Adjeroh,, D., Allaga,, M., Tan,, J., Lin,, J., Jiang,, Y., Abbasi,, A., & Zhou,, X. B. (2018). Feature‐based and string‐based models for predicting RNA‐protein interaction. Molecules, 23(3), E697. https://doi.org/10.3390/molecules23030697
Agostini,, F., Zanzoni,, A., Klus,, P., Marchese,, D., Cirillo,, D., & Tartaglia,, G. G. (2013). catRAPID omics: A web server for large‐scale prediction of protein‐RNA interactions. Bioinformatics, 29(22), 2928–2930. https://doi.org/10.1093/bioinformatics/btt495
Akbaripour‐Elahabad,, M., Zahiri,, J., Rafeh,, R., Eslami,, M., & Azari,, M. (2016). rpiCOOL: A tool for in silico RNA‐protein interaction detection using random forest. Journal of Theoretical Biology, 402, 1–8. https://doi.org/10.1016/j.jtbi.2016.04.025
Alipanahi,, B., Delong,, A., Weirauch,, M. T., & Frey,, B. J. (2015). Predicting the sequence specificities of DNA‐ and RNA‐binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838.
Ascano,, M., Hafner,, M., Cekan,, P., Gerstberger,, S., & Tuschl,, T. (2012). Identification of RNA‐protein interaction networks using PAR‐CLIP. WIREs RNA, 3(2), 159–177. https://doi.org/10.1002/wrna.1103
Avsec,, Z., Barekatain,, M., Cheng,, J., & Gagneur,, J. (2018). Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks. Bioinformatics, 34(8), 1261–1269. https://doi.org/10.1093/bioinformatics/btx727
Bailey,, T. L., Johnson,, J., Grant,, C. E., & Noble,, W. S. (2015). The MEME suite. Nucleic Acids Research, 43(W1), W39–W49.
Bau,, D., Zhou,, B., Khosla,, A., Oliva,, A., & Torralba,, A. (2017). Network dissection: Quantifying interpretability of deep visual representations. In Computer vision and pattern recognition (CVPR) (pp. 3319–3327). Honolulu, HI: IEEE.
Ben‐Bassat,, I., Chor,, B., & Orenstein,, Y. (2018). A deep neural network approach for learning intrinsic protein‐RNA binding preferences. Bioinformatics, 34(17), 638–646. https://doi.org/10.1093/bioinformatics/bty600
Blin,, K., Dieterich,, C., Wurmus,, R., Rajewsky,, N., Landthaler,, M., & Akalin,, A. (2015). DoRiNA 2.0—Upgrading the doRiNA database of RNA interactions in post‐transcriptional regulation. Nucleic Acids Research, 43(Database issue), D160–D167. https://doi.org/10.1093/nar/gku1180
Breiman,, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Budach,, S., & Marsico,, A. (2018). pysster: Classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. Bioinformatics, 34(17), 3035–3037. https://doi.org/10.1093/bioinformatics/bty222
Cheng,, Z., Zhou,, S., & Guan,, J. (2015). Computationally predicting protein‐RNA interactions using only positive and unlabeled examples. Journal of Bioinformatics and Computational Biology, 13(3), 1541005. https://doi.org/10.1142/S021972001541005X
Chi,, S. W., Zang,, J. B., Mele,, A., & Darnell,, R. B. (2009). Argonaute HITS‐CLIP decodes microRNA‐mRNA interaction maps. Nature, 460(7254), 479–486. https://doi.org/10.1038/nature08170
Ching,, T., Himmelstein,, D. S., Beaulieu‐Jones,, B. K., Kalinin,, A. A., Do,, B. T., Way,, G. P., … Greene,, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 15(141), 20170387. https://doi.org/10.1098/rsif.2017.0387
Colombrita,, C., Onesto,, E., Megiorni,, F., Pizzuti,, A., Baralle,, F. E., Buratti,, E., … Ratti,, A. (2012). TDP‐43 and FUS RNA‐binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post‐transcriptional fate in motoneuron‐like cells. The Journal of Biological Chemistry, 287(19), 15635–15647. https://doi.org/10.1074/jbc.M111.333450
Corcoran,, D. L., Georgiev,, S., Mukherjee,, N., Gottwein,, E., Skalsky,, R. L., Keene,, J. D., & Ohler,, U. (2011). PARalyzer: Definition of RNA binding sites from PAR‐CLIP short‐read sequence data. Genome Biology, 12(8), R79. https://doi.org/10.1186/gb-2011-12-8-r79
Corrado,, G., Tebaldi,, T., Costa,, F., Frasconi,, P., & Passerini,, A. (2016). RNAcommender: Genome‐wide recommendation of RNA‐protein interactions. Bioinformatics, 32(23), 3627–3634. https://doi.org/10.1093/bioinformatics/btw517
Cortes,, C., & Vapnik,, V. (1995). Support‐vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/Bf00994018
Crooks,, G. E., Hon,, G., Chandonia,, J. M., & Brenner,, S. E. (2004). WebLogo: A sequence logo generator. Genome Research, 14(6), 1188–1190. https://doi.org/10.1101/gr.849004
Dai,, Q., Guo,, M., Duan,, X., Teng,, Z., & Fu,, Y. (2019). Construction of complex features for computational predicting ncRNA‐protein interaction. Frontiers in Genetics, 10, 18.
