Alon,, S., Garrett,, S. C., Levanon,, E. Y., Olson,, S., Graveley,, B. R., Rosenthal,, J. J. C., & Eisenberg,, E. (2015). The majority of transcripts in the squid nervous system are extensively recoded by A‐to‐I RNA editing. eLife, 4, e05198. https://doi.org/10.7554/eLife.05198.001
Amort,, T., Rieder,, D., Wille,, A., Khokhlova‐Cubberley,, D., Riml,, C., Trixl,, L., … Lusser,, A. (2017). Distinct 5‐methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biology, 18(1), 1. https://doi.org/10.1186/s13059-016-1139-1
Angelova,, M. T., Dimitrova,, D. G., Dinges,, N., Lence,, T., Worpenberg,, L., Carre,, C., & Roignant,, J. Y. (2018). The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders. Frontiers in Bioengineering and Biotechnology, 6, 46. https://doi.org/10.3389/fbioe.2018.00046
Anstee,, Q. M., & Day,, C. P. (2012). S‐adenosylmethionine (SAMe) therapy in liver disease: A review of current evidence and clinical utility. Journal of Hepatology, 57(5), 1097–1109. https://doi.org/10.1016/j.jhep.2012.04.041
Arango,, D., Sturgill,, D., Alhusaini,, N., Dillman,, A. A., Sweet,, T. J., Hanson,, G., … Oberdoerffer,, S. (2018). Acetylation of cytidine in mRNA promotes translation efficiency. Cell, 175(7), 1872–1886 e1824. https://doi.org/10.1016/j.cell.2018.10.030
Baeza,, J., Dowell,, J. A., Smallegan,, M. J., Fan,, J., Amador‐Noguez,, D., Khan,, Z., & Denu,, J. M. (2014). Stoichiometry of site‐specific lysine acetylation in an entire proteome. The Journal of Biological Chemistry, 289(31), 21326–21338. https://doi.org/10.1074/jbc.M114.581843
Bajad,, P., Jantsch,, M. F., Keegan,, L., & O`Connell,, M. (2017). A to I editing in disease is not fake news. RNA Biology, 14(9), 1223–1231. https://doi.org/10.1080/15476286.2017.1306173
Baudin‐Baillieu,, A., Fabret,, C., Liang,, X. H., Piekna‐Przybylska,, D., Fournier,, M. J., & Rousset,, J. P. (2009). Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Research, 37(22), 7665–7677. https://doi.org/10.1093/nar/gkp816
Bazak,, L., Haviv,, A., Barak,, M., Jacob‐Hirsch,, J., Deng,, P., Zhang,, R., … Levanon,, E. Y. (2014). A‐to‐I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Research, 24(3), 365–376. https://doi.org/10.1101/gr.164749.113
Berman,, H., Henrick,, K., & Nakamura,, H. (2003). Announcing the worldwide protein data Bank. Nature Structural Biology, 10(12), 980. https://doi.org/10.1038/nsb1203-980
Carlile,, T. M., Martinez,, N. M., Schaening,, C., Su,, A., Bell,, T. A., Zinshteyn,, B., & Gilbert,, W. V. (2019). mRNA structure determines modification by pseudouridine synthase 1. Nature Chemical Biology, 15(10), 966–974. https://doi.org/10.1038/s41589-019-0353-z
Carlile,, T. M., Rojas‐Duran,, M. F., Zinshteyn,, B., Shin,, H., Bartoli,, K. M., & Gilbert,, W. V. (2014). Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 515(7525), 143–146. https://doi.org/10.1038/nature13802
Carpy,, A., Krug,, K., Graf,, S., Koch,, A., Popic,, S., Hauf,, S., & Macek,, B. (2014). Absolute proteome and phosphoproteome dynamics during the cell cycle of schizosaccharomyces pombe (fission yeast). Molecular %26 Cellular Proteomics, 13(8), 1925–1936. https://doi.org/10.1074/mcp.M113.035824
Castello,, A., Hentze,, M. W., & Preiss,, T. (2015). Metabolic enzymes enjoying new partnerships as RNA‐binding proteins. Trends in Endocrinology and Metabolism, 26(12), 746–757. https://doi.org/10.1016/j.tem.2015.09.012
