Addepalli,, B., & Hunt,, A. G. (2007). A novel endonuclease activity associated with the Arabidopsis ortholog of the 30‐kDa subunit of cleavage and polyadenylation specificity factor. Nucleic Acids Research, 35, 4453–4463.
Addepalli,, B., & Hunt,, A. G. (2008a). Redox and heavy metal effects on the biochemical activities of an Arabidopsis polyadenylation factor subunit. Archives of Biochemistry and Biophysics, 473, 88–95.
Addepalli,, B., & Hunt,, A. G. (2008b). Ribonuclease activity is a common property of Arabidopsis CCCH‐containing zinc‐finger proteins. FEBS Letters, 582, 2577–2582.
Addepalli,, B., Limbach,, P. A., & Hunt,, A. G. (2010). A disulfide linkage in a CCCH zinc finger motif of an Arabidopsis CPSF30 ortholog. FEBS Letters, 584, 4408–4412.
Barabino,, S. M., Hubner,, W., Jenny,, A., Minvielle‐Sebastia,, L., & Keller,, W. (1997). The 30‐kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA‐binding zinc finger proteins. Genes %26 Development, 11, 1703–1716.
Bruggeman,, Q., Garmier,, M., de Bont,, L., Soubigou‐Taconnat,, L., Mazubert,, C., Benhamed,, M., … Delarue,, M. (2014). The polyadenylation factor subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A key factor of programmed cell death and a regulator of immunity in Arabidopsis. Plant Physiology, 165, 732–746.
Burger,, M., & Chory,, J. (2019). Stressed out about hormones: How plants orchestrate immunity. Cell Host %26 Microbe, 26, 163–172.
Chan,, S. L., Huppertz,, I., Yao,, C., Weng,, L., Moresco,, J. J., Yates,, J. R., 3rd, … Shi,, Y. (2014). CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing. Genes %26 Development, 28, 2370–2380.
Czesnick,, H., & Lenhard,, M. (2016). Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana. The Plant Journal, 88, 570–583.
D`Andrea,, L. D., & Regan,, L. (2003). TPR proteins: The versatile helix. Trends in Biochemical Sciences, 28, 655–662.
Delaney,, K. J., Xu,, R. Q., Zhang,, J. X., Li,, Q. Q., Yun,, K. Y., Falcone,, D. L., & Hunt,, A. G. (2006). Calmodulin interacts with and regulates the RNA‐binding activity of an Arabidopsis polyadenylation factor subunit. Plant Physiology, 140, 1507–1521.
Deng,, X., & Cao,, X. (2017). Roles of pre‐mRNA splicing and polyadenylation in plant development. Current Opinion in Plant Biology, 35, 45–53.
Duc,, C., Sherstnev,, A., Cole,, C., Barton,, G. J., & Simpson,, G. G. (2013). Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA. PLoS Genetics, 9, e1003867.
Forbes,, K. P., Addepalli,, B., & Hunt,, A. G. (2006). An Arabidopsis Fip1 homolog interacts with RNA and provides conceptual links with a number of other polyadenylation factor subunits. The Journal of Biological Chemistry, 281, 176–186.
Hong,, L., Ye,, C., Lin,, J., Fu,, H., Wu,, X., & Li,, Q. Q. (2018). Alternative polyadenylation is involved in auxin‐based plant growth and development. The Plant Journal, 93, 246–258.
Hunt,, A. G., Xing,, D., & Li,, Q. Q. (2012). Plant polyadenylation factors: Conservation and variety in the polyadenylation complex in plants. BMC Genomics, 13, 641.
Hunt,, A. G., Xu,, R., Addepalli,, B., Rao,, S., Forbes,, K. P., Meeks,, L. R., … Li,, Q. Q. (2008). Arabidopsis mRNA polyadenylation machinery: Comprehensive analysis of protein–protein interactions and gene expression profiling. BMC Genomics, 9, 220.
Kappel,, C., Trost,, G., Czesnick,, H., Ramming,, A., Kolbe,, B., Vi,, S. L., … Lenhard,, M. (2015). Genome‐wide analysis of PAPS1‐dependent polyadenylation identifies novel roles for functionally specialized poly(A) polymerases in Arabidopsis thaliana. PLoS Genetics, 11, e1005474.
