Ashwal‐Fluss,, R., Meyer,, M., Pamudurti,, N. R., Ivanov,, A., Bartok,, O., Hanan,, M., … Kadener,, S. (2014). circRNA biogenesis competes with pre‐mRNA splicing. Molecular Cell, 56, 55–66. https://doi.org/10.1016/j.molcel.2014.08.019
Attardi,, D. G., Margarit,, I., & Tocchini‐Valentini,, G. P. (1985). Structural alterations in mutant precursors of the yeast tRNALeu3 gene which behave as defective substrates for a highly purified splicing endoribonuclease. The EMBO Journal, 4, 3289–3297. https://doi.org/10.1002/j.1460-2075.1985.tb04079.x
Baldi,, M. I., Mattoccia,, E., Bufardeci,, E., Fabbri,, S., & Tocchini‐Valentini,, G. P. (1992). Participation of the intron in the reaction catalyzed by the Xenopus tRNA splicing endonuclease. Science, 255, 1404–1408. https://doi.org/10.1126/science.1542788
Breuss,, M. W., Sultan,, T., James,, K. N., Rosti,, R. O., Scott,, E., Musaev,, D., … Gleeson,, J. G. (2016). Autosomal‐recessive mutations in the tRNA splicing endonuclease subunit TSEN15 cause pontocerebellar hypoplasia and progressive microcephaly. American Journal of Human Genetics, 99, 228–235. https://doi.org/10.1016/j.ajhg.2016.05.023
Budde,, B. S., Namavar,, Y., Barth,, P. G., Poll‐The,, B. T., Nürnberg,, G., Becker,, C., … Baas,, F. (2008). tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nature Genetics, 40, 1113–1118. https://doi.org/10.1038/ng.204
Cai,, C., Zhi,, Y., Wang,, K., Zhang,, P., Ji,, Z., Xie,, C., & Sun,, F. (2019). CircHIPK3 overexpression accelerates the proliferation and invasion of prostate cancer cells through regulating miRNA‐338‐3p. OncoTargets and Therapy, 12, 3363–3372. https://doi.org/10.2147/ott.s196931
Calvin,, K., Hall,, M. D., Xu,, F., Xue,, S., & Li,, H. (2005). Structural characterization of the catalytic subunit of a novel RNA splicing endonuclease. Journal of Molecular Biology, 353, 952–960. https://doi.org/10.1016/j.jmb.2005.09.035
Calvin,, K., & Li,, H. (2008). RNA‐splicing endonuclease structure and function. Cellular and Molecular Life Sciences, 65, 1176–1185. https://doi.org/10.1007/s00018-008-7393-y
Cassandrini,, D., Biancheri,, R., Tessa,, A., Di Rocco,, M., Di Capua,, M., Bruno, C., … Bertini, E. (2010). Pontocerebellar hypoplasia. Neurology, 75, 1459–1464.
Chan,, P. P., Cozen,, A. E., & Lowe,, T. M. (2011). Discovery of permuted and recently split transfer RNAs in Archaea. Genome Biology, 12, 1–8.
Chan,, P. P., & Lowe,, T. M. (2009). GtRNAdb: A database of transfer RNA genes detected in genomic sequence. Nucleic Acids Research, 37, 93–97. https://doi.org/10.1093/nar/gkn787
Chan,, P. P., & Lowe,, T. M. (2016). GtRNAdb 2.0: An expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Research, 44, D184–D189. https://doi.org/10.1093/nar/gkv1309
Cherry,, P. D., Peach,, S., & Hesselberth,, J. R. (2019). Multiple decay events target HAC1 mRNA during splicing to regulate the unfolded protein response. eLife, 8, e42262.