Chan,, C. T., Dyavaiah,, M., DeMott,, M. S., Taghizadeh,, K., Dedon,, P. C., & Begley,, T. J. (2010). A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genetics, 6(12), e1001247. https://doi.org/10.1371/journal.pgen.1001247
Charette,, M., & Gray,, M. W. (2000). Pseudouridine in RNA: What, where, how, and why. IUBMB Life, 49(5), 341–351. https://doi.org/10.1080/152165400410182
Chen,, K., Lu,, Z., Wang,, X., Fu,, Y., Luo,, G. Z., Liu,, N., … He,, C. (2015). High‐resolution N(6) ‐methyladenosine (m(6) A) map using photo‐crosslinking‐assisted m(6) A sequencing. Angewandte Chemie (International Ed. in English), 54(5), 1587–1590. https://doi.org/10.1002/anie.201410647
Choi,, J., Ieong,, K. W., Demirci,, H., Chen,, J., Petrov,, A., Prabhakar,, A., … Puglisi,, J. D. (2016). N(6)‐methyladenosine in mRNA disrupts tRNA selection and translation‐elongation dynamics. Nature Structural %26 Molecular Biology, 23(2), 110–115. https://doi.org/10.1038/nsmb.3148
Choi,, J., Indrisiunaite,, G., DeMirci,, H., Ieong,, K. W., Wang,, J., Petrov,, A., … Puglisi,, J. D. (2018). 2`‐O‐methylation in mRNA disrupts tRNA decoding during translation elongation. Nature Structural %26 Molecular Biology, 25(3), 208–216. https://doi.org/10.1038/s41594-018-0030-z
Chu,, J. M., Ye,, T. T., Ma,, C. J., Lan,, M. D., Liu,, T., Yuan,, B. F., & Feng,, Y. Q. (2018). Existence of internal N7‐methylguanosine modification in mRNA determined by differential enzyme treatment coupled with mass spectrometry analysis. ACS Chemical Biology, 13(12), 3243–3250. https://doi.org/10.1021/acschembio.7b00906
Cohn,, W. E., & Volkin,, E. (1951). Nucleoside‐5′ ‐phosphates from ribonucleic acid. Nature, 167, 483–484.
Cross,, R. (2019). Epitranscriptomics: The new RNA code and the race to drug it. Chemistry and Engineering News, 97(7).
Cui,, Q., Shi,, H., Ye,, P., Li,, L., Qu,, Q., Sun,, G., … Shi,, Y. (2017). m(6)A RNA methylation regulates the self‐renewal and tumorigenesis of glioblastoma stem cells. Cell Reports, 18(11), 2622–2634. https://doi.org/10.1016/j.celrep.2017.02.059
Cui,, X., Liang,, Z., Shen,, L., Zhang,, Q., Bao,, S., Geng,, Y., … Yu,, H. (2017). 5‐Methylcytosine RNA methylation in Arabidopsis thaliana. Molecular Plant, 10(11), 1387–1399. https://doi.org/10.1016/j.molp.2017.09.013
Dai,, Q., Moshitch‐Moshkovitz,, S., Han,, D., Kol,, N., Amariglio,, N., Rechavi,, G., … He,, C. (2017). Nm‐seq maps 2`‐O‐methylation sites in human mRNA with base precision. Nature Methods, 14(7), 695–698. https://doi.org/10.1038/nmeth.4294
Dai,, X., Wang,, T., Gonzalez,, G., & Wang,, Y. (2018). Identification of YTH domain‐containing proteins as the readers for N1‐methyladenosine in RNA. Analytical Chemistry, 90(11), 6380–6384. https://doi.org/10.1021/acs.analchem.8b01703
Danecek,, P., Nellaker,, C., McIntyre,, R. E., Buendia‐Buendia,, J. E., Bumpstead,, S., Ponting,, C. P., … Adams,, D. J. (2012). High levels of RNA‐editing site conservation amongst 15 laboratory mouse strains. Genome Biology, 13(4), 26. https://doi.org/10.1186/gb-2012-13-4-r26
Davis,, D. R. (1995). Stabilization of RNA stacking by pseudouridine. Nucleic Acids Research, 23(24), 5020–5026. https://doi.org/10.1093/nar/23.24.5020
Davis,, F. F., & Worthington Allen,, F. (1957). Ribonucleic acids from yeast which contain a fifth nucleotide. Journal of Biological Chemistry, 227, 907–915.