Dassi,, E., Re,, A., Leo,, S., Tebaldi,, T., Pasini,, L., Peroni,, D., & Quattrone,, A. (2014). AURA 2: Empowering discovery of post‐transcriptional networks. Translation, 2(1), e27738. https://doi.org/10.4161/trla.27738
Foat,, B. C., Morozov,, A. V., & Bussemaker,, H. J. (2006). Statistical mechanical modeling of genome‐wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics, 22(14), E141–E149.
Gandhi,, S., Lee,, L. J., Delong,, A., Duvenaud,, D., & Frey,, B. J. (2018). cDeepbind: A context sensitive deep learning model of RNA‐protein binding. bioRxiv, 345140. https://doi.org/10.1101/345140
Hassanzadeh,, H. R., & Wang,, M. D. (2016). DeeperBind: Enhancing prediction of sequence specificities of DNA binding proteins. In 2016 IEEE international conference on bioinformatics and biomedicine (Bibm) (pp. 178–183). Shenzhen, China: IEEE.
He,, K., Zhang,, X., Ren,, S., & Sun,, J. (2016). Deep residual learning for image recognition. In The IEEE conference on computer vision and pattern recognition (pp. 770–778). Las Vegas, NV: IEEE.
Hentze,, M. W., Castello,, A., Schwarzl,, T., & Preiss,, T. (2018). A brave new world of RNA‐binding proteins. Nature Reviews Molecular Cell Biology, 19, 327–341. https://doi.org/10.1038/nrm.2017.130
Hiller,, M., Pudimat,, R., Busch,, A., & Bockofen,, R. (2006). Using RNA secondary structures to guide sequence motif finding towards single‐stranded regions. Nucleic Acids Research, 34(17), e117.
Hinton,, G. E., & Salakhutdinov,, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647
Hochreiter,, S., & Schmidhuber,, J. (1997). Long short‐term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hu,, B. Q., Yang,, Y. C. T., Huang,, Y. M., Zhu,, Y. M., & Lu,, Z. J. (2017). POSTAR: A platform for exploring post‐transcriptional regulation coordinated by RNA‐binding proteins. Nucleic Acids Research, 45(D1), D104–D114. https://doi.org/10.1093/nar/gkw888
Jin,, L. P., & Dong,, J. (2017). Classification of normal and abnormal ECG records using lead convolutional neural network and rule inference. Science China‐Information Sciences, 60(7), 07810. https://doi.org/10.1007/s11432-016-9047-6
Kazan,, H., Ray,, D., Chan,, E. T., Hughes,, T. R., & Morris,, Q. (2010). RNAcontext: A new method for learning the sequence and structure binding preferences of RNA‐binding proteins. PLoS Computational Biology, 6, e1000832. https://doi.org/10.1371/journal.pcbi.1000832
Khalil,, A. M., & Rinn,, J. L. (2011). RNA‐protein interactions in human health and disease. Seminars in Cell %26 Developmental Biology, 22(4), 359–365. https://doi.org/10.1016/j.semcdb.2011.02.016
Koo,, P. K., & Eddy,, S. R. (2018). Representation learning of genomic sequence motifs with convolutional neural networks. bioRxiv, 362756. https://doi.org/10.1101/362756
Krakau,, S., Richard,, H., & Marsico,, A. (2017). PureCLIP: Capturing target‐specific protein‐RNA interaction footprints from single‐nucleotide CLIP‐seq data. Genome Biology, 18(1), 240. https://doi.org/10.1186/s13059-017-1364-2
LeCun,, Y., Bengio,, Y., & Hinton,, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lecun,, Y., Bottou,, L., Bengio,, Y., & Haffner,, P. (1998). Gradient‐based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
Li,, J. H., Liu,, S., Zhou,, H., Qu,, L. H., & Yang,, J. H. (2014). starBase v2.0: Decoding miRNA‐ceRNA, miRNA‐ncRNA and protein‐RNA interaction networks from large‐scale CLIP‐Seq data. Nucleic Acids Research, 42(Database issue, D92–D97. https://doi.org/10.1093/nar/gkt1248
Livi,, C. M., & Blanzieri,, E. (2014). Protein‐specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures. BMC Bioinformatics, 15, 123. https://doi.org/10.1186/1471-2105-15-123
Loffe,, S., & Szegedy,, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd international conference on international conference on machine learning (Vol. 37, pp. 448–456).