Chorev,, M., & Carmel,, L. (2012). The function of introns. Frontiers in Genetics, 3, 1–15. https://doi.org/10.3389/fgene.2012.00055
Culver,, G. M., McCraith,, S. M., Consaul,, S. A., Stanford,, D. R., & Phizicky,, E. M. (1997). A 2′‐phosphotransferase implicated in tRNA splicing is essential in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 272, 13203–13210. https://doi.org/10.1074/jbc.272.20.13203
Danan,, M., Schwartz,, S., Edelheit,, S., & Sorek,, R. (2012). Transcriptome‐wide discovery of circular RNAs in Archaea. Nucleic Acids Research, 40, 3131–3142. https://doi.org/10.1093/nar/gkr1009
de Vries,, H., Ruegsegger,, U., Hubner,, W., Friedlein,, A., Langen,, H., & Keller, W. (2000). Human pre‐mRNA cleavage factor IIm contains homologs of yeast proteins and bridges two other cleavage factors. The EMBO Journal, 19, 5895–5904. https://doi.org/10.1093/emboj/19.21.5895
Dhungel,, N., & Hopper,, A. K. (2012). Beyond tRNA cleavage: Novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing. Genes %26 Development, 26, 503–514. https://doi.org/10.1101/gad.183004.111
Di Nicola Negri,, E., Fabbri,, S., Bufardeci, E., Baldi, M. I., Gandini Attardi, D., Mattoccia, E., & Tocchini‐Valentini, G. P. (1997). The eucaryal tRNA splicing endonuclease recognizes a tripartite set of RNA elements. Cell, 89, 859–866. https://doi.org/10.1016/S0092-8674(00)80271-8
Donze,, D., Adams,, C. R., Rine,, J., & Kamakaka,, R. T. (1999). The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes %26 Development, 13, 698–708. https://doi.org/10.1101/gad.13.6.698
Donze,, D., & Kamakaka,, R. T. (2001). RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. The EMBO Journal, 20, 520–531. https://doi.org/10.1093/emboj/20.3.520
Englert,, M., Sheppard,, K., Gundllapalli,, S., Beier,, H., & Söll,, D. (2010). Branchiostoma floridae has separate healing and sealing enzymes for 5′‐phosphate RNA ligation. Proceedings of the National Academy of Sciences of the United States of America, 107, 16834–16839. https://doi.org/10.1073/pnas.1011703107
Fabbri,, S., Fruscoloni,, P., Bufardeci,, E., Di Nicola Negri, E., Baldi, M. I., Attardi, D. G., … Tocchini‐Valentini, G. P. (1998). Conservation of substrate recognition mechanisms by tRNA splicing endonucleases. Science, 280(5361), 284–286. https://doi.org/10.1126/science.280.5361.284
Filipowicz,, W., & Shatkin,, A. J. (1983). Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell, 32, 547–557. https://doi.org/10.1016/0092-8674(83)90474-9
Gogakos,, T., Brown,, M., Garzia,, A., Meyer,, C., Hafner,, M., & Tuschl,, T. (2017). Characterizing expression and processing of precursor and mature human tRNAs by hydro‐tRNAseq and PAR‐CLIP. Cell Reports, 20, 1463–1475. https://doi.org/10.1016/j.celrep.2017.07.029
Greer,, C., Söll,, D., & Willis,, I. (1987). Substrate recognition and identification of splice sites by the tRNA‐splicing endonuclease and ligase from Saccharomyces cerevisiae. Molecular and Cellular Biology, 7, 76–84. https://doi.org/10.1128/MCB.7.1.76.Updated