De Jesus,, D. F., Zhang,, Z., Kahraman,, S., Brown,, N. K., Chen,, M., Hu,, J., … Kulkarni,, R. N. (2019). m6A mRNA methylation regulates human β‐cell biology in physiological states and in type 2 diabetes. Nature Metabolism, 1, 765–774. https://doi.org/10.1038/s42255-019-0089-9
Delatte,, B., Wang,, F., Ngoc,, L. V., Collignon,, E., Bonvin,, E., Deplus,, R., … Fuks,, F. (2016). RNA biochemistry. Transcriptome wide distribution and function of RNA hydroxymethylcytosine. Science, 351(6270), 282–285. https://doi.org/10.1126/science.aac5253
Demirci,, H., Murphy,, F. t., Belardinelli,, R., Kelley,, A. C., Ramakrishnan,, V., Gregory,, S. T., … Jogl,, G. (2010). Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. RNA, 16(12), 2319–2324. https://doi.org/10.1261/rna.2357210
Deng,, X., Chen,, K., Luo,, G. Z., Weng,, X., Ji,, Q., Zhou,, T., & He,, C. (2015). Widespread occurrence of N6‐methyladenosine in bacterial mRNA. Nucleic Acids Research, 43(13), 6557–6567. https://doi.org/10.1093/nar/gkv596
Desrosiers,, R., Friderici,, K., & Rottman,, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proceedings of the National Academy of Sciences of the United States of America, 71(10), 3971–3975. https://doi.org/10.1073/pnas.71.10.3971
Dominissini,, D., Moshitch‐Moshkovitz,, S., Schwartz,, S., Salmon‐Divon,, M., Ungar,, L., Osenberg,, S., … Rechavi,, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq. Nature, 485(7397), 201–206. https://doi.org/10.1038/nature11112
Dominissini,, D., Nachtergaele,, S., Moshitch‐Moshkovitz,, S., Peer,, E., Kol,, N., Ben‐Haim,, M. S., … He,, C. (2016). The dynamic N(1)‐methyladenosine methylome in eukaryotic messenger RNA. Nature, 530(7591), 441–446. https://doi.org/10.1038/nature16998
Duan,, H. C., Wei,, L. H., Zhang,, C., Wang,, Y., Chen,, L., Lu,, Z., … Jia,, G. (2017). ALKBH10B is an RNA N(6)‐methyladenosine demethylase affecting arabidopsis floral transition. Plant Cell, 29(12), 2995–3011. https://doi.org/10.1105/tpc.16.00912
Edupuganti,, R. R., Geiger,, S., Lindeboom,, R. G. H., Shi,, H., Hsu,, P. J., Lu,, Z., … Vermeulen,, M. (2017). N(6)‐methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural %26 Molecular Biology, 24(10), 870–878. https://doi.org/10.1038/nsmb.3462
Eyler,, D. E., Franco,, M. K., Batool,, Z., Wu,, M. Z., Debuke,, M. L., Dobosz‐Bartoszek,, M., … Koutmou,, K. S. (2019). Pseudouridinylation of mRNA coding sequences alters translation. Proceedings of the National Academy of Sciences of the United States of America, 116(46), 23068–23074. https://doi.org/10.1073/pnas.1821754116
Fan,, Y., Evans,, C. R., Barber,, K. W., Banerjee,, K., Weiss,, K. J., Margolin,, W., … Ling,, J. (2017). Heterogeneity of stop codon readthrough in single bacterial cells and implications for population fitness. Molecular Cell, 67(5), 826–836 e825. https://doi.org/10.1016/j.molcel.2017.07.010