Kaufmann,, I., Martin,, G., Friedlein,, A., Langen,, H., & Keller,, W. (2004). Human Fip1 is a subunit of CPSF that binds to U‐rich RNA elements and stimulates poly(A) polymerase. The EMBO Journal, 23, 616–626.
Lackford,, B., Yao,, C., Charles,, G. M., Weng,, L., Zheng,, X., Choi,, E. A., … Shi,, Y. (2014). Fip1 regulates mRNA alternative polyadenylation to promote stem cell self‐renewal. The EMBO Journal, 33, 878–889.
Li,, Z., Wang,, R., Gao,, Y., Wang,, C., Zhao,, L., Xu,, N., … Wang,, Y. (2017). The Arabidopsis CPSF30‐L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1. The New Phytologist, 216, 1205–1222.
Li,, W., You,, B., Hoque,, M., Zheng,, D., Luo,, W., Ji,, Z., … Tian,, B. (2015). Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genetics, 11, e1005166.
Liu,, F., Marquardt,, S., Lister,, C., Swiezewski,, S., & Dean,, C. (2010). Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science, 327, 94–97.
Liu,, M., Xu,, R., Merrill,, C., Hong,, L., Von Lanken,, C., Hunt,, A. G., & Li,, Q. Q. (2014). Integration of developmental and environmental signals via a polyadenylation factor in Arabidopsis. PLoS One, 9, e115779.
Loke,, J. C., Stahlberg,, E. A., Strenski,, D. G., Haas,, B. J., Wood,, P. C., & Li,, Q. Q. (2005). Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiology, 138, 1457–1468.
de Lorenzo,, L., Sorenson,, R., Bailey‐Serres,, J., & Hunt,, A. G. (2017). Noncanonical alternative polyadenylation contributes to gene regulation in response to hypoxia. Plant Cell, 29, 1262–1277.
Mandel,, C. R., Bai,, Y., & Tong,, L. (2008). Protein factors in pre‐mRNA 3′‐end processing. Cellular and Molecular Life Sciences, 65, 1099–1122.
Meeks,, L. R., Addepalli,, B., & Hunt,, A. G. (2009). Characterization of genes encoding poly(A) polymerases in plants: Evidence for duplication and functional specialization. PLoS One, 4, e8082.
Meinke,, G., Ezeokonkwo,, C., Balbo,, P., Stafford,, W., Moore,, C., & Bohm,, A. (2008). Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein. Biochemistry, 47, 6859–6869.
Morrison,, H. G., McArthur,, A. G., Gillin,, F. D., Aley,, S. B., Adam,, R. D., Olsen,, G. J., … Sogin,, M. L. (2007). Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science, 317, 1921–1926.
Patil,, D. P., Pickering,, B. F., & Jaffrey,, S. R. (2018). Reading m(6)A in the Transcriptome: m(6)A‐binding proteins. Trends in Cell Biology, 28, 113–127.
Prall,, W., Sharma,, B., & Gregory,, B. D. (2019). Transcription is just the beginning of gene expression regulation: The functional significance of RNA‐binding proteins to post‐transcriptional processes in plants. Plant %26 Cell Physiology, 60, 1939–1952.
Preker,, P. J., Lingner,, J., Minvielle‐Sebastia,, L., & Keller,, W. (1995). The FIP1 gene encodes a component of a yeast pre‐mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell, 81, 379–389.
Ryan,, K., & Bauer,, D. L. (2008). Finishing touches: Post‐translational modification of protein factors involved in mammalian pre‐mRNA 3′ end formation. The International Journal of Biochemistry %26 Cell Biology, 40, 2384–2396.
Schonemann,, L., Kuhn,, U., Martin,, G., Schafer,, P., Gruber,, A. R., Keller,, W., … Wahle,, E. (2014). Reconstitution of CPSF active in polyadenylation: Recognition of the polyadenylation signal by WDR33. Genes %26 Development, 28, 2381–2393.
Simpson,, G. G., Dijkwel,, P. P., Quesada,, V., Henderson,, I., & Dean,, C. (2003). FY is an RNA 3′ end‐processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell, 113, 777–787.