Grosjean,, H., Szweykowska‐Kulinska,, Z., Motorin,, Y., Fasiolo,, F., & Simos,, G. (1997). Intron‐dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: A review. Biochimie, 79, 293–302. https://doi.org/10.1016/S0300-9084(97)83517-1
Hanada,, T., Weitzer,, S., Mair,, B., Bernreuther,, C., Wainger,, B. J., Ichida,, J., … Penninger,, J. M. (2013). CLP1 links tRNA metabolism to progressive motor‐neuron loss. Nature, 495, 474–480. https://doi.org/10.1038/nature11923
Harding,, H. P., Lackey,, J. G., Hsu,, H. C., Zhang,, Y., Deng,, J., Xu,, R. M., … Ron,, D. (2008). An intact unfolded protein response in Trpt1 knockout mice reveals phylogenic divergence in pathways for RNA ligation. RNA, 14, 225–232. https://doi.org/10.1261/rna.859908
Hayne,, C., Schmidt,, C. A., Matera,, A. G., & Stanley,, R. E. (2019). Reconstitution of the human tRNA splicing endonuclease complex: Insight into the regulation of pre‐tRNA cleavage. bioRxiv. https://doi.org/10.1101/2019.12.16.878546
Jeck,, W. R., Sorrentino,, J. A., Wang,, K., Slevin,, M. K., Burd,, C. E., … Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19, 141–157. https://doi.org/10.1261/rna.035667.112
Jo,, B.‐S., & Choi,, S. S. (2015). Introns: The functional benefits of introns in genomes. Genomics Informatics, 13, 112–118. https://doi.org/10.5808/GI.2015.13.4.112
Karaca,, E., Weitzer,, S., Pehlivan,, D., Shiraishi,, H., Gogakos,, T., Hanada,, T., … Lupski,, J. R. (2014). Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell, 157, 636–650. https://doi.org/10.1016/j.cell.2014.02.058
Kasher,, P. R., Namavar,, Y., van Tijn,, P., Fluiter,, K., Sizarov,, A., Kamermans,, M., … Baas,, F. (2011). Impairment of the tRNA‐splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia. Human Molecular Genetics, 20, 1574–1584. https://doi.org/10.1093/hmg/ddr034
Kawach,, O., Voss, C., Wolff, J., Hadfi, K., Maier, U.G., & Zauner, S. (2005). Unique tRNA introns of an enslaved algal cell. Molecular Biology and Evolution, 22, 1694–1701. https://doi.org/10.1093/molbev/msi161
Kleman‐Leyer,, K., Armbruster,, D. W., & Daniels,, C. J. (1997). Properties of H. volcanii tRNA intron endonuclease reveal a relationship between the archaeal and eucaryal tRNA intron processing systems. Cell, 89, 839–847. https://doi.org/10.1016/S0092-8674(00)80269-X
Kosmaczewski,, S. G., Edwards,, T. J., Han,, S. M., Eckwahl,, M. J., Meyer,, B. I., Peach,, S., … Hammarlund,, M. (2014). The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Reports, 15, 1278–1286. https://doi.org/10.15252/embr.201439531
Kosmaczewski,, S. G., Han,, S. M., Han,, B., Irving Meyer,, B., Baig,, H. S., Athar,, W., … Hammarlund,, M. (2015). RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings of the National Academy of Sciences of the United States of America, 112, 8451–8456. https://doi.org/10.1073/pnas.1502948112
Lappe‐Siefke,, C., Goebbels,, S., Gravel,, M., Nicksch,, E., Lee,, J., Braun,, P. E., … Nave,, K. A. (2003). Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genetics, 33, 366–374. https://doi.org/10.1038/ng1095
Laski,, F. A., Fire,, A. Z., RajBhandary,, U. L., & Sharp,, P. A. (1983). Characterization of tRNA precursor splicing in mammalian extracts. The Journal of Biological Chemistry, 258, 11974–11980.
