Aguiar,, E. R., Olmo,, R. P., Paro,, S., Ferreira,, F. V., de Faria,, I. J., Todjro,, Y. M., … Marques,, J. T. (2015). Sequence‐independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Research, 43(13), 6191–6206.
Akbari,, O. S., Antoshechkin,, I., Amrhein,, H., Williams,, B., Diloreto,, R., Sandler,, J., & Hay,, B. A. (2013). The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3, 3(9), 1493–1509.
Aravin,, A., Gaidatzis,, D., Pfeffer,, S., Lagos‐Quintana,, M., Landgraf,, P., Iovino,, N., … Tuschl,, T. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 442(7099), 203–207.
Aravin,, A. A., Hannon,, G. J., & Brennecke,, J. (2007). The Piwi‐piRNA pathway provides an adaptive defense in the transposon arms race. Science, 318(5851), 761–764.
Arensburger,, P., Hice,, R. H., Wright,, J. A., Craig,, N. L., & Atkinson,, P. W. (2011). The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon‐specific piRNAs. BMC Genomics, 12, 606.
Aswad,, A., & Katzourakis,, A. (2012). Paleovirology and virally derived immunity. Trends in Ecology %26 Evolution, 27(11), 627–636.
Biryukova,, I., & Ye,, T. (2015). Endogenous siRNAs and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae. BMC Genomics, 16, 278.
Brackney,, D. E., Beane,, J. E., & Ebel,, G. D. (2009). RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathogens, 5(7), e1000502.
Brackney,, D. E., Scott,, J. C., Sagawa,, F., Woodward,, J. E., Miller,, N. A., Schilkey,, F. D., … Ebel,, G. D. (2010). C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Neglected Tropical Diseases, 4(10), e856.
Brennecke,, J., Aravin,, A. A., Stark,, A., Dus,, M., Kellis,, M., Sachidanandam,, R., & Hannon,, G. J. (2007). Discrete small RNA‐generating loci as master regulators of transposon activity in Drosophila. Cell, 128(6), 1089–1103.
Brennecke,, J., Malone,, C. D., Aravin,, A. A., Sachidanandam,, R., Stark,, A., & Hannon,, G. J. (2008). An epigenetic role for maternally inherited piRNAs in transposon silencing. Science, 322(5906), 1387–1392.
Cai,, Y., Zhou,, Q., Yu,, C., Wang,, X., Hu,, S., Yu,, J., & Yu,, X. (2012). Transposable‐element associated small RNAs in Bombyx mori genome. PLoS ONE, 7(5), e36599.
Campbell,, C. L., Black,, W. C. t., Hess,, A. M., & Foy,, B. D. (2008). Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genomics, 9, 425.
Carmell,, M. A., Xuan,, Z., Zhang,, M. Q., & Hannon,, G. J. (2002). The Argonaute family: Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes %26 Development, 16(21), 2733–2742.
Castellano,, L., Rizzi,, E., Krell,, J., Di Cristina,, M., Galizi,, R., Mori,, A., … Nolan,, T. (2015). The germline of the malaria mosquito produces abundant miRNAs, endo‐siRNAs, piRNAs and 29‐nt small RNAs. BMC Genomics, 16, 100.
Chotkowski,, H. L., Ciota,, A. T., Jia,, Y., Puig‐Basagoiti,, F., Kramer,, L. D., Shi,, P. Y., & Glaser,, R. L. (2008). West Nile virus infection of Drosophila melanogaster induces a protective RNAi response. Virology, 377(1), 197–206.
Cora,, E., Pandey,, R. R., Xiol,, J., Taylor,, J., Sachidanandam,, R., McCarthy,, A. A., & Pillai,, R. S. (2014). The MID‐PIWI module of Piwi proteins specifies nucleotide‐ and strand‐biases of piRNAs. RNA, 20(6), 773–781.
Cox,, D. N., Chao,, A., & Lin,, H. (2000). piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development, 127(3), 503–514.
Czech,, B., & Hannon,, G. J. (2016). One loop to rule them all: The ping‐pong cycle and piRNA‐guided silencing. Trends in Biochemical Sciences, 41(4), 324–337.
Dietrich,, I., Jansen,, S., Fall,, G., Lorenzen,, S., Rudolf,, M., Huber,, K., … Becker,, S. C. (2017). RNA interference restricts Rift Valley fever virus in multiple insect systems. mSphere, 2(3), 1–17.
Dietrich,, I., Shi,, X., McFarlane,, M., Watson,, M., Blomstrom,, A. L., Skelton,, J. K., … Schnettler,, E. (2017). The antiviral RNAi response in vector and non‐vector cells against Orthobunyaviruses. PLoS Neglected Tropical Diseases, 11(1), e0005272.