Sonmez,, C., Baurle,, I., Magusin,, A., Dreos,, R., Laubinger,, S., Weigel,, D., & Dean,, C. (2011). RNA 3′ processing functions of Arabidopsis FCA and FPA limit intergenic transcription. Proceedings of the National Academy of Sciences of the United States of America, 108, 8508–8513.
Stevens,, A. T., Howe,, D. K., & Hunt,, A. G. (2018). Characterization of mRNA polyadenylation in the apicomplexa. PLoS One, 13, e0203317.
Tellez‐Robledo,, B., Manzano,, C., Saez,, A., Navarro‐Neila,, S., Silva‐Navas,, J., de Lorenzo,, L., … Del Pozo,, J. C. (2019). The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses. The Plant Journal, 99, 1203–1219.
Thomas,, P. E., Wu,, X., Liu,, M., Gaffney,, B., Ji,, G., Li,, Q. Q., & Hunt,, A. G. (2012). Genome‐wide control of polyadenylation site choice by CPSF30 in Arabidopsis. Plant Cell, 24, 4376–4388.
Thore,, S., & Fribourg,, S. (2019). Structural insights into the 3′‐end mRNA maturation machinery: Snapshot on polyadenylation signal recognition. Biochimie, 164, 105–110.
Tian,, B., & Manley,, J. L. (2017). Alternative polyadenylation of mRNA precursors. Nature Reviews. Molecular Cell Biology, 18, 18–30.
Trost,, G., Vi,, S. L., Czesnick,, H., Lange,, P., Holton,, N., Giavalisco,, P., … Lenhard,, M. (2014). Arabidopsis poly(A) polymerase PAPS1 limits founder‐cell recruitment to organ primordia and suppresses the salicylic acid‐independent immune response downstream of EDS1/PAD4. The Plant Journal, 77, 688–699.
Vi,, S. L., Trost,, G., Lange,, P., Czesnick,, H., Rao,, N., Lieber,, D., … Lenhard,, M. (2013). Target specificity among canonical nuclear poly(A) polymerases in plants modulates organ growth and pathogen response. Proceedings of the National Academy of Sciences of the United States of America, 110, 13994–13999.
Wang,, D., Guo,, Y., Wu,, C., Yang,, G., Li,, Y., & Zheng,, C. (2008). Genome‐wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics, 9, 44.
Wang,, C., Zhang,, W., Li,, Z., Li,, Z., Bi,, Y., Crawford,, N. M., & Wang,, Y. (2018). FIP1 plays an important role in nitrate signaling and regulates CIPK8 and CIPK23 expression in Arabidopsis. Frontiers in Plant Science, 9, 593.
Xia,, X. J., Zhou,, Y. H., Shi,, K., Zhou,, J., Foyer,, C. H., & Yu,, J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66, 2839–2856.
Yao,, Q., Ge,, H., Wu,, S., Zhang,, N., Chen,, W., Xu,, C., … Xu,, D. (2014). P(3)DB 3.0: From plant phosphorylation sites to protein networks. Nucleic Acids Research, 42, D1206–D1213.
Yao,, Y., Song,, L., Katz,, Y., & Galili,, G. (2002). Cloning and characterization of Arabidopsis homologues of the animal CstF complex that regulates 3′ mRNA cleavage and polyadenylation. Journal of Experimental Botany, 53, 2277–2278.
Yoon,, O. K., & Brem,, R. B. (2010). Noncanonical transcript forms in yeast and their regulation during environmental stress. RNA, 16, 1256–1267.
Zeng,, W., Dai,, X., Sun,, J., Hou,, Y., Ma,, X., Cao,, X., … Cheng,, Y. (2019). Modulation of Auxin signaling and development by polyadenylation machinery. Plant Physiology, 179, 686–699.
Zhang,, J., Addepalli,, B., Yun,, K. Y., Hunt,, A. G., Xu,, R., Rao,, S., … Falcone,, D. L. (2008). A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One, 3, e2410.
Zhang,, Y., Ramming,, A., Heinke,, L., Altschmied,, L., Slotkin,, R. K., Becker,, J. D., … Lenhard,, M. (2019). The poly(A) polymerase PAPS1 interacts with the RNA‐directed DNA‐methylation pathway in sporophyte and pollen development. The Plant Journal, 99, 655–672.