Litke,, J. L., & Jaffrey,, S. R. (2019). Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nature Biotechnology, 37, 667–675. https://doi.org/10.1038/s41587-019-0090-6
Lu,, Z., Filonov,, G. S., Noto,, J. J., Schmidt,, C. A., Hatkevich,, T. L., Wen,, Y., … Matera,, A. G. (2015). Metazoan tRNA introns generate stable circular RNAs in vivo. RNA, 21, 1554–1565. https://doi.org/10.1261/rna.052944.115
Lu,, Z., & Matera,, A. G. (2014). Vicinal: A method for the determination of ncRNA ends using chimeric reads from RNA‐seq experiments. Nucleic Acids Research, 42, 1–9. https://doi.org/10.1093/nar/gku207
Lykke‐Andersen,, J., & Garrett,, R. A. (1997). RNA‐protein interactions of an archaeal homotetrameric splicing endoribonuclease with an exceptional evolutionary history. The EMBO Journal, 16, 6290–6300. https://doi.org/10.1093/emboj/16.20.6290
Marck,, C., & Grosjean,, H. (2003). Identification of BHB splicing motifs in intron‐containing tRNAs from 18 archaea: Evolutionary implications. RNA, 9, 1516–1531. https://doi.org/10.1261/rna.5132503.tDNA
Memczak,, S., Jens,, M., Elefsinioti,, A., Torti,, F., Krueger,, J., Rybak,, A., … Rajewsky,, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338. https://doi.org/10.1038/nature11928
Namavar,, Y., Barth,, P. G., Kasher,, P. R., van Ruissen,, F., Brockmann,, K., Bernert,, G., … Poll‐The,, B. T. (2011). Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain, 134, 143–156. https://doi.org/10.1093/brain/awq287
Namavar,, Y., Chitayat,, D., Barth,, P. G., van Ruissen,, F., de Wissel,, M. B., Poll‐The,, B. T., … Baas,, F. (2011). TSEN54 mutations cause pontocerebellar hypoplasia type 5. European Journal of Human Genetics, 19, 724–726. https://doi.org/10.1038/ejhg.2011.8
Park,, J. W., & Graveley,, B. R. (2007). Complex alternative splicing. Adv. Exp. Med. Biol., 623, 50–63.
Paushkin,, S., Patel,, M., Furia,, B., Peltz,, S., & Trotta,, C. (2004). Identification of a human endonuclease complex reveals a link between tRNA splicing and pre‐mRNA 3′ end formation. Cell, 117, 311–321.
Peebles,, C. L., Gegenheimer,, P., & Abelson,, J. (1983). Precise excision of intervening sequences from precursor tRNAs by a membrane‐associated yeast endonuclease. Cell, 32, 525–536. https://doi.org/10.1016/0092-8674(83)90472-5
Popow,, J., Englert,, M., Weitzer,, S., Schleiffer,, A., Mierzwa,, B., Mechtler,, K., … Martinez,, J. (2011). HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science, 331, 760–764. https://doi.org/10.1126/science.1197847
Popow,, J., Jurkin,, J., Schleiffer,, A., & Martinez,, J. (2014). Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature, 511, 104–107. https://doi.org/10.1038/nature13284
Popow,, J., Schleiffer,, A., & Martinez,, J. (2012). Diversity and roles of (t)RNA ligases. Cellular and Molecular Life Sciences, 69, 2657–2670. https://doi.org/10.1007/s00018-012-0944-2
Ramirez,, A., Shuman,, S., & Schwer,, B. (2008). Human RNA 5′‐kinase (hClp1) can function as a tRNA splicing enzyme in vivo. RNA, 14, 1737–1745. https://doi.org/10.1261/rna.1142908
Randau,, L., Calvin,, K., Hall,, M., Yuan,, J., Podar,, M., Li,, H., & Soll,, D. (2005). The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge‐helix‐bulge motifs of joined tRNA halves. Proceedings of the National Academy of Sciences of the United States of America, 102, 17934–17939. https://doi.org/10.1073/pnas.0509197102
Randau,, L., Munch,, R., Hohn,, M. J., Jahn,, D., & Soll,, D. (2005). Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′‐ and 3′‐ halves. Nature, 2901, 537–541.
Randau,, L., & Söll,, D. (2008). Transfer RNA genes in pieces. EMBO Reports, 9, 623–628. https://doi.org/10.1038/embor.2008.101
Reyes,, V. M., & Abelson,, J. (1988). Substrate recognition and splice site determination in yeast tRNA splicing. Cell, 55, 719–730.