Donald,, C. L., Varjak,, M., Aguiar,, E., Marques,, J. T., Sreenu,, V. B., Schnettler,, E., & Kohl,, A. (2018). Antiviral RNA interference activity in cells of the predatory mosquito, Toxorhynchites amboinensis. Viruses, 10(12), 1–15.
Feltzin,, V. L., Khaladkar,, M., Abe,, M., Parisi,, M., Hendriks,, G. J., Kim,, J., & Bonini,, N. M. (2015). The exonuclease nibbler regulates age‐associated traits and modulates piRNA length in drosophila. Aging Cell, 14(3), 443–452.
Fros,, J. J., Miesen,, P., Vogels,, C. B., Gaibani,, P., Sambri,, V., Martina,, B. E., … Pijlman,, G. P. (2015). Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in North‐Western Europe. One Health, 1, 31–36.
Gainetdinov,, I., Colpan,, C., Arif,, A., Cecchini,, K., & Zamore,, P. D. (2018). A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in Most animals. Molecular Cell, 71(5), 775, e775–e790.
Ghildiyal,, M., Seitz,, H., Horwich,, M. D., Li,, C., Du,, T., Lee,, S., … Zamore,, P. D. (2008). Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science, 320(5879), 1077–1081.
Girardi,, E., Miesen,, P., Pennings,, B., Frangeul,, L., Saleh,, M. C., & van Rij,, R. P. (2017). Histone‐derived piRNA biogenesis depends on the ping‐pong partners Piwi5 and Ago3 in Aedes aegypti. Nucleic Acids Research, 45(8), 4881–4892.
Goertz,, G. P., Fros,, J. J., Miesen,, P., Vogels,, C. B., van der Bent,, M. L., Geertsema,, C., … Pijlman,, G. P. (2016). Noncoding subgenomic Flavivirus RNA is processed by the mosquito RNA interference machinery and determines West Nile virus transmission by Culex pipiens mosquitoes. Journal of Virology, 90(22), 10145–10159.
Goertz,, G. P., Miesen,, P., Overheul,, G. J., van Rij,, R. P., van Oers,, M. M., & Pijlman,, G. P. (2019). Mosquito small RNA responses to West Nile and insect‐specific virus infections in Aedes and Culex Mosquito cells. Viruses, 11(3), 1–18.
Goic,, B., Stapleford,, K. A., Frangeul,, L., Doucet,, A. J., Gausson,, V., Blanc,, H., … Saleh,, M. C. (2016). Virus‐derived DNA drives mosquito vector tolerance to arboviral infection. Nature Communications, 7, 12410.
Goic,, B., Vodovar,, N., Mondotte,, J. A., Monot,, C., Frangeul,, L., Blanc,, H., … Saleh,, M. C. (2013). RNA‐mediated interference and reverse transcription control the persistence of RNA viruses in the insect model drosophila. Nature Immunology, 14(4), 396–403.
Gunawardane,, L. S., Saito,, K., Nishida,, K. M., Miyoshi,, K., Kawamura,, Y., Nagami,, T., … Siomi,, M. C. (2007). A slicer‐mediated mechanism for repeat‐associated siRNA 5′ end formation in Drosophila. Science, 315(5818), 1587–1590.
Han,, B. W., Wang,, W., Li,, C., Weng,, Z., & Zamore,, P. D. (2015). Noncoding RNA. piRNA‐guided transposon cleavage initiates Zucchini‐dependent, phased piRNA production. Science, 348(6236), 817–821.
Handler,, D., Olivieri,, D., Novatchkova,, M., Gruber,, F. S., Meixner,, K., Mechtler,, K., … Brennecke,, J. (2011). A systematic analysis of drosophila TUDOR domain‐containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. The EMBO Journal, 30(19), 3977–3993.
Hartig,, J. V., Tomari,, Y., & Forstemann,, K. (2007). piRNAs‐‐the ancient hunters of genome invaders. Genes %26 Development, 21(14), 1707–1713.
Hayashi,, R., Schnabl,, J., Handler,, D., Mohn,, F., Ameres,, S. L., & Brennecke,, J. (2016). Genetic and mechanistic diversity of piRNA 3′‐end formation. Nature, 539(7630), 588–592.
Hess,, A. M., Prasad,, A. N., Ptitsyn,, A., Ebel,, G. D., Olson,, K. E., Barbacioru,, C., … Campbell,, C. L. (2011). Small RNA profiling of dengue virus‐mosquito interactions implicates the PIWI RNA pathway in anti‐viral defense. BMC Microbiology, 11, 45.
Hoa,, N. T., Keene,, K. M., Olson,, K. E., & Zheng,, L. (2003). Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochemistry and Molecular Biology, 33(9), 949–957.