Lu,, Q. S., Ren,, S. J., Lu,, M., Zhang,, Y., Zhu,, D. H., Zhang,, X. G., & Li,, T. T. (2013). Computational prediction of associations between long non‐coding RNAs and proteins. BMC Genomics, 14, 651. https://doi.org/10.1186/1471-2164-14-651
Lunde,, B. M., Moore,, C., & Varani,, G. (2007). RNA‐binding proteins: Modular design for efficient function. Nature Reviews Molecular Cell Biology, 8(6), 479–490. https://doi.org/10.1038/nrm2178
Maticzka,, D., Lange,, S. J., Costa,, F., & Backofen,, R. (2014). GraphProt: Modeling binding preferences of RNA‐binding proteins. Genome Biology, 15(1), R17. https://doi.org/10.1186/gb-2014-15-1-r17
Muppirala,, U. K., Honavar,, V. G., & Dobbs,, D. (2011). Predicting RNA‐protein interactions using only sequence information. BMC Bioinformatics, 12, 489. https://doi.org/10.1186/1471-2105-12-489
Nutter,, C. A., & Kuyumcu‐Martinez,, M. N. (2018). Emerging roles of RNA‐binding proteins in diabetes and their therapeutic potential in diabetic complications. WIREs RNA, 9(2), e1459. https://doi.org/10.1002/wrna.1459
Orenstein,, Y., Wang,, Y., & Berger,, B. (2016). RCK: Accurate and efficient inference of sequence‐ and structure‐based protein‐RNA binding models from RNAcompete data. Bioinformatics, 32(12), i351–i359. https://doi.org/10.1093/bioinformatics/btw259
Pan,, X., Fan,, Y. X., Yan,, J., & Shen,, H. B. (2016). IPMiner: Hidden ncRNA‐protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genomics, 17, 582. https://doi.org/10.1186/s12864-016-2931-8
Pan,, X., Rijnbeek,, P., Yan,, J., & Shen,, H.‐B. (2018). Prediction of RNA‐protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics, 19, 511. https://doi.org/10.1101/146175
Pan,, X., & Shen,, H. B. (2018a). Learning distributed representations of RNA sequences and its application for predicting RNA‐protein binding sites with a convolutional neural network. Neurocomputing, 305, 51–58.
Pan,, X. Y., & Shen,, H. B. (2018b). Predicting RNA‐protein binding sites and motifs through combining local and global deep convolutional neural networks. Bioinformatics, 34(20), 3427–3436. https://doi.org/10.1093/bioinformatics/bty364
Pan,, X., & Shen,, H. B. (2017). RNA‐protein binding motifs mining with a new hybrid deep learning based cross‐domain knowledge integration approach. BMC Bioinformatics, 18(1), 136.
Pan,, X., & Yan,, J. (2017). Attention based convolutional neural network for predicting RNA‐protein binding sites. arXiv:1712.02270.
Pan,, X. Y., Fan,, Y. X., Jia,, J., & Shen,, H. B. (2016). Identifying RNA‐binding proteins using multi‐label deep learning. SCIENCE CHINA Information Sciences, 62(1), 019103.
Pietrosanto,, M., Adinolfi,, M., Casula,, R., Ausiello,, G., Ferre,, F., & Helmer‐Citterich,, M. (2018). BEAM web server: A tool for structural RNA motif discovery. Bioinformatics, 34(6), 1058–1060.
Quang,, D., & Xie,, X. H. (2016). DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Research, 44(11), e107. https://doi.org/10.1093/nar/gkw226
Sasse,, A., Laverty,, K. U., Hughes,, T. R., & Morris,, Q. D. (2018). Motif models for RNA‐binding proteins. Current Opinion in Structural Biology, 53, 115–123. https://doi.org/10.1016/j.sbi.2018.08.001
Schaul,, T., & Schmidhuber,, J. (2010). Metalearning. Scholarpedia, 5(6), 4650.
Shen,, W. J., Cui,, W., Chen,, D., Zhang,, J., & Xu,, J. (2018). RPiRLS: Quantitative predictions of RNA interacting with any protein of known sequence. Molecules, 23(3), E540. https://doi.org/10.3390/molecules23030540
Shrikumar,, A., Greenside,, P., & Kundaje,, A. (2017). Learning important features through propagating activation differences. PMLR, 70, 3145–3153.
Srivastava,, N., Hinton,, G., Krizhevsky,, A., Sutskever,, I., & Salakhutdinov,, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.