Salgia,, S., Singh,, S., Gurha,, P., & Gupta,, R. (2003). Two reactions of Haloferax volcanii RNA splicing enzymes: Joining of exons and circularization of introns. RNA, 9, 319–330. https://doi.org/10.1261/rna.2118203.LAGLIDADG
Salzman,, J., Gawad,, C., Wang,, P. L., Lacayo,, N., & Brown,, P. O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 7, e30733. https://doi.org/10.1371/journal.pone.0030733
Schaffer,, A. E., Eggens,, V. R. C., Caglayan,, A. O., Reuter,, M. S., Scott,, E., Coufal,, N. G., … Gleeson,, J. G. (2014). CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell, 157, 651–663. https://doi.org/10.1016/j.cell.2014.03.049
Schmidt,, C. A., Giusto,, J. D., Bao,, A., Hopper,, A. K., & Matera,, A. G. (2019). Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Research, 47, 6452–6465. https://doi.org/10.1093/nar/gkz311
Schmidt,, C. A., Noto,, J. J., Filonov,, G. S., & Matera,, A. G. (2016). A method for expressing and imaging abundant, stable, circular RNAs in vivo using tRNA splicing. Methods in Enzymology, 572, 215–236. https://doi.org/10.1016/bs.mie.2016.02.018
Schwer,, B., Aronova,, A., Ramirez,, A., Braun,, P., & Shuman,, S. (2008). Mammalian 2′,3′ cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. RNA, 14, 204–210. https://doi.org/10.1261/rna.858108
Shen,, Y., Yu,, X., Zhu,, L., Li,, T., Yan,, Z., & Guo,, J. (2018). Transfer RNA‐derived fragments and tRNA halves: Biogenesis, biological functions and their roles in diseases. Journal of Molecular Medicine (Berlin, Germany), 96, 1167–1176. https://doi.org/10.1007/s00109-018-1693-y
Singh,, S. K., Gurha,, P., Tran,, E. J., Maxwell,, E. S., & Gupta,, R. (2004). Sequential 2′‐O‐methylation of archaeal pre‐tRNA Trp nucleotides is guided by the intron‐encoded but trans‐acting box C/D ribonucleoprotein of pre‐tRNA. The Journal of Biological Chemistry, 279, 47661–47671. https://doi.org/10.1074/jbc.M408868200
Soma,, A., Onodera,, A., Sugahara,, J., Kanai,, A., Yachie,, N., Tomita,, M., … Sekine,, Y. (2007). Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science, 318(5849), 450–453.
Spring,, A. M., Raimer,, A. C., Hamilton,, C. D., Schillinger,, M. J., & Matera,, A. G. (2019). Comprehensive Modeling of spinal muscular atrophy in Drosophila melanogaster. Frontiers in Molecular Neuroscience, 12, 1–16. https://doi.org/10.3389/fnmol.2019.00113
Stamm,, S., Ben‐Ari,, S., Rafalska,, I., Tang,, Y., Zhang,, Z., Toiber,, D., … Soreq,, H. (2005). Function of alternative splicing. Gene, 344, 1–20. https://doi.org/10.1016/j.gene.2004.10.022
Starostina,, N. G., Marshburn,, S., Johnson,, L. S., Eddy,, S. R., Terns,, R. M., & Terns,, M. P. (2004). Circular box C/D RNAs in Pyrococcus furiosus. Proceedings of the National Academy of Sciences of the United States of America, 101, 14097–14101.
Sugahara,, J., Fujishima,, K., Morita,, K., Tomita,, M., & Kanai,, A. (2009). Disrupted tRNA gene diversity and possible evolutionary scenarios. Journal of Molecular Evolution, 69, 497–504. https://doi.org/10.1007/s00239-009-9294-6
Sugahara,, J., Kikuta,, K., Fujishima,, K., Yachie,, N., Tomita,, M., & Kanai,, A. (2008). Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales. Molecular Biology and Evolution, 25, 2709–2716. https://doi.org/10.1093/molbev/msn216
Thompson,, L. D., Brandon,, L. D., Nieuwlandt,, D. T., & Daniels,, C. J. (1989). Transfer RNA intron processing in the halophilic archaebacteria. Canadian Journal of Microbiology, 35, 36–42. https://doi.org/10.1139/m89-006
Thompson,, L. D., & Daniels,, C. J. (1988). A tRNA(Trp) intron endonuclease from Halobacterium volcanii. Unique substrate recognition properties. The Journal of Biological Chemistry, 263, 17951–17959.