Homolka,, D., Pandey,, R. R., Goriaux,, C., Brasset,, E., Vaury,, C., Sachidanandam,, R., … Pillai,, R. S. (2015). PIWI slicing and RNA elements in precursors instruct directional primary piRNA biogenesis. Cell Reports, 12(3), 418–428.
Honda,, S., Kirino,, Y., Maragkakis,, M., Alexiou,, P., Ohtaki,, A., Murali,, R., & Mourelatos,, Z. (2013). Mitochondrial protein BmPAPI modulates the length of mature piRNAs. RNA, 19(10), 1405–1418.
Honda,, S., Loher,, P., Morichika,, K., Shigematsu,, M., Kawamura,, T., Kirino,, Y., & Rigoutsos,, I. (2017). Increasing cell density globally enhances the biogenesis of Piwi‐interacting RNAs in Bombyx mori germ cells. Scientific Reports, 7(1), 4110.
Horwich,, M. D., Li,, C., Matranga,, C., Vagin,, V., Farley,, G., Wang,, P., & Zamore,, P. D. (2007). The drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single‐stranded siRNAs in RISC. Current Biology, 17(14), 1265–1272.
Huang,, X., Fejes Toth,, K., & Aravin,, A. A. (2017). piRNA biogenesis in Drosophila melanogaster. Trends in Genetics, 33(11), 882–894.
Ipsaro,, J. J., Haase,, A. D., Knott,, S. R., Joshua‐Tor,, L., & Hannon,, G. J. (2012). The structural biochemistry of zucchini implicates it as a nuclease in piRNA biogenesis. Nature, 491(7423), 279–283.
Iwasaki,, Y. W., Siomi,, M. C., & Siomi,, H. (2015). PIWI‐interacting RNA: Its biogenesis and functions. Annual Review of Biochemistry, 84, 405–433.
Izumi,, N., Kawaoka,, S., Yasuhara,, S., Suzuki,, Y., Sugano,, S., Katsuma,, S., & Tomari,, Y. (2013). Hsp90 facilitates accurate loading of precursor piRNAs into PIWI proteins. RNA, 19(7), 896–901.
Izumi,, N., Shoji,, K., Sakaguchi,, Y., Honda,, S., Kirino,, Y., Suzuki,, T., … Tomari,, Y. (2016). Identification and functional analysis of the pre‐piRNA 3′ trimmer in silkworms. Cell, 164(5), 962–973.
Jehn,, J., Gebert,, D., Pipilescu,, F., Stern,, S., Kiefer,, J. S. T., Hewel,, C., & Rosenkranz,, D. (2018). PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage‐specific adaptation. Communication Biology, 1, 137.
Jones,, B. C., Wood,, J. G., Chang,, C., Tam,, A. D., Franklin,, M. J., Siegel,, E. R., & Helfand,, S. L. (2016). A somatic piRNA pathway in the drosophila fat body ensures metabolic homeostasis and normal lifespan. Nature Communications, 7, 13856.
Joosten,, J., Miesen,, P., Taskopru,, E., Pennings,, B., Jansen,, P., Huynen,, M. A., … Van Rij,, R. P. (2019). The Tudor protein Veneno assembles the ping‐pong amplification complex that produces viral piRNAs in Aedes mosquitoes. Nucleic Acids Research, 47(5), 2546–2559.
Katsuma,, S., Kawamoto,, M., Shoji,, K., Aizawa,, T., Kiuchi,, T., Izumi,, N., … Iwanaga,, M. (2018). Transcriptome profiling reveals infection strategy of an insect maculavirus. DNA Research, 25, 277–286.
Kawaoka,, S., Hayashi,, N., Suzuki,, Y., Abe,, H., Sugano,, S., Tomari,, Y., … Katsuma,, S. (2009). The Bombyx ovary‐derived cell line endogenously expresses PIWI/PIWI‐interacting RNA complexes. RNA, 15(7), 1258–1264.
Kawaoka,, S., Izumi,, N., Katsuma,, S., & Tomari,, Y. (2011). 3′ end formation of PIWI‐interacting RNAs in vitro. Molecular Cell, 43(6), 1015–1022.
Kawaoka,, S., Minami,, K., Katsuma,, S., Mita,, K., & Shimada,, T. (2008). Developmentally synchronized expression of two Bombyx mori Piwi subfamily genes, SIWI and BmAGO3 in germ‐line cells. Biochemical and Biophysical Research Communications, 367(4), 755–760.
Keene,, K. M., Foy,, B. D., Sanchez‐Vargas,, I., Beaty,, B. J., Blair,, C. D., & Olson,, K. E. (2004). RNA interference acts as a natural antiviral response to O`nyong‐nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17240–17245.
