Alhusaini,, N., & Coller,, J. (2016). The deadenylase components Not2p, Not3p, and Not5p promote mRNA decapping. RNA, 22, 709–721.
Ayache,, J., Bénard,, M., Ernoult‐Lange,, M., Minshall,, N., Standart,, N., Kress,, M., & Weil,, D. (2015). P‐body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Molecular Biology of the Cell, 26, 2579–2595.
Baltz,, A. G., Munschauer,, M., Schwanhäusser,, B., Vasile,, A., Murakawa,, Y., Schueler,, M., … Landthaler,, M. (2012). The mRNA‐bound proteome and its global occupancy profile on protein‐coding transcripts. Molecular Cell, 46, 674–690.
Barišić‐Jäger,, E., Kręcioch,, I., Hosiner,, S., Antic,, S., & Dorner,, S. (2013). HPat a Decapping activator interacting with the miRNA effector complex. PLoS One, 8, e71860.
Beckmann,, B. M., Horos,, R., Fischer,, B., Castello,, A., Eichelbaum,, K., Alleaume,, A. M., … Hentze,, M. W. (2015). The RNA‐binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 6, 10127.
Beggs,, J. D. (2005). Lsm proteins and RNA processing. Biochemical Society Transactions, 33, 433–438.
Boeck,, R., Lapeyre,, B., Brown,, C. E., & Sachs,, A. B. (1998). Capped mRNA degradation intermediates accumulate in the yeast spb8‐2 mutant. Molecular and Cellular Biology, 18, 5062–5072.
Bonnerot,, C., Boeck,, R., & Lapeyre,, B. (2000). The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. Molecular and Cellular Biology, 20, 5939–5946.
Bouveret,, E., Rigaut,, G., Shevchenko,, A., Wilm,, M., & Séraphin,, B. (2000). A Sm‐like protein complex that participates in mRNA degradation. The EMBO Journal, 19, 1661–1671.
Brandmann,, T., Fakim,, H., Padamsi,, Z., Youn,, J. Y., Gingras,, A. C., Fabian,, M. R., & Jinek,, M. (2018). Molecular architecture of LSM14 interactions involved in the assembly of mRNA silencing complexes. The EMBO Journal, 37, e97869.
Braun,, J. E., Tritschler,, F., Haas,, G., Igreja,, C., Truffault,, V., Weichenrieder,, O., & Izaurralde,, E. (2010). The C‐terminal alpha‐alpha superhelix of Pat is required for mRNA decapping in metazoa. The EMBO Journal, 29, 2368–2380.
Castello,, A., Fischer,, B., Eichelbaum,, K., Horos,, R., Beckmann,, B. M., Strein,, C., … Hentze,, M. W. (2012). Insights into RNA biology from an atlas of mammalian mRNA‐binding proteins. Cell, 149, 1393–1406.
Castello,, A., Frese,, C. K., Fischer,, B., Järvelin,, A. I., Horos,, R., Alleaume,, A. M., … Hentze,, M. W. (2017). Identification of RNA‐binding domains of RNA‐binding proteins in cultured cells on a system‐wide scale with RBDmap. Nature Protocols, 12, 2447–2464.
Chang,, C. T., Bercovich,, N., Loh,, B., Jonas,, S., & Izaurralde,, E. (2014). The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Research, 42, 5217–5233.
Charenton,, C., Gaudon‐Plesse,, C., Fourat,, i Z., Taverniti,, V., Back,, R., Kolesnikova,, O., … Graille,, M. (2017). A unique surface on Pat1 C‐terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5′‐3` mRNA exonuclease in yeast. PNAS, 114, E9493–E9501.
Charenton,, C., & Graille,, M. (2018). mRNA decapping: Finding the right structures. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 373, 20180164.
Chen,, B., Zhang,, Z., Sun,, X., Kuang,, Y., Mao,, X., Wang,, X., … Wang,, L. (2017). Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. American Journal of Human Genetics, 101, 609–615.
Chowdhury,, A., Kalurupalle,, S., & Tharun,, S. (2014). Pat1 contributes to the RNA binding activity of the Lsm1‐7‐Pat1 complex. RNA, 20, 1465–1470.
