important for telomerase function. Nucleic Acids Research, 42(5), 3395–3408. https://doi.org/10.1093/nar/gkt1276
Kloiber,, K., Spitzer,, R., Tollinger,, M., Konrat,, R., & Kreutz,, C. (2011). Probing RNA dynamics via longitudinal exchange and CPMG relaxation dispersion NMR spectroscopy using a sensitive 13C‐methyl label. Nucleic Acids Research, 39(10), 4340–4351. https://doi.org/10.1093/nar/gkq1361
Knappenberger,, A. J., Reiss,, C. W., & Strobel,, S. A. (2018). Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. eLife, 7, e36381. https://doi.org/10.7554/eLife.36381
Kuhlbrandt,, W. (2014a). Biochemistry. The resolution revolution. Science, 343(6178), 1443–1444. https://doi.org/10.1126/science.1251652
Kuhlbrandt,, W. (2014b). Cryo‐EM enters a new era. eLife, 3, e03678. https://doi.org/10.7554/eLife.03678
LeBlanc,, R. M., Longhini,, A. P., Tugarinov,, V., & Dayie,, T. K. (2018). NMR probing of invisible excited states using selectively labeled RNAs. Journal of Biomolecular NMR, 71(3), 165–172. https://doi.org/10.1007/s10858-018-0184-3
Lee,, J. H., Jucker,, F., & Pardi,, A. (2008). Imino proton exchange rates imply an induced‐fit binding mechanism for the VEGF165‐targeting aptamer, Macugen. FEBS Letters, 582(13), 1835–1839. https://doi.org/10.1016/j.febslet.2008.05.003
Lee,, J. T. (2012). Epigenetic regulation by long noncoding RNAs. Science, 338(6113), 1435–1439. https://doi.org/10.1126/science.1231776
Liberman,, J. A., Suddala,, K. C., Aytenfisu,, A., Chan,, D., Belashov,, I. A., Salim,, M., … Wedekind,, J. E. (2015). Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome‐binding site regulated by fast dynamics. Proceedings of the National Academy of Sciences of the United States of America, 112(27), E3485–E3494. https://doi.org/10.1073/pnas.1503955112
Liberman,, J. A., & Wedekind,, J. E. (2012). Riboswitch structure in the ligand‐free state. WIREs RNA, 3(3), 369–384. https://doi.org/10.1002/wrna.114
Liu,, Y., Holmstrom,, E., Yu,, P., Tan,, K., Zuo,, X., Nesbitt,, D. J., … Wang,, Y. X. (2018). Incorporation of isotopic, fluorescent, and heavy‐atom‐modified nucleotides into RNAs by position‐selective labeling of RNA. Nature Protocols, 13(5), 987–1005. https://doi.org/10.1038/nprot.2018.002
Liu,, Y., Holmstrom,, E., Zhang,, J., Yu,, P., Wang,, J., Dyba,, M. A., … Wang,, Y. X. (2015). Synthesis and applications of RNAs with position‐selective labelling and mosaic composition. Nature, 522(7556), 368–372. https://doi.org/10.1038/nature14352
Liu,, Y., Yu,, P., Dyba,, M., Sousa,, R., Stagno,, J. R., & Wang,, Y. X. (2016). Applications of PLOR in labeling large RNAs at specific sites. Methods, 103, 4–10. https://doi.org/10.1016/j.ymeth.2016.03.014
Longhini,, A. P., LeBlanc,, R. M., Becette,, O., Salguero,, C., Wunderlich,, C. H., Johnson,, B. A., … Dayie,, T. K. (2016). Chemo‐enzymatic synthesis of site‐specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations. Nucleic Acids Research, 44(6), e52. https://doi.org/10.1093/nar/gkv1333
Lu,, K., Heng,, X., Garyu,, L., Monti,, S., Garcia,, E. L., Kharytonchyk,, S., … Summers,, M. F. (2011). NMR detection of structures in the HIV‐1 5′‐leader RNA that regulate genome packaging. Science, 334(6053), 242–245. https://doi.org/10.1126/science.1210460
Lu,, K., Miyazaki,, Y., & Summers,, M. F. (2010). Isotope labeling strategies for NMR studies of RNA. Journal of Biomolecular NMR, 46(1), 113–125. https://doi.org/10.1007/s10858-009-9375-2