Kirino,, Y., Kim,, N., de Planell‐Saguer,, M., Khandros,, E., Chiorean,, S., Klein,, P. S., … Mourelatos,, Z. (2009). Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nature Cell Biology, 11(5), 652–658.
Kirino,, Y., Vourekas,, A., Kim,, N., de Lima Alves,, F., Rappsilber,, J., Klein,, P. S., … Mourelatos,, Z. (2010). Arginine methylation of vasa protein is conserved across phyla. The Journal of Biological Chemistry, 285(11), 8148–8154.
Kolaczkowski,, B., Hupalo,, D. N., & Kern,, A. D. (2011). Recurrent adaptation in RNA interference genes across the Drosophila phylogeny. Molecular Biology and Evolution, 28(2), 1033–1042.
Kolliopoulou,, A., & Swevers,, L. (2013). Functional analysis of the RNAi response in ovary‐derived silkmoth Bm5 cells. Insect Biochemistry and Molecular Biology, 43(8), 654–663.
Kumar,, M. S., & Chen,, K. C. (2012). Evolution of animal Piwi‐interacting RNAs and prokaryotic CRISPRs. Briefings in Functional Genomics, 11(4), 277–288.
Lau,, N. C., Robine,, N., Martin,, R., Chung,, W. J., Niki,, Y., Berezikov,, E., & Lai,, E. C. (2009). Abundant primary piRNAs, endo‐siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Research, 19(10), 1776–1785.
Le Thomas,, A., Stuwe,, E., Li,, S., Du,, J., Marinov,, G., Rozhkov,, N., … Aravin,, A. A. (2014). Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes %26 Development, 28(15), 1667–1680.
Lee,, M., Etebari,, K., Hall‐Mendelin,, S., van den Hurk,, A. F., Hobson‐Peters,, J., Vatipally,, S., … Asgari,, S. (2017). Understanding the role of microRNAs in the interaction of Aedes aegypti mosquitoes with an insect‐specific flavivirus. The Journal of General Virology, 98(7), 1892–1903.
Leger,, P., Lara,, E., Jagla,, B., Sismeiro,, O., Mansuroglu,, Z., Coppee,, J. Y., … Bouloy,, M. (2013). Dicer‐2‐ and Piwi‐mediated RNA interference in Rift Valley fever virus‐infected mosquito cells. Journal of Virology, 87(3), 1631–1648.
Lewis,, S. H., Quarles,, K. A., Yang,, Y., Tanguy,, M., Frezal,, L., Smith,, S. A., … Jiggins,, F. M. (2018). Pan‐arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nature Ecology Evolution, 2(1), 174–181.
Lewis,, S. H., Salmela,, H., & Obbard,, D. J. (2016). Duplication and diversification of dipteran Argonaute genes, and the evolutionary divergence of Piwi and Aubergine. Genome Biology and Evolution, 8(3), 507–518.
Liu,, L., Qi,, H., Wang,, J., & Lin,, H. (2011). PAPI, a novel TUDOR‐domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Development, 138(9), 1863–1873.
Liu,, Y., Zhou,, Y., Wu,, J., Zheng,, P., Li,, Y., Zheng,, X., … Chen,, X. G. (2015). The expression profile of Aedes albopictus miRNAs is altered by dengue virus serotype‐2 infection. Cell %26 Bioscience, 5, 16.
Lu,, H. L., Tanguy,, S., Rispe,, C., Gauthier,, J. P., Walsh,, T., Gordon,, K., … Jaubert‐Possamai,, S. (2011). Expansion of genes encoding piRNA‐associated argonaute proteins in the pea aphid: Diversification of expression profiles in different plastic morphs. PLoS ONE, 6(12), e28051.
Macias,, V., Coleman,, J., Bonizzoni,, M., & James,, A. A. (2014). piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi. Insect Molecular Biology, 23(5), 579–586.
Malone,, C. D., Brennecke,, J., Dus,, M., Stark,, A., McCombie,, W. R., Sachidanandam,, R., & Hannon,, G. J. (2009). Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell, 137(3), 522–535.
Malone,, C. D., & Hannon,, G. J. (2009). Small RNAs as guardians of the genome. Cell, 136(4), 656–668.
Matsumoto,, N., Nishimasu,, H., Sakakibara,, K., Nishida,, K. M., Hirano,, T., Ishitani,, R., … Nureki,, O. (2016). Crystal structure of silkworm PIWI‐clade Argonaute Siwi bound to piRNA. Cell, 167(2), 484, e489–497.
Mayoral,, J. G., Etebari,, K., Hussain,, M., Khromykh,, A. A., & Asgari,, S. (2014). Wolbachia infection modifies the profile, shuttling and structure of microRNAs in a mosquito cell line. PLoS ONE, 9(4), e96107.