Fan,, Y., Wu,, J., Ung,, M. H., De Lay,, N., Cheng,, C., & Ling,, J. (2015). Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Research, 43(3), 1740–1748. https://doi.org/10.1093/nar/gku1404
Fernandez,, I. S., Ng,, C. L., Kelley,, A. C., Wu,, G., Yu,, Y. T., & Ramakrishnan,, V. (2013). Unusual base pairing during the decoding of a stop codon by the ribosome. Nature, 500(7460), 107–110. https://doi.org/10.1038/nature12302
Ferreira,, P. G., Oti,, M., Barann,, M., Wieland,, T., Ezquina,, S., Friedlander,, M. R., … Sammeth,, M. (2016). Sequence variation between 462 human individuals fine‐tunes functional sites of RNA processing. Scientific Reports, 6, 32406. https://doi.org/10.1038/srep32406
Frye,, M., Harada,, B. T., Behm,, M., & He,, C. (2018). RNA modifications modulate gene expression during development. Science, 361(6409), 1346–1349. https://doi.org/10.1126/science.aau1646
Fustin,, J. M., Kojima,, R., Itoh,, K., Chang,, H. Y., Ye,, S., Zhuang,, B., … Okamura,, H. (2018). Two Ck1delta transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 115(23), 5980–5985. https://doi.org/10.1073/pnas.1721371115
Garcia‐Campos,, M. A., Edelheit,, S., Toth,, U., Safra,, M., Shachar,, R., Viukov,, S., … Schwartz,, S. (2019). Deciphering the "m(6)A code" via antibody‐independent quantitative profiling. Cell, 178(3), 731–747 e716. https://doi.org/10.1016/j.cell.2019.06.013
Garrett,, S., & Rosenthal,, J. J. (2012). RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science, 335(6070), 848–851. https://doi.org/10.1126/science.1212795
Gerber,, A. P., Herschlag,, D., & Brown,, P. O. (2004). Extensive association of functionally and cytotopically related mRNAs with Puf family RNA‐binding proteins in yeast. PLoS Biology, 2(3), E79. https://doi.org/10.1371/journal.pbio.0020079
Gilbert,, W. V., Bell,, T. A., & Schaening,, C. (2016). Messenger RNA modifications: Form, distribution, and function. Science, 352(6292), 1408–1412. https://doi.org/10.1126/science.aad8711
Grozhik,, A. V., & Jaffrey,, S. R. (2018). Distinguishing RNA modifications from noise in epitranscriptome maps. Nature Chemical Biology, 14(3), 215–225. https://doi.org/10.1038/nchembio.2546
Hansen,, B. K., Gupta,, R., Baldus,, L., Lyon,, D., Narita,, T., Lammers,, M., … Weinert,, B. T. (2019). Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nature Communications, 10(1), 1055. https://doi.org/10.1038/s41467-019-09024-0
Haussmann,, I. U., Bodi,, Z., Sanchez‐Moran,, E., Mongan,, N. P., Archer,, N., Fray,, R. G., & Soller,, M. (2016). m(6)A potentiates Sxl alternative pre‐mRNA splicing for robust Drosophila sex determination. Nature, 540(7632), 301–304. https://doi.org/10.1038/nature20577
Helm,, M., & Alfonzo,, J. D. (2017). Posttranscriptional RNA modifications: Playing metabolic games in a cell`s chemical Legoland. Chemical Biology, 21(2), 174–185.