Chowdhury,, A., Mukhopadhyay,, J., & Tharun,, S. (2007). The decapping activator Lsm1p‐7p‐Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA, 13, 998–1016.
Chowdhury,, A., Raju,, K. K., Kalurupalle,, S., & Tharun,, S. (2012). Both Sm‐domain and C‐terminal extension of Lsm1 are important for the RNA‐binding activity of the Lsm1‐7‐Pat1 complex. RNA, 18, 936–944.
Christou‐Kent,, M., Kherraf,, Z. E., Amiri‐Yekta,, A., Le Blévec,, E., Karaouzène,, T., Conne,, B., … Arnoult,, C. (2018). PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Molecular Medicine, 10, e8515.
Coller,, J. M., Tucker,, M., Sheth,, U., Valencia‐Sanchez,, M. A., & Parker,, R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA, 7, 17–27.
Coller,, J., & Parker,, R. (2005). General translational repression by activators of mRNA decapping. Cell, 122, 875–886.
Courel,, M., Clément,, Y., Foretek,, D., Vidal,, O., Yi,, Z., Kress,, M., … Weil,, D. (2018). GC content shapes mRNA decay and storage in human cells. Biorxiv. https://doi.org/10.1101/373498
De Almeida,, C., Scheer,, H., Zuber,, H., & Gagliardi,, D. (2018). RNA uridylation: A key posttranscriptional modification shaping the coding and noncoding transcriptome. WIREs RNA, 9, e1440. https://doi.org/10.1002/wrna
Decker,, C. J., & Parker,, R. (1993). A turnover pathway for both stable and unstable mRNAs in yeast: Evidence for a requirement for deadenylation. Genes %26 Development, 7, 1632–1643.
Ditlev,, J. A., Case,, L. B., & Rosen,, M. K. (2018). Who`s in and Who`s out‐compositional control of biomolecular condensates. Journal of Molecular Biology, 430, 4666–4684.
Dostie,, J., Ferraiuolo,, M., Pause,, A., Adam,, S. A., & Sonenberg,, N. (2000). A novel shuttling protein, 4E‐T, mediates the nuclear import of the mRNA 5′ cap‐binding protein, eIF4E. The EMBO Journal, 19, 3142–3156.
Fromont‐Racine,, M., Mayes,, A. E., Brunet‐Simon,, A., Rain,, J. C., Colley,, A., Dix,, I., … Legrain,, P. (2000). Genome‐wide protein interaction screens reveal functional networks involving Sm‐like proteins. Yeast, 17, 95–110.
Garre,, E., Pelechano,, V., Sánchez Del Pino,, M., Alepuz,, P., & Sunnerhagen,, P. (2018). The Lsm1‐7/Pat1 complex binds to stress‐activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genetics, 14, e1007563.
Gatica,, D., Hu,, G., Liu,, X., Zhang,, N., Williamson,, P. R., & Klionsky,, D. J. (2019). The Pat1‐Lsm complex stabilizes ATG mRNA during nitrogen starvation‐induced autophagy. Molecular Cell, 73, 314–324.
Gillian‐Daniel,, D. L., Gray,, N. K., Astrom,, J., Barkoff,, A., & Wickens,, M. (1998). Modifications of the 5′ cap of mRNAs during Xenopus oocyte maturation: Independence from changes in poly(A) length and impact on translation. Molecular and Cellular Biology, 18, 6152–6153.
Grudzien‐Nogalska,, E., & Kiledjian,, M. (2017). New insights into decapping enzymes and selective mRNA decay. WIREs RNA, 8, e1379. https://doi.org/10.1002/wrna.1379
Haas,, G., Braun,, J. E., Igreja,, C., Tritschler,, F., Nishihara,, T., & Izaurralde,, E. (2010). HPat provides a link between deadenylation and decapping in metazoa. The Journal of Cell Biology, 189, 289–302.
Havugimana,, P. C., Hart,, G. T., Nepusz,, T., Yang,, H., Turinsky,, A. L., Li,, Z., … Emili,, A. (2012). A census of human soluble protein complexes. Cell, 150, 1068–1081.