Strazar,, M., Zitnik,, M., Zupan,, B., Ule,, J., & Curk,, T. (2016). Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics, 32(10), 1527–1535. https://doi.org/10.1093/bioinformatics/btw003
Suresh,, V., Liu,, L., Adjeroh,, D., & Zhou,, X. B. (2015). RPI‐Pred: Predicting ncRNA‐protein interaction using sequence and structural information. Nucleic Acids Research, 43(3), 1370–1379. https://doi.org/10.1093/nar/gkv020
Van Nostrand,, E. L., Pratt,, G. A., Shishkin,, A. A., Gelboin‐Burkhart,, C., Fang,, M. Y., Sundararaman,, B., … Yeo,, G. W. (2016). Robust transcriptome‐wide discovery of RNA‐binding protein binding sites with enhanced CLIP (eCLIP). Nature Methods, 13(6), 508–514. https://doi.org/10.1038/nmeth.3810
Vincent,, P., Larochelle,, H., Lajoie,, I., Bengio,, Y., & Manzagol,, P. A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371–3408.
Wang,, H., & Wu,, P. (2018). Prediction of RNA‐protein interactions using conjoint triad feature and chaos game representation. Bioengineered, 9(1), 242–251.
Wang,, L., Yan,, X., Liu,, M. L., Song,, K. J., Sun,, X. F., & Pan,, W. W. (2019). Prediction of RNA‐protein interactions by combining deep convolutional neural network with feature selection ensemble method. Journal of Theoretical Biology, 461, 230–238. https://doi.org/10.1016/j.jtbi.2018.10.029
Wang,, L., You,, Z. H., Huang,, D. S., & Zhou,, F. (2018). Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein‐RNA interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1. https://doi.org/10.1109/TCBB.2018.2874267
Wheeler,, E. C., Van Nostrand,, E. L., & Yeo,, G. W. (2018). Advances and challenges in the detection of transcriptome‐wide protein‐RNA interactions. WIREs RNA, 9(1), e1436. https://doi.org/10.1002/wrna.1436
Xiao,, Y., Cai,, J., Yang,, Y., Zhao,, H., & Shen,, H. B. (2018). Prediction of microRNA subcellular localization by using a sequence‐to‐sequence model. In IEEE international conference on data mining 2018. Singapore: IEEE. https://doi.org/10.1109/ICDM.2018.00181
Yang,, Y. C., Di,, C., Hu,, B., Zhou,, M., Liu,, Y., Song,, N., … Lu,, Z. J. (2015). CLIPdb: A CLIP‐seq database for protein‐RNA interactions. BMC Genomics, 16, 51. https://doi.org/10.1186/s12864-015-1273-2
Yang,, Q., & Sun,, F. (2018). Small sample learning with high order contractive auto‐encoders and application in SAR images. Science in China Series F‐Information Sciences, 61(9), 099101.
Yi,, H. C., You,, Z. H., Huang,, D. S., Li,, X., Jiang,, T. H., & Li,, L. P. (2018). A deep learning framework for robust and accurate prediction of ncRNA‐protein interactions using evolutionary information. Molecular Therapy‐Nucleic Acids, 11, 337–344. https://doi.org/10.1016/j.omtn.2018.03.001
Yu,, H., Wang,, J., Sheng,, Q., Liu,, Q., & Shyr,, Y. (2018). beRBP: Binding estimation for human RNA‐binding proteins. Nucleic Acids Research, 47(5), e26. https://doi.org/10.1093/nar/gky1294
Zhan,, Z. H., You,, Z. H., Li,, L. P., Zhou,, Y., & Yi,, H. C. (2018). Accurate prediction of ncRNA‐protein interactions from the integration of sequence and evolutionary information. Frontiers in Genetics, 9, 458. https://doi.org/10.3389/fgene.2018.00458
Zhang,, K., Pan,, X., Yang,, Y., & Shen,, H. B. (2018). Predicting circRNA‐RBP interaction sites using a codon‐based encoding and hybrid deep neural networks. bioRxiv, 499012. https://doi.org/10.1101/499012
Zhang,, Q., Cao,, R., Shi,, F., Wu,, Y. N., & Zhu,, S. (2018). Interpreting CNN knowledge via an explanatory graph. In National conference on artificial intelligence (AAAI) (pp. 4454–4463). New Orleans, LA: AAAI.
Zhang,, S., Zhou,, J. T., Hu,, H. L., Gong,, H. P., Chen,, L. G., Cheng,, C., & Zeng,, J. Y. (2016). A deep learning framework for modeling structural features of RNA‐binding protein targets. Nucleic Acids Research, 44(4), e32. https://doi.org/10.1093/nar/gkv1025