Lukavsky,, P. J., Kim,, I., Otto,, G. A., & Puglisi,, J. D. (2003). Structure of HCV IRES domain II determined by NMR. Nature Structural Biology, 10(12), 1033–1038. https://doi.org/10.1038/nsb1004
Lukavsky,, P. J., & Puglisi,, J. D. (2005). Structure determination of large biological RNAs. Methods in Enzymology, 394, 399–416. https://doi.org/10.1016/S0076-6879(05)94016-0
Lundstrom,, P., Hansen,, D. F., & Kay,, L. E. (2008). Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: Comparison between uniformly and selectively 13C labeled samples. Journal of Biomolecular NMR, 42(1), 35–47. https://doi.org/10.1007/s10858-008-9260-4
Marchant,, J., Bax,, A., & Summers,, M. F. (2018). Accurate measurement of residual dipolar couplings in large RNAs by variable flip angle NMR. Journal of the American Chemical Society, 140(22), 6978–6983. https://doi.org/10.1021/jacs.8b03298
Marcia,, M., & Pyle,, A. M. (2012). Visualizing group II intron catalysis through the stages of splicing. Cell, 151(3), 497–507. https://doi.org/10.1016/j.cell.2012.09.033
Marion,, D. (2013). An introduction to biological NMR spectroscopy. Molecular %26 Cellular Proteomics, 12(11), 3006–3025. https://doi.org/10.1074/mcp.O113.030239
Merino,, E. J., Wilkinson,, K. A., Coughlan,, J. L., & Weeks,, K. M. (2005). RNA structure analysis at single nucleotide resolution by selective 2′‐hydroxyl acylation and primer extension (SHAPE). Journal of the American Chemical Society, 127(12), 4223–4231. https://doi.org/10.1021/ja043822v
Meyer,, M., Nielsen,, H., Olieric,, V., Roblin,, P., Johansen,, S. D., Westhof,, E., & Masquida,, B. (2014). Speciation of a group I intron into a lariat capping ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7659–7664. https://doi.org/10.1073/pnas.1322248111
Miller,, S. B., Yildiz,, F. Z., Lo,, J. A., Wang,, B., & D`Souza,, V. M. (2014). A structure‐based mechanism for tRNA and retroviral RNA remodelling during primer annealing. Nature, 515(7528), 591–595. https://doi.org/10.1038/nature13709
Miyazaki,, Y., Irobalieva,, R. N., Tolbert,, B. S., Smalls‐Mantey,, A., Iyalla,, K., Loeliger,, K., … Summers,, M. F. (2010). Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo‐electron tomography. Journal of Molecular Biology, 404(5), 751–772. https://doi.org/10.1016/j.jmb.2010.09.009
Nakanishi,, A., Kishikawa,, J. I., Tamakoshi,, M., Mitsuoka,, K., & Yokoyama,, K. (2018). Cryo EM structure of intact rotary H(+)‐ATPase/synthase from Thermus thermophilus. Nature Communications, 9(1), 89. https://doi.org/10.1038/s41467-017-02553-6
Nelissen,, F. H., van Gammeren,, A. J., Tessari,, M., Girard,, F. C., Heus,, H. A., & Wijmenga,, S. S. (2008). Multiple segmental and selective isotope labeling of large RNA for NMR structural studies. Nucleic Acids Research, 36(14), e89. https://doi.org/10.1093/nar/gkn397
Nguyen,, L. A., Wang,, J., & Steitz,, T. A. (2017). Crystal structure of Pistol, a class of self‐cleaving ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 114(5), 1021–1026. https://doi.org/10.1073/pnas.1611191114
Nguyen,, P., & Qin,, P. Z. (2012). RNA dynamics: Perspectives from spin labels. WIREs RNA, 3(1), 62–72. https://doi.org/10.1002/wrna.104
Nikonowicz,, E. P., Sirr,, A., Legault,, P., Jucker,, F. M., Baer,, L. M., & Pardi,, A. (1992). Preparation of 13C and 15N labelled RNAs for heteronuclear multi‐dimensional NMR studies. Nucleic Acids Research, 20(17), 4507–4513.