Helm,, M., & Motorin,, Y. (2017). Detecting RNA modifications in the epitranscriptome: Predict and validate. Nature Reviews. Genetics, 18(5), 275–291. https://doi.org/10.1038/nrg.2016.169
Hentze,, M. W., Castello,, A., Schwarzl,, T., & Preiss,, T. (2018). A brave new world of RNA‐binding proteins. Nature Reviews. Molecular Cell Biology, 19(5), 327–341. https://doi.org/10.1038/nrm.2017.130
Hoernes,, T. P., Clementi,, N., Faserl,, K., Glasner,, H., Breuker,, K., Lindner,, H., … Erlacher,, M. D. (2016). Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Research, 44(2), 852–862. https://doi.org/10.1093/nar/gkv1182
Hoernes,, T. P., Clementi,, N., Juen,, M. A., Shi,, X., Faserl,, K., Willi,, J., … Erlacher,, M. D. (2018). Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor‐mediated peptide release. Proceedings of the National Academy of Sciences of the United States of America, 115(3), E382–E389. https://doi.org/10.1073/pnas.1714554115
Hoernes,, T. P., Heimdorfer,, D., Kostner,, D., Faserl,, K., Nussbaumer,, F., Plangger,, R., … Erlacher,, M. D. (2019). Eukaryotic translation elongation is modulated by single natural nucleotide derivatives in the coding sequences of mRNAs. Genes (Basel), 10(2). https://doi.org/10.3390/genes10020084
Hoernes,, T. P., Huttenhofer,, A., & Erlacher,, M. D. (2016). mRNA modifications: Dynamic regulators of gene expression? RNA Biology, 13(9), 760–765. https://doi.org/10.1080/15476286.2016.1203504
Huang,, H., Weng,, H., Sun,, W., Qin,, X., Shi,, H., Wu,, H., … Chen,, J. (2018). Recognition of RNA N(6)‐methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 20(3), 285–295. https://doi.org/10.1038/s41556-018-0045-z
Huang,, T., Chen,, W., Liu,, J., Gu,, N., & Zhang,, R. (2019). Genome‐wide identification of mRNA 5‐methylcytosine in mammals. Nature Structural %26 Molecular Biology, 26(5), 380–388. https://doi.org/10.1038/s41594-019-0218-x
Huber,, S. M., van Delft,, P., Mendil,, L., Bachman,, M., Smollett,, K., Werner,, F., … Balasubramanian,, S. (2015). Formation and abundance of 5‐hydroxymethylcytosine in RNA. Chembiochem, 16(5), 752–755. https://doi.org/10.1002/cbic.201500013
Hudson,, B. H., & Zaher,, H. S. (2015). O6‐Methylguanosine leads to position‐dependent effects on ribosome speed and fidelity. RNA, 21(9), 1648–1659. https://doi.org/10.1261/rna.052464.115
Ingolia,, N. T., Ghaemmaghami,, S., Newman,, J. R., & Weissman,, J. S. (2009). Genome‐wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324(5924), 218–223. https://doi.org/10.1126/science.1168978
Jain,, M., Olsen,, H. E., Paten,, B., & Akeson,, M. (2016). The Oxford nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biology, 17(1), 239. https://doi.org/10.1186/s13059-016-1103-0
Jarmoskaite,, I., Denny,, S. K., Vaidyanathan,, P. P., Becker,, W. R., Andreasson,, J. O. L., Layton,, C. J., … Herschlag,, D. (2019). A quantitative and predictive model for RNA binding by human Pumilio proteins. Molecular Cell, 74(5), 966–981 e918. https://doi.org/10.1016/j.molcel.2019.04.012
Jia,, G., Fu,, Y., Zhao,, X., Dai,, Q., Zheng,, G., Yang,, Y., … He,, C. (2011). N6‐methyladenosine in nuclear RNA is a major substrate of the obesity‐associated FTO. Nature Chemical Biology, 7(12), 885–887. https://doi.org/10.1038/nchembio.687
Karijolich,, J., & Yu,, Y. T. (2011). Converting nonsense codons into sense codons by targeted pseudouridylation. Nature, 474(7351), 395–398. https://doi.org/10.1038/nature10165
Kariko,, K., Muramatsu,, H., Welsh,, F. A., Ludwig,, J., Kato,, H., Akira,, S., & Weissman,, D. (2008). Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 16(11), 1833–1840. https://doi.org/10.1038/mt.2008.200