He,, F., Celik,, A., Wu,, C., & Jacobson,, A. (2018). General decapping activators target different subsets of inefficiently translated mRNAs. eLife, 7, e34409.
He,, F., & Jacobson,, A. (2015). Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C‐terminal domain. RNA, 21, 1633–1647.
Hentze,, M. W., Castello,, A., Schwarzl,, T., & Preiss,, T. (2018). A brave new world of RNA‐binding proteins. Nature Reviews Molecular Cell Biology, 19, 327–341.
Horvathova,, I., Voigt,, F., Kotrys,, A. V., Zhan,, Y., Artus‐Revel,, C. G., Eglinger,, J., … Chao,, J. A. (2017). The dynamics of mRNA turnover revealed by single‐molecule imaging in single cells. Molecular Cell, 68, 615–625.
Huang,, J. H., Ku,, W. C., Chen,, Y. C., Chang,, Y. L., & Chu,, C. (2017). Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Scientific Reports, 7, 42853.
Huang,, L., Tong,, X., Wang,, F., Luo,, L., Jin,, R., Fu,, Y., … Zhu,, F. (2018). Novel mutations in PATL2 cause female infertility with oocyte germinal vesicle arrest. Human Reproduction, 33, 1183–1190.
Hubstenberger,, A., Courel,, M., Bénard,, M., Souquère,, S., Ernoult‐Lange,, M., Chouaib,, R., … Weil,, D. (2017). P‐body purification reveals the condensation of repressed mRNA regulons. Molecular Cell, 68, 144–157.
Jonas,, S., & Izaurralde,, E. (2013). The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes and Development, 27, 2628–2641.
Jungfleisch,, J., Blasco‐Moreno,, B., & Díez,, J. (2016). Use of cellular Decapping activators by positive‐Strand RNA viruses. Viruses, 8, E340.
Jungfleisch,, J., Chowdhury,, A., Alves‐Rodrigues,, I., Tharun,, S., & Díez,, J. (2015). The Lsm1‐7‐Pat1 complex promotes viral RNA translation and replication by differential mechanisms. RNA, 21, 1469–1479.
Kamath,, R. S., Fraser,, A. G., Dong,, Y., Poulin,, G., Durbin,, R., Gotta,, M., … Ahringer,, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231–237.
Kamenska,, A., Lu,, W.‐T., Kubacka,, D., Broomhead,, H., Minshall,, N., Bushell,, M., … Standart,, N. (2014). Human 4E‐T represses translation of bound mRNAs and enhances microRNA‐mediated silencing. Nucleic Acids Research, 42, 3298–3313.
Kamenska,, A., Simpson,, C., Vindry,, C., Broomhead,, H., Bénard,, M., Ernoult‐Lange,, M., … Standart,, N. (2016). The DDX6‐4E‐T interaction mediates translational repression and P‐body assembly. Nucleic Acids Research, 44, 6318–6334.
Kırlı,, K., Karaca,, S., Dehne,, H. J., Samwer,, M., Pan,, K. T., Lenz,, C., … Görlich,, D. (2015). A deep proteomics perspective on CRM1‐mediated nuclear export and nucleocytoplasmic partitioning. eLife, 4, e11466.
Kramer,, S. (2017). The ApaH‐like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. PLoS Pathogens, 13, e1006456.
Kramer,, S., Marnef,, A., Standart,, N., & Carrington,, M. (2012). Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. Journal of Cell Science, 125, 2896–2909.
Kramer,, S., & McLennan,, A. G. (2019). The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. Wiley Interdisciplinary Reviews RNA, 10, e1512.
Kufel,, J., Allmang,, C., Petfalski,, E., Beggs,, J., & Tollervey,, D. (2003). Lsm proteins are required for normal processing and stability of ribosomal RNAs. The Journal of Biological Chemistry, 278, 2147–2156.
Kufel,, J., Allmang,, C., Verdone,, L., Beggs,, J. D., & Tollervey,, D. (2002). Lsm proteins are required for normal processing of pre‐tRNAs and their efficient association with La‐homologous protein Lhp1p. Molecular and Cellular Biology, 22, 5248–5256.