Nogales,, E., & Scheres,, S. H. (2015). Cryo‐EM: A unique tool for the visualization of macromolecular complexity. Molecular Cell, 58(4), 677–689. https://doi.org/10.1016/j.molcel.2015.02.019
Palmer,, A. G., & Massi,, F. (2006). Characterization of the dynamics of biomacromolecules using rotating‐frame spin relaxation NMR spectroscopy. Chemical Reviews, 106(5), 1700–1719. https://doi.org/10.1021/cr0404287
Panja,, S., Hua,, B., Zegarra,, D., Ha,, T., & Woodson,, S. A. (2017). Metals induce transient folding and activation of the twister ribozyme. Nature Chemical Biology, 13(10), 1109–1114. https://doi.org/10.1038/nchembio.2459
Paredes,, E., Evans,, M., & Das,, S. R. (2011). RNA labeling, conjugation and ligation. Methods, 54(2), 251–259. https://doi.org/10.1016/j.ymeth.2011.02.008
Peattie,, D. A., & Gilbert,, W. (1980). Chemical probes for higher‐order structure in RNA. Proceedings of the National Academy of Sciences of the United States of America, 77(8), 4679–4682.
Pervushin,, K., Ono,, A., Fernandez,, C., Szyperski,, T., Kainosho,, M., & Wuthrich,, K. (1998). NMR scaler couplings across Watson‐Crick base pair hydrogen bonds in DNA observed by transverse relaxation optimized spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14147–14151. https://doi.org/10.1073/pnas.95.24.14147
Pervushin,, K., Riek,, R., Wider,, G., & Wuthrich,, K. (1997). Attenuated T2 relaxation by mutual cancellation of dipole‐dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proceedings of the National Academy of Sciences of the United States of America, 94(23), 12366–12371.
Peselis,, A., & Serganov,, A. (2018). ykkC riboswitches employ an add‐on helix to adjust specificity for polyanionic ligands. Nature Chemical Biology, 14(9), 887–894. https://doi.org/10.1038/s41589-018-0114-4
Pyle,, A. M. (2016). Group II intron self‐splicing. Annual Review of Biophysics, 45, 183–205. https://doi.org/10.1146/annurev-biophys-062215-011149
Qu,, G., Kaushal,, P. S., Wang,, J., Shigematsu,, H., Piazza,, C. L., Agrawal,, R. K., … Wang,, H. W. (2016). Structure of a group II intron in complex with its reverse transcriptase. Nature Structural %26 Molecular Biology, 23(6), 549–557. https://doi.org/10.1038/nsmb.3220
Reining,, A., Nozinovic,, S., Schlepckow,, K., Buhr,, F., Furtig,, B., & Schwalbe,, H. (2013). Three‐state mechanism couples ligand and temperature sensing in riboswitches. Nature, 499(7458), 355–359. https://doi.org/10.1038/nature12378
Ren,, A., Micura,, R., & Patel,, D. J. (2017). Structure‐based mechanistic insights into catalysis by small self‐cleaving ribozymes. Current Opinion in Chemical Biology, 41, 71–83. https://doi.org/10.1016/j.cbpa.2017.09.017
Reuter,, J. S., & Mathews,, D. H. (2010). RNA structure: Software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, 129. https://doi.org/10.1186/1471-2105-11-129
Rinnenthal,, J., Buck,, J., Ferner,, J., Wacker,, A., Furtig,, B., & Schwalbe,, H. (2011). Mapping the landscape of RNA dynamics with NMR spectroscopy. Accounts of Chemical Research, 44(12), 1292–1301. https://doi.org/10.1021/ar200137d
Ritchie,, D. B., & Woodside,, M. T. (2015). Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Current Opinion in Structural Biology, 34, 43–51. https://doi.org/10.1016/j.sbi.2015.06.006
Roh,, S. H., Hryc,, C. F., Jeong,, H. H., Fei,, X., Jakana,, J., Lorimer,, G. H., & Chiu,, W. (2017). Subunit conformational variation within individual GroEL oligomers resolved by Cryo‐EM. Proceedings of the National Academy of Sciences of the United States of America, 114(31), 8259–8264. https://doi.org/10.1073/pnas.1704725114
Roth,, A., & Breaker,, R. R. (2009). The structural and functional diversity of metabolite‐binding riboswitches. Annual Review of Biochemistry, 78, 305–334. https://doi.org/10.1146/annurev.biochem.78.070507.135656
SantaLucia,, J., Jr., Shen,, L. X., Cai,, Z., Lewis,, H., & Tinoco,, I., Jr. (1995). Synthesis and NMR of RNA with selective isotopic enrichment in the bases. Nucleic Acids Research, 23(23), 4913–4921.
Scott,, L. G., Tolbert,, T. J., & Williamson,, J. R. (2000). Preparation of specifically 2H‐ and 13C‐labeled ribonucleotides. Methods in Enzymology, 317, 18–38.
Stern,, S., Moazed,, D., & Noller,, H. F. (1988). Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods in Enzymology, 164, 481–489.