Miesen,, P., Girardi,, E., & van Rij,, R. P. (2015). Distinct sets of PIWI proteins produce arbovirus and transposon‐derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Research, 43(13), 6545–6556.
Miesen,, P., Ivens,, A., Buck,, A. H., & van Rij,, R. P. (2016). Small RNA profiling in dengue virus 2‐infected Aedes Mosquito cells reveals viral piRNAs and novel host miRNAs. PLoS Neglected Tropical Diseases, 10(2), e0004452.
Moazed,, D. (2009). Small RNAs in transcriptional gene silencing and genome defence. Nature, 457(7228), 413–420.
Mohn,, F., Handler,, D., & Brennecke,, J. (2015). Noncoding RNA. piRNA‐guided slicing specifies transcripts for Zucchini‐dependent, phased piRNA biogenesis. Science, 348(6236), 812–817.
Mohn,, F., Sienski,, G., Handler,, D., & Brennecke,, J. (2014). The rhino‐deadlock‐cutoff complex licenses noncanonical transcription of dual‐strand piRNA clusters in Drosophila. Cell, 157(6), 1364–1379.
Morazzani,, E. M., Wiley,, M. R., Murreddu,, M. G., Adelman,, Z. N., & Myles,, K. M. (2012). Production of virus‐derived ping‐pong‐dependent piRNA‐like small RNAs in the mosquito soma. PLoS Pathogens, 8(1), e1002470.
Murota,, Y., Ishizu,, H., Nakagawa,, S., Iwasaki,, Y. W., Shibata,, S., Kamatani,, M. K., … Siomi,, M. C. (2014). Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Reports, 8(1), 103–113.
Nishida,, K. M., Iwasaki,, Y. W., Murota,, Y., Nagao,, A., Mannen,, T., Kato,, Y., … Siomi,, M. C. (2015). Respective functions of two distinct Siwi complexes assembled during PIWI‐interacting RNA biogenesis in Bombyx germ cells. Cell Reports, 10(2), 193–203.
Nishida,, K. M., Okada,, T. N., Kawamura,, T., Mituyama,, T., Kawamura,, Y., Inagaki,, S., … Siomi,, M. C. (2009). Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. The EMBO Journal, 28(24), 3820–3831.
Nishida,, K. M., Sakakibara,, K., Iwasaki,, Y. W., Yamada,, H., Murakami,, R., Murota,, Y., … Siomi,, M. C. (2018). Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature, 555(7695), 260–264.
Nishimasu,, H., Ishizu,, H., Saito,, K., Fukuhara,, S., Kamatani,, M. K., Bonnefond,, L., … Nureki,, O. (2012). Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature, 491(7423), 284–287.
Obbard,, D. J., & Dudas,, G. (2014). The genetics of host‐virus coevolution in invertebrates. Current Opinion in Virology, 8, 73–78.
Obbard,, D. J., Gordon,, K. H., Buck,, A. H., & Jiggins,, F. M. (2009). The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1513), 99–115.
Olivieri,, D., Senti,, K. A., Subramanian,, S., Sachidanandam,, R., & Brennecke,, J. (2012). The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Molecular Cell, 47(6), 954–969.
Palatini,, U., Miesen,, P., Carballar‐Lejarazu,, R., Ometto,, L., Rizzo,, E., Tu,, Z., … Bonizzoni,, M. (2017). Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics, 18(1), 512.
Pandey,, R. R., Homolka,, D., Chen,, K. M., Sachidanandam,, R., Fauvarque,, M. O., & Pillai,, R. S. (2017). Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in drosophila ovaries. PLoS Genetics, 13(8), e1006956.
Parry,, R., & Asgari,, S. (2018). Aedes anphevirus (AeAV): An insect‐specific virus distributed worldwide in Aedes aegypti mosquitoes that has complex interplays with Wolbachia and dengue virus infection in cells. Journal of Virology, 92(17), e00224–18.
Peng,, J. C., & Lin,, H. (2013). Beyond transposons: The epigenetic and somatic functions of the Piwi‐piRNA mechanism. Current Opinion in Cell Biology, 25(2), 190–194.
Perrat,, P. N., DasGupta,, S., Wang,, J., Theurkauf,, W., Weng,, Z., Rosbash,, M., & Waddell,, S. (2013). Transposition‐driven genomic heterogeneity in the Drosophila brain. Science, 340(6128), 91–95.
Petit,, M., Mongelli,, V., Frangeul,, L., Blanc,, H., Jiggins,, F., & Saleh,, M. C. (2016). piRNA pathway is not required for antiviral defense in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 113(29), E4218–E4227.