Łabno,, A., Tomecki,, R., & Dziembowski,, A. (2016). Cytoplasmic RNA decay pathways ‐ enzymes and mechanisms. Biochimica et Biophysica Acta, 1863, 3125–3147.
Liao,, Y., Castello,, A., Fischer,, B., Leicht,, S., Föehr,, S., Frese,, C. K., … Preiss,, T. (2016). The Cardiomyocyte RNA‐binding proteome: Links to intermediary metabolism and heart disease. Cell Reports, 16, 1456–1469.
Lobel,, J. H., Tibble,, R. W., & Gross,, J. D. (2019). Pat1 activates late steps in mRNA decay by multiple mechanisms. Biorxiv. https://doi.org/10.1101/594168
Luo,, Y., Na,, Z., & Slavoff,, S. A. (2018). P‐bodies: Composition, properties, and functions. Biochemistry, 57, 2424–2431.
Ma,, J., Flemr,, M., Strnad,, H., Svoboda,, P., & Schultz,, R. M. (2013). Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biology of Reproduction, 88, 11.
Maddirevula,, S., Coskun,, S., Alhassan,, S., Elnour,, A., Alsaif,, H. S., Ibrahim,, N., … Alkuraya,, F. S. (2017). Female infertility caused by mutations in the oocyte‐specific translational repressor PATL2. American Journal of Human Genetics, 101, 603–608.
Malecki,, M., Viegas,, S. C., Carneiro,, T., Golik,, P., Dressaire,, C., Ferreira,, M. G., & Arraiano,, C. M. (2013). The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. The EMBO Journal, 32, 1842–1854.
Marnef,, A., Maldonado,, M., Bugaut,, A., Balasubramanian,, S., Kress,, M., Weil,, D., & Standart,, N. (2010). Distinct functions of maternal and somatic Pat1 protein paralogs. RNA, 16, 2094–2107.
Marnef,, A., & Standart,, N. (2010). Pat1 proteins: A life in translation, translation repression and mRNA decay. Biochemical Society Transactions, 38, 1602–1607.
Marnef,, A., Weil,, D., & Standart,, N. (2012). RNA‐related nuclear functions of human Pat1b, the P‐body mRNA decay factor. Molecular Biology of the Cell, 23, 213–224.
Minshall,, N., Reiter,, M.‐H., Weil,, D., & Standart,, N. (2007). CPEB interacts with an ovary‐specific eIF4E and 4E‐T in early Xenopus oocytes. The Journal of Biological Chemistry, 282, 37389–37401.
Mitchell,, S. F., Jain,, S., She,, M., & Parker,, R. (2013). Global analysis of yeast mRNPs. Nature Structural %26 Molecular Biology, 20, 127–133.
Montemayor,, E. J., Didychuk,, A. L., Yake,, A. D., Sidhu,, G. K., Brow,, D. A., & Butcher,, S. E. (2018). Architecture of the U6 snRNP reveals specific recognition of 3′‐end processed U6 snRNA. Nature Communications, 9, 1749.
Muppavarapu,, M., Huch,, S., & Nissan,, T. (2016). The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing. RNA Biology, 13, 455–465.
Nakamura,, Y., Tanaka,, K. J., Miyauchi,, M., Huang,, L., Tsujimoto,, M., & Matsumoto,, K. (2010). Translational repression by the oocyte‐specific protein P100 in Xenopus. Developmental Biology, 344, 272–283.
Nishihara,, T., Zekri,, L., Braun,, J. E., & Izaurralde,, E. (2013). miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Research, 41, 8692–8705.
Nishimura,, T., Padamsi,, Z., Fakim,, H., Milette,, S., Dunham,, W. H., Gingras,, A. C., & Fabian,, M. R. (2015). The eIF4E‐binding protein 4E‐T is a component of the mRNA decay machinery that bridges the 5′ and 3` termini of target mRNAs. Cell Reports, 11, 1425–1436.
Nissan,, T., Rajyaguru,, P., She,, M., Song,, H., & Parker,, R. (2010). Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Molecular Cell, 39, 773–783.