Thompson,, L. D., & Daniels,, C. J. (1990). Recognition of exon–intron boundaries by the Halobacterium volcanii tRNA intron endonuclease. The Journal of Biological Chemistry, 265, 18104–18111.
Trotta,, C. R., Miao,, F., Arn,, E. A., Stevens,, S. W., Ho,, C. K., Rauhut,, R., & Abelson,, J. N. (1997). The yeast tRNA splicing endonuclease: A tetrameric enzyme with two active site subunits homologous to the Archaeal tRNA endonucleases. Cell, 89, 849–858. https://doi.org/10.1016/S0092-8674(00)80270-6
Trotta,, C. R., Paushkin,, S. V., Patel,, M., Li,, H., & Peltz,, S. W. (2006). Cleavage of pre‐tRNAs by the splicing endonuclease requires a composite active site. Nature, 441, 375–377. https://doi.org/10.1038/nature04741
Tsuboi,, T., Yamazaki,, R., Nobuta,, R., Ikeuchi,, K., Makino,, S., Ohtaki,, A., … Inada,, T. (2015). The tRNA splicing endonuclease complex cleaves the mitochondria‐localized Cbp1 mRNA. The Journal of Biological Chemistry, 290, 16021–16030. https://doi.org/10.1074/jbc.M114.634592
Wafik,, M., Taylor,, J., Lester,, T., Gibbons,, R. J., & Shears,, D. J. (2018). 2 new cases of pontocerebellar hypoplasia type 10 identified by whole exome sequencing in a Turkish family. European Journal of Medical Genetics, 61, 273–279. https://doi.org/10.1016/j.ejmg.2018.01.002
Waldron,, C., & Lacroute,, F. (1975). Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. Journal of Bacteriology, 122, 855–865.
Wang,, Y., & Wang,, Z. (2015). Efficient backsplicing produces translatable circular mRNAs. RNA, 21, 172–179. https://doi.org/10.1261/rna.048272.114
Weitzer,, S., Hanada,, T., Penninger,, J. M., & Martinez,, J. (2014). CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. WIREs RNA, 6, 47–63. https://doi.org/10.1002/wrna.1255
Weitzer,, S., & Martinez,, J. (2007). The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature, 447, 222–226. https://doi.org/10.1038/nature05777
Wu,, J., & Hopper,, A. K. (2014). Healing for destruction: TRNA intron degradation in yeast is a two‐step cytoplasmic process catalyzed by tRNA ligase Rlg1 and 5′‐to‐3′ exonuclease Xrn1. Genes %26 Development, 28, 1556–1561. https://doi.org/10.1101/gad.244673.114
Xue,, S., Calvin,, K., & Li,, H. (2006). RNA recognition and cleavage by a splicing endonuclease. Science, 312, 906–910. https://doi.org/10.1126/science.1126629
Yoshihisa,, T. (2014). Handling tRNA introns, archaeal way and eukaryotic way. Frontiers in Genetics, 5, 1–16. https://doi.org/10.3389/fgene.2014.00213
Yoshihisa,, T., & Yunoki‐Esaki,, K. (2003). Possibility of cytoplasmic pre‐tRNA splicing: The yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Molecular Biology of the Cell, 14, 3266–3279. https://doi.org/10.1091/mbc.E02-11-0757
Zillmann,, M., Gorovsky,, M. A., & Phizicky,, E. M. (1991). Conserved mechanism of tRNA splicing in eukaryotes. Molecular and Cellular Biology, 11, 5410–5416. https://doi.org/10.1128/MCB.11.11.5410.Updated