Qi,, H., Watanabe,, T., Ku,, H. Y., Liu,, N., Zhong,, M., & Lin,, H. (2011). The Yb body, a major site for Piwi‐associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. The Journal of Biological Chemistry, 286(5), 3789–3797.
Rangan,, P., Malone,, C. D., Navarro,, C., Newbold,, S. P., Hayes,, P. S., Sachidanandam,, R., … Lehmann,, R. (2011). piRNA production requires heterochromatin formation in Drosophila. Current Biology, 21(16), 1373–1379.
Rogers,, A. K., Situ,, K., Perkins,, E. M., & Toth,, K. F. (2017). Zucchini‐dependent piRNA processing is triggered by recruitment to the cytoplasmic processing machinery. Genes %26 Development, 31(18), 1858–1869.
Ross,, R. J., Weiner,, M. M., & Lin,, H. (2014). PIWI proteins and PIWI‐interacting RNAs in the soma. Nature, 505(7483), 353–359.
Ruckert,, C., Prasad,, A. N., Garcia‐Luna,, S. M., Robison,, A., Grubaugh,, N. D., Weger‐Lucarelli,, J., & Ebel,, G. D. (2019). Small RNA responses of Culex mosquitoes and cell lines during acute and persistent virus infection. Insect Biochemistry and Molecular Biology, 109, 13–23.
Saito,, K., Ishizu,, H., Komai,, M., Kotani,, H., Kawamura,, Y., Nishida,, K. M., … Siomi,, M. C. (2010). Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes %26 Development, 24(22), 2493–2498.
Saito,, K., Nishida,, K. M., Mori,, T., Kawamura,, Y., Miyoshi,, K., Nagami,, T., … Siomi,, M. C. (2006). Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes %26 Development, 20(16), 2214–2222.
Saito,, K., Sakaguchi,, Y., Suzuki,, T., Siomi,, H., & Siomi,, M. C. (2007). Pimet, the Drosophila homolog of HEN1, mediates 2`‐O‐methylation of Piwi‐ interacting RNAs at their 3′ ends. Genes %26 Development, 21(13), 1603–1608.
Sakakibara,, K., & Siomi,, M. C. (2018). The PIWI‐interacting RNA molecular pathway: Insights from cultured silkworm germline cells. BioEssays, 40(1), 1700068.
Saldana,, M. A., Etebari,, K., Hart,, C. E., Widen,, S. G., Wood,, T. G., Thangamani,, S., … Hughes,, G. L. (2017). Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes. PLoS Neglected Tropical Diseases, 11(7), e0005760.
Schnettler,, E., Donald,, C. L., Human,, S., Watson,, M., Siu,, R. W., McFarlane,, M., … Fragkoudis,, R. (2013). Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. The Journal of General Virology, 94(Pt 7), 1680–1689.
Schnettler,, E., Ratinier,, M., Watson,, M., Shaw,, A. E., McFarlane,, M., Varela,, M., … Kohl,, A. (2013). RNA interference targets arbovirus replication in Culicoides cells. Journal of Virology, 87(5), 2441–2454.
Schnettler,, E., Sreenu,, V. B., Mottram,, T., & McFarlane,, M. (2016). Wolbachia restricts insect‐specific flavivirus infection in Aedes aegypti cells. The Journal of General Virology, 97(11), 3024–3029.
Scott,, J. C., Brackney,, D. E., Campbell,, C. L., Bondu‐Hawkins,, V., Hjelle,, B., Ebel,, G. D., … Blair,, C. D. (2010). Comparison of dengue virus type 2‐specific small RNAs from RNA interference‐competent and ‐incompetent mosquito cells. PLoS Neglected Tropical Diseases, 4(10), e848.
Shoji,, K., Suzuki,, Y., Sugano,, S., Shimada,, T., & Katsuma,, S. (2017). Artificial "ping‐pong" cascade of PIWI‐interacting RNA in silkworm cells. RNA, 23(1), 86–97.
Simkin,, A., Wong,, A., Poh,, Y. P., Theurkauf,, W. E., & Jensen,, J. D. (2013). Recurrent and recent selective sweeps in the piRNA pathway. Evolution, 67(4), 1081–1090.
Siomi,, H., & Siomi,, M. C. (2015). RNA. Phased piRNAs tackle transposons. Science, 348(6236), 756–757.
Siomi,, M. C., Mannen,, T., & Siomi,, H. (2010). How does the royal family of Tudor rule the PIWI‐interacting RNA pathway? Genes %26 Development, 24(7), 636–646.
Siomi,, M. C., Sato,, K., Pezic,, D., & Aravin,, A. A. (2011). PIWI‐interacting small RNAs: The vanguard of genome defence. Nature Reviews Molecular Cell Biology, 12(4), 246–258.