Ozgur,, S., Basquin,, J., Kamenska,, A., Filipowicz,, W., Standart,, N., & Conti,, E. (2015). Structure of a human 4E‐T – DDX6 – CNOT1 complex reveals the different interplay of DDX6‐binding proteins with the CCR4‐NOT complex. Cell Reports, 13, 703–711.
Ozgur,, S., Chekulaeva,, M., & Stoecklin,, G. (2010). Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing‐bodies. Molecular and Cellular Biology, 30, 4308–4323.
Paquette,, D. R., Tibble,, R. W., Daifuku,, T. S., & Gross,, J. D. (2018). Control of mRNA decapping by autoinhibition. Nucleic Acids Research, 46, 6318–6329.
Pilkington,, G. R., & Parker,, R. (2008). Pat1 contains distinct functional domains that promote P‐body assembly and activation of decapping. Molecular and Cellular Biology, 28, 1298–1312.
Pradhan,, S. J., Nesler,, K. R., Rosen,, S. F., Kato,, Y., Nakamura,, A., Ramaswami,, M., & Barbee,, S. A. (2012). The conserved P body component HPat/Pat1 negatively regulates synaptic terminal growth at the larval drosophila neuromuscular junction. Journal of Cell Science, 125, 6105–6116.
Presnyak,, V., & Coller,, J. (2013). The DHH1/RCKp54 family of helicases: An ancient family of proteins that promote translational silencing. Biochimica et Biophysica Acta, 1829, 817–823.
Protter,, D. S. W., Rao,, B. S., Van Treeck,, B., Lin,, Y., Mizoue,, L., Rosen,, M. K., & Parker,, R. (2018). Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Reports, 22, 1401–1412.
Queiroz,, R. M. L., Smith,, T., Villanueva,, E., Marti‐Solano,, M., Monti,, M., Pizzinga,, M., … Lilley,, K. S. (2019). Comprehensive identification of RNA‐protein interactions in any organism using orthogonal organic phase separation (OOPS). Nature Biotechnology, 37, 169–178.
Ramachandran,, V., Shah,, K. H., & Herman,, P. K. (2011). The cAMP‐dependent protein kinase signaling pathway is a key regulator of P body foci formation. Molecular Cell, 43, 973–981.
Reimer,, K. A., Stark,, M. R., Aguilar,, L. C., Stark,, S. R., Burke,, R. D., Moore,, J., … Rader,, S. D. (2017). The sole LSm complex in Cyanidioschyzon merolae associates with pre‐mRNA splicing and mRNA degradation factors. RNA, 23, 952–967.
Sachdev,, R., Hondele,, M., Linsenmeier,, M., Vallotton,, P., Mugler,, C. F., Arosio,, P., & Weis,, K. (2019). Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD‐box ATPase Dhh1 and RNA. eLife, 8, e41415. https://doi.org/10.7554/eLife.41415
Scott,, D. D., & Norbury,, C. J. (2013). RNA decay via 3′ uridylation. Biochimica et Biophysica Acta, 1829, 516–519.
Sharif,, H., & Conti,, E. (2013). Architecture of the Lsm1‐7‐Pat1 complex: A conserved assembly in eukaryotic mRNA turnover. Cell Reports, 5, 283–291.
Sharif,, H., Ozgur,, S., Sharma,, K., Basquin,, C., Urlaub,, H., & Conti,, E. (2013). Structural analysis of the yeast Dhh1‐Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions. Nucleic Acids Research, 41, 8377–8390.
Sheth,, U., & Parker,, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science, 300, 805–808.
Song,, M. G., & Kiledjian,, M. (2007). 3` terminal oligo U‐tract‐mediated stimulation of decapping. RNA, 13, 2356–2365.
Standart,, N., & Weil,, D. (2018). P‐bodies: Cytosolic droplets for coordinated mRNA storage. Trends in Genetics, 34, 612–626.
Staněk,, D. (2016). Cajal body and snRNPs ‐ friends with benefits. RNA Biology, 14, 671–679.
Stevens,, S. W., Ryan,, D. E., Ge,, H. Y., Moore,, R. E., Young,, M. K., Lee,, T. D., & Abelson,, J. (2002). Composition and functional characterization of the yeast spliceosomal penta‐snRNP. Molecular Cell, 9, 31–44.