Suslov,, N. B., DasGupta,, S., Huang,, H., Fuller,, J. R., Lilley,, D. M., Rice,, P. A., & Piccirilli,, J. A. (2015). Crystal structure of the Varkud satellite ribozyme. Nature Chemical Biology, 11(11), 840–846. https://doi.org/10.1038/nchembio.1929
Tian,, S., & Das,, R. (2016). RNA structure through multidimensional chemical mapping. Quarterly Reviews of Biophysics, 49, e7. https://doi.org/10.1017/S0033583516000020
Tolbert,, B. S., Miyazaki,, Y., Barton,, S., Kinde,, B., Starck,, P., Singh,, R., … Summers,, M. F. (2010). Major groove width variations in RNA structures determined by NMR and impact of 13C residual chemical shift anisotropy and 1H‐13C residual dipolar coupling on refinement. Journal of Biomolecular NMR, 47(3), 205–219. https://doi.org/10.1007/s10858-010-9424-x
Toor,, N., Keating,, K. S., Taylor,, S. D., & Pyle,, A. M. (2008). Crystal structure of a self‐spliced group II intron. Science, 320(5872), 77–82. https://doi.org/10.1126/science.1153803
Toor,, N., Rajashankar,, K., Keating,, K. S., & Pyle,, A. M. (2008). Structural basis for exon recognition by a group II intron. Nature Structural %26 Molecular Biology, 15(11), 1221–1222. https://doi.org/10.1038/nsmb.1509
Tzakos,, A. G., Easton,, L. E., & Lukavsky,, P. J. (2007). Preparation of large RNA oligonucleotides with complementary isotope‐labeled segments for NMR structural studies. Nature Protocols, 2(9), 2139–2147. https://doi.org/10.1038/nprot.2007.306
Ulyanov,, N. B., Mujeeb,, A., Du,, Z., Tonelli,, M., Parslow,, T. G., & James,, T. L. (2006). NMR structure of the full‐length linear dimer of stem‐loop‐1 RNA in the HIV‐1 dimer initiation site. The Journal of Biological Chemistry, 281(23), 16168–16177. https://doi.org/10.1074/jbc.M601711200
Vallurupalli,, P., Sekhar,, A., Yuwen,, T., & Kay,, L. E. (2017). Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: A primer. Journal of Biomolecular NMR, 67(4), 243–271. https://doi.org/10.1007/s10858-017-0099-4
Varani,, G., Aboulela,, F., & Allain,, F. H. T. (1996). NMR investigation of RNA structure. Progress in Nuclear Magnetic Resonance Spectroscopy, 29, 51–127. https://doi.org/10.1016/0079-6565(96)01028-X
Vicens,, Q., Mondragon,, E., Reyes,, F. E., Coish,, P., Aristoff,, P., Berman,, J., … Batey,, R. T. (2018). Structure‐activity relationship of flavin analogues that target the flavin mononucleotide riboswitch. ACS Chemical Biology, 13(10), 2908–2919. https://doi.org/10.1021/acschembio.8b00533
Vinothkumar,, K. R., & Henderson,, R. (2016). Single particle electron cryomicroscopy: Trends, issues and future perspective. Quarterly Reviews of Biophysics, 49, e13. https://doi.org/10.1017/S0033583516000068
Wagner,, D., Rinnenthal,, J., Narberhaus,, F., & Schwalbe,, H. (2015). Mechanistic insights into temperature‐dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base‐pair resolution. Nucleic Acids Research, 43(11), 5572–5585. https://doi.org/10.1093/nar/gkv414
Wang,, J., Zuo,, X., Yu,, P., Xu,, H., Starich,, M. R., Tiede,, D. M., … Wang,, Y. X. (2009). A method for helical RNA global structure determination in solution using small‐angle X‐ray scattering and NMR measurements. Journal of Molecular Biology, 393(3), 717–734. https://doi.org/10.1016/j.jmb.2009.08.001
Warner,, K. D., Hajdin,, C. E., & Weeks,, K. M. (2018). Principles for targeting RNA with drug‐like small molecules. Nature Reviews Drug Discovery, 17(8), 547–558. https://doi.org/10.1038/nrd.2018.93
Watts,, J. M., Dang,, K. K., Gorelick,, R. J., Leonard,, C. W., Bess,, J. W., Jr., Swanstrom,, R., … Weeks,, K. M. (2009). Architecture and secondary structure of an entire HIV‐1 RNA genome. Nature, 460(7256), 711–716. https://doi.org/10.1038/nature08237
Weeks,, K. M. (2010). Advances in RNA structure analysis by chemical probing. Current Opinion in Structural Biology, 20(3), 295–304. https://doi.org/10.1016/j.sbi.2010.04.001
Wüthrich,, K. (1986). NMR of proteins and nucleic acids. New York, New York: Wiley‐Interscience.