Siu,, R. W., Fragkoudis,, R., Simmonds,, P., Donald,, C. L., Chase‐Topping,, M. E., Barry,, G., … Kohl,, A. (2011). Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: Characterization, origin, and frequency‐dependent functions of virus‐derived small interfering RNAs. Journal of Virology, 85(6), 2907–2917.
Specchia,, V., Piacentini,, L., Tritto,, P., Fanti,, L., D`Alessandro,, R., Palumbo,, G., … Bozzetti,, M. P. (2010). Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature, 463(7281), 662–665.
Suzuki,, Y., Frangeul,, L., Dickson,, L. B., Blanc,, H., Verdier,, Y., Vinh,, J., … Saleh,, M. C. (2017). Uncovering the repertoire of endogenous Flaviviral elements in Aedes Mosquito genomes. Journal of Virology, 91(15), e00571‐17.
Szakmary,, A., Reedy,, M., Qi,, H., & Lin,, H. (2009). The Yb protein defines a novel organelle and regulates male germline stem cell self‐renewal in Drosophila melanogaster. The Journal of Cell Biology, 185(4), 613–627.
Ter Horst,, A. M., Nigg,, J. C., Dekker,, F. M., & Falk,, B. W. (2019). Endogenous viral elements are widespread in arthropod genomes and commonly give rise to piRNAs. Journal of Virology, 93(6), e02124‐18.
Tatsuke,, T., Sakashita,, K., Masaki,, Y., Lee,, J. M., Kawaguchi,, Y., & Kusakabe,, T. (2010). The telomere‐specific non‐LTR retrotransposons SART1 and TRAS1 are suppressed by Piwi subfamily proteins in the silkworm, Bombyx mori. Cellular %26 Molecular Biology Letters, 15(1), 118–133.
Vagin,, V. V., Sigova,, A., Li,, C., Seitz,, H., Gvozdev,, V., & Zamore,, P. D. (2006). A distinct small RNA pathway silences selfish genetic elements in the germline. Science, 313(5785), 320–324.
Vagin,, V. V., Yu,, Y., Jankowska,, A., Luo,, Y., Wasik,, K. A., Malone,, C. D., … Hannon,, G. J. (2013). Minotaur is critical for primary piRNA biogenesis. RNA, 19(8), 1064–1077.
Varjak,, M., Dietrich,, I., Sreenu,, V. B., Till,, B. E., Merits,, A., Kohl,, A., & Schnettler,, E. (2018). Spindle‐E acts Antivirally against alphaviruses in mosquito cells. Viruses, 10(2), 88.
Varjak,, M., Donald,, C. L., Mottram,, T. J., Sreenu,, V. B., Merits,, A., Maringer,, K., … Kohl,, A. (2017). Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Neglected Tropical Diseases, 11(10), e0006010.
Varjak,, M., Maringer,, K., Watson,, M., Sreenu,, V. B., Fredericks,, A. C., Pondeville,, E., … Schnettler,, E. (2017). Aedes aegypti Piwi4 is a noncanonical PIWI protein involved in antiviral responses. mSphere, 2(3), e00144‐17.
Vodovar,, N., Bronkhorst,, A. W., van Cleef,, K. W., Miesen,, P., Blanc,, H., van Rij,, R. P., & Saleh,, M. C. (2012). Arbovirus‐derived piRNAs exhibit a ping‐pong signature in mosquito cells. PLoS ONE, 7(1), e30861.
Vrettos,, N., Maragkakis,, M., Alexiou,, P., & Mourelatos,, Z. (2017). Kc167, a widely used drosophila cell line, contains an active primary piRNA pathway. RNA, 23(1), 108–118.
Wang,, H., Ma,, Z., Niu,, K., Xiao,, Y., Wu,, X., Pan,, C., … Liu,, N. (2016). Antagonistic roles of nibbler and Hen1 in modulating piRNA 3′ ends in drosophila. Development, 143(3), 530–539.
Wang,, L., Cappelle,, K., Santos,, D., Vanden Broeck,, J., Smagghe,, G., & Swevers,, L. (2019). Short‐term persistence precedes pathogenic infection: Infection kinetics of cricket paralysis virus in silkworm‐derived Bm5 cells. Journal of Insect Physiology, 115, 1–11.
Wang,, W., Han,, B. W., Tipping,, C., Ge,, D. T., Zhang,, Z., Weng,, Z., & Zamore,, P. D. (2015). Slicing and binding by Ago3 or Aub trigger Piwi‐bound piRNA production by distinct mechanisms. Molecular Cell, 59(5), 819–830.