Teixeira,, D., & Parker,, R. (2007). Analysis of P‐body assembly in Saccharomyces cerevisiae. Molecular Biology of the Cell, 18, 2274–2287.
Tharun,, S. (2009). Lsm1‐7‐Pat1 complex: A link between 3′ and 5′‐ends in mRNA decay? RNA Biology, 6, 1837–1848.
Tharun,, S., He,, W. H., Mayes,, A. E., Lennertz,, P., Beggs,, J. D., & Parker,, R. (2000). Yeast Sm‐like proteins function in mRNA decapping and decay. Nature, 404, 515–518.
Tkacz,, I. D., Cohen,, S., Salmon‐Divon,, M., & Michaeli,, S. (2008). Identification of the heptameric Lsm complex that binds U6 snRNA in Trypanosoma brucei. Molecular and Biochemical Parasitology, 160, 22–31.
Tkacz,, I. D., Gupta,, S. K., Volkov,, V., Romano,, M., Haham,, T., Tulinski,, P., … Michaeli,, S. (2010). Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing. The Journal of Biological Chemistry, 285, 27982–27999.
Totaro,, A., Renzi,, F., La Fata,, G., Mattioli,, C., Raabe,, M., Urlaub,, H., & Achsel,, T. (2011). The human Pat1b protein: A novel mRNA deadenylation factor identified by a new immunoprecipitation technique. Nucleic Acids Research, 39, 634–647.
Tritschler,, F., Braun,, J. E., Eulalio,, A., Truffault,, V., Izaurralde,, E., & Weichenrieder,, O. (2009). Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B. Molecular Cell, 33, 661–668.
Updegrove,, T. B., Zhang,, A., & Storz,, G. (2016). Hfq: The flexible RNA matchmaker. Current Opinion in Microbiology, 30, 133–138.
Valkov,, E., Jonas,, S., & Weichenrieder,, O. (2017). Mille viae in eukaryotic mRNA decapping. Current Opinion in Structural Biology, 47, 40–51.
Vindry,, C., Marnef,, A., Broomhead,, H., Twyffels,, L., Ozgur,, S., Stoecklin,, G., … Standart,, N. (2017). Dual RNA processing roles of Pat1b via cytoplasmic Lsm1‐7 and nuclear Lsm2‐8 complexes. Cell Reports, 20, 1187–1200.
Wang,, C. Y., Wang,, Y. T., Hsiao,, W. Y., & Wang,, S. W. (2017). Involvement of fission yeast Pdc2 in RNA degradation and P‐body function. RNA, 23, 493–503.
Wang,, X., Watt,, P. M., Louis,, E. J., Borts,, R. H., & Hickson,, I. D. (1996). Pat1: A topoisomerase II‐associated protein required for faithful chromosome transmission in Saccharomyces cerevisiae. Nucleic Acids Research, 24, 4791–4797.
Wu,, D., Muhlrad,, D., Bowler,, M. W., iang,, S., Liu,, Z., Parker,, R., & Song,, H. (2014). Lsm2 and Lsm3 bridge the interaction of the Lsm1‐7 complex with Pat1 for decapping activation. Cell Research, 24, 233–246.
Wurm,, J. P., Overbeck,, J., & Sprangers,, R. (2016). The S. pombe mRNA decapping complex recruits cofactors and an Edc1‐like activator through a single dynamic surface. RNA, 22, 1360–1372.
Youn,, J. Y., Dunham,, W. H., Hong,, S. J., Knight,, J. D. R., Bashkurov,, M., Chen,, G. I., … Gingras,, A. C. (2018). High‐density proximity mapping reveals the subcellular organization of mRNA‐associated granules and bodies. Molecular Cell, 69, 517–532.
Zhang,, S., Williams,, C. J., Wormington,, M., Stevens,, A., & Peltz,, S. W. (1999). Monitoring mRNA decapping activity. Methods, 17, 46–51.
Zhou,, L., Hang,, J., Zhou,, Y., Wan,, R., Lu,, G., Yin,, P., … Shi,, Y. (2014). Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA. Nature, 506, 116–120.