Xu,, J., Lapham,, J., & Crothers,, D. M. (1996). Determining RNA solution structure by segmental isotopic labeling and NMR: Application to Caenorhabditis elegans spliced leader RNA 1. Proceedings of the National Academy of Sciences of the United States of America, 93(1), 44–48.
Xue,, Y., Kellogg,, D., Kimsey,, I. J., Sathyamoorthy,, B., Stein,, Z. W., McBrairty,, M., & Al‐Hashimi,, H. M. (2015). Characterizing RNA excited states using NMR relaxation dispersion. Methods in Enzymology, 558, 39–73. https://doi.org/10.1016/bs.mie.2015.02.002
Yamazaki,, T., Muhandiram,, R., & Kay,, L. E. (1994). Nmr experiments for the measurement of carbon relaxation properties in highly enriched, uniformly 13C, 15N‐labeled proteins—Application to 13C(alpha) carbons. Journal of the American Chemical Society, 116(18), 8266–8278. https://doi.org/10.1021/ja00097a037
Yan,, J. L., Corpora,, T., Pradhan,, P., & Bushweller,, J. H. (2002). MQ‐HCN‐based pulse sequences for the measurement of 13C1`‐1H1`, 13C1`‐15N, 1H1`‐15N, 13C1`‐13C2`, 1H1`‐13C2`, 13C6/8‐1H6/8, 13C6/8‐15N, 1H6/8‐15N, 13C6‐13C5, 1H6‐13C5 dipolar couplings in 13C, 15N‐labeled DNA (and RNA). Journal of Biomolecular NMR, 22(1), 9–20. https://doi.org/10.1023/A:1013876105589
Zhang,, K., Keane,, S. C., Su,, Z., Irobalieva,, R. N., Chen,, M., Van,, V., … Chiu,, W. (2018). Structure of the 30 kDa HIV‐1 RNA dimerization signal by a hybrid Cryo‐EM, NMR, and molecular dynamics approach. Structure, 26, 490–498.e3. https://doi.org/10.1016/j.str.2018.01.001
Zhao,, B., Guffy,, S. L., Williams,, B., & Zhang,, Q. (2017). An excited state underlies gene regulation of a transcriptional riboswitch. Nature Chemical Biology, 13(9), 968–974. https://doi.org/10.1038/nchembio.2427
Zhao,, B., Hansen,, A. L., & Zhang,, Q. (2014). Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin‐lock field R(1rho) NMR spectroscopy. Journal of the American Chemical Society, 136(1), 20–23. https://doi.org/10.1021/ja409835y
Zhao,, C., Rajashankar,, K. R., Marcia,, M., & Pyle,, A. M. (2015). Crystal structure of group II intron domain 1 reveals a template for RNA assembly. Nature Chemical Biology, 11(12), 967–972. https://doi.org/10.1038/nchembio.1949
Zidek,, L., Wu,, H. H., Feigon,, J., & Sklenar,, V. (2001). Measurement of small scalar and dipolar couplings in purine and pyrimidine bases. Journal of Biomolecular NMR, 21(2), 153–160. https://doi.org/10.1023/A:1012435106858
Ziegeler,, M., Cevec,, M., Richter,, C., & Schwalbe,, H. (2012). NMR studies of HAR1 RNA secondary structures reveal conformational dynamics in the human RNA. Chembiochem, 13(14), 2100–2112. https://doi.org/10.1002/cbic.201200401
Zubradt,, M., Gupta,, P., Persad,, S., Lambowitz,, A. M., Weissman,, J. S., & Rouskin,, S. (2017). DMS‐MaPseq for genome‐wide or targeted RNA structure probing in vivo. Nature Methods, 14(1), 75–82. https://doi.org/10.1038/nmeth.4057
Zuo,, X., Wang,, J., Yu,, P., Eyler,, D., Xu,, H., Starich,, M. R., … Wang,, Y. X. (2010). Solution structure of the cap‐independent translational enhancer and ribosome‐binding element in the 3` UTR of turnip crinkle virus. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1385–1390. https://doi.org/10.1073/pnas.0908140107