Wang,, W., Yoshikawa,, M., Han,, B. W., Izumi,, N., Tomari,, Y., Weng,, Z., & Zamore,, P. D. (2014). The initial uridine of primary piRNAs does not create the tenth adenine that is the hallmark of secondary piRNAs. Molecular Cell, 56(5), 708–716.
Wang,, Y., Jin,, B., Liu,, P., Li,, J., Chen,, X., & Gu,, J. (2018). piRNA profiling of dengue virus type 2‐infected Asian Tiger mosquito and midgut tissues. Viruses, 10(4), 213. Retrieved from https://www.mdpi.com/1999-4915/10/4/213
Webster,, A., Li,, S., Hur,, J. K., Wachsmuth,, M., Bois,, J. S., Perkins,, E. M., … Aravin,, A. A. (2015). Aub and Ago3 are recruited to Nuage through two mechanisms to form a ping‐pong complex assembled by Krimper. Molecular Cell, 59(4), 564–575.
Wen,, J., Mohammed,, J., Bortolamiol‐Becet,, D., Tsai,, H., Robine,, N., Westholm,, J. O., … Lai,, E. C. (2014). Diversity of miRNAs, siRNAs, and piRNAs across 25 drosophila cell lines. Genome Research, 24(7), 1236–1250.
Whitfield,, Z. J., Dolan,, P. T., Kunitomi,, M., Tassetto,, M., Seetin,, M. G., Oh,, S., … Andino,, R. (2017). The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome. Current Biology, 27(22), 3511–3519 e3517.
Wu,, Q., Luo,, Y., Lu,, R., Lau,, N., Lai,, E. C., Li,, W. X., & Ding,, S. W. (2010). Virus discovery by deep sequencing and assembly of virus‐derived small silencing RNAs. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1606–1611.
Wynant,, N., Santos,, D., & Vanden Broeck,, J. (2017). The evolution of animal Argonautes: Evidence for the absence of antiviral AGO Argonautes in vertebrates. Scientific Reports, 7(1), 9230.
Xiol,, J., Cora,, E., Koglgruber,, R., Chuma,, S., Subramanian,, S., Hosokawa,, M., … Pillai,, R. S. (2012). A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. Molecular Cell, 47(6), 970–979.
Xiol,, J., Spinelli,, P., Laussmann,, M. A., Homolka,, D., Yang,, Z., Cora,, E., … Pillai,, R. S. (2014). RNA clamping by vasa assembles a piRNA amplifier complex on transposon transcripts. Cell, 157(7), 1698–1711.
Yan,, Z., Hu,, H. Y., Jiang,, X., Maierhofer,, V., Neb,, E., He,, L., … Khaitovich,, P. (2011). Widespread expression of piRNA‐like molecules in somatic tissues. Nucleic Acids Research, 39(15), 6596–6607.
Yashiro,, R., Murota,, Y., Nishida,, K. M., Yamashiro,, H., Fujii,, K., Ogai,, A., … Siomi,, M. C. (2018). Piwi nuclear localization and its regulatory mechanism in drosophila ovarian somatic cells. Cell Reports, 23(12), 3647–3657.
Yi,, M., Chen,, F., Luo,, M., Cheng,, Y., Zhao,, H., Cheng,, H., & Zhou,, R. (2014). Rapid evolution of piRNA pathway in the teleost fish: Implication for an adaptation to transposon diversity. Genome Biology and Evolution, 6(6), 1393–1407.
Zambon,, R. A., Vakharia,, V. N., & Wu,, L. P. (2006). RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cellular Microbiology, 8(5), 880–889.
Zamparini,, A. L., Davis,, M. Y., Malone,, C. D., Vieira,, E., Zavadil,, J., Sachidanandam,, R., … Lehmann,, R. (2011). Vreteno, a gonad‐specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila. Development, 138(18), 4039–4050.
Zhang,, F., Wang,, J., Xu,, J., Zhang,, Z., Koppetsch,, B. S., Schultz,, N., … Theurkauf,, W. E. (2012). UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell, 151(4), 871–884.
Zhang,, Z., Xu,, J., Koppetsch,, B. S., Wang,, J., Tipping,, C., Ma,, S., … Zamore,, P. D. (2011). Heterotypic piRNA ping‐pong requires qin, a protein with both E3 ligase and Tudor domains. Molecular Cell, 44(4), 572–584.
Zografidis,, A., Van Nieuwerburgh,, F., Kolliopoulou,, A., Apostolou‐Karampelis,, K., Head,, S. R., Deforce,, D., … Swevers,, L. (2015). Viral small‐RNA analysis of Bombyx mori larval midgut during persistent and pathogenic cytoplasmic Polyhedrosis virus infection. Journal of Virology, 89(22), 11473–11486.