Ke,, S., Pandya‐Jones,, A., Saito,, Y., Fak,, J. J., Vagbo,, C. B., Geula,, S., … Darnell,, R. B. (2017). m(6)A mRNA modifications are deposited in nascent pre‐mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes %26 Development, 31(10), 990–1006. https://doi.org/10.1101/gad.301036.117
Kennedy,, E. M., Courtney,, D. G., Tsai,, K., & Cullen,, B. R. (2017). Viral Epitranscriptomics. Journal of Virology, 91(9), e02263‐16. https://doi.org/10.1128/JVI.02263-16
Khoddami,, V., Yerra,, A., Mosbruger,, T. L., Fleming,, A. M., Burrows,, C. J., & Cairns,, B. R. (2019). Transcriptome wide profiling of multiple RNA modifications simultaneously at single‐base resolution. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6784–6789. https://doi.org/10.1073/pnas.1817334116
Kim,, D. D., Kim,, T. T., Walsh,, T., Kobayashi,, Y., Matise,, T. C., Buyske,, S., & Gabriel,, A. (2004). Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Research, 14(9), 1719–1725. https://doi.org/10.1101/gr.2855504
Kowalak,, J. A., Pomerantz,, S. C., Crain,, P. F., & McCloskey,, J. A. (1993). A novel method for the determination of post‐transcriptional modification in RNA by mass spectrometry. Nucleic Acids Research, 21(19), 4577–4585. https://doi.org/10.1093/nar/21.19.4577
Kretschmer,, J., Rao,, H., Hackert,, P., Sloan,, K. E., Hobartner,, C., & Bohnsack,, M. T. (2018). The m(6)A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′‐3′ exoribonuclease XRN1. RNA, 24(10), 1339–1350. https://doi.org/10.1261/rna.064238.117
Lareau,, L. F., Hite,, D. H., Hogan,, G. J., & Brown,, P. O. (2014). Distinct stages of the translation elongation cycle revealed by sequencing ribosome‐protected mRNA fragments. eLife, 3, e01257. https://doi.org/10.7554/eLife.01257
Levanon,, E. Y., Eisenberg,, E., Yelin,, R., Nemzer,, S., Hallegger,, M., Shemesh,, R., … Jantsch,, M. F. (2004). Systematic identification of abundant A‐to‐I editing sites in the human transcriptome. Nature Biotechnology, 22, 1001–1005.
Lewis,, C. J., Pan,, T., & Kalsotra,, A. (2017). RNA modifications and structures cooperate to guide RNA‐protein interactions. Nature Reviews. Molecular Cell Biology, 18(3), 202–210. https://doi.org/10.1038/nrm.2016.163
Li,, L. J., Fan,, Y. G., Leng,, R. X., Pan,, H. F., & Ye,, D. Q. (2018). Potential link between m(6)A modification and systemic lupus erythematosus. Molecular Immunology, 93, 55–63. https://doi.org/10.1016/j.molimm.2017.11.009
Li,, X., Xiong,, X., Wang,, K., Wang,, L., Shu,, X., Ma,, S., & Yi,, C. (2016). Transcriptome wide mapping reveals reversible and dynamic N(1)‐methyladenosine methylome. Nature Chemical Biology, 12(5), 311–316. https://doi.org/10.1038/nchembio.2040
Li,, X., Xiong,, X., Zhang,, M., Wang,, K., Chen,, Y., Zhou,, J., … Yi,, C. (2017). Base‐resolution mapping reveals distinct m(1)A methylome in nuclear‐ and mitochondrial‐encoded transcripts. Molecular Cell, 68(5), 993–1005 e1009. https://doi.org/10.1016/j.molcel.2017.10.019
Li,, X., Zhu,, P., Ma,, S., Song,, J., Bai,, J., Sun,, F., & Yi,, C. (2015). Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nature Chemical Biology, 11(8), 592–597. https://doi.org/10.1038/nchembio.1836
Licht,, K., Hartl,, M., Amman,, F., Anrather,, D., Janisiw,, M. P., & Jantsch,, M. F. (2019). Inosine induces context‐dependent recoding and translational stalling. Nucleic Acids Research, 47(1), 3–14. https://doi.org/10.1093/nar/gky1163
Lin,, S., Choe,, J., Du,, P., Triboulet,, R., & Gregory,, R. I. (2016). The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Molecular Cell, 62(3), 335–345. https://doi.org/10.1016/j.molcel.2016.03.021
Linder,, B., Grozhik,, A. V., Olarerin‐George,, A. O., Meydan,, C., Mason,, C. E., & Jaffrey,, S. R. (2015). Single‐nucleotide‐resolution mapping of m6A and m6Am throughout the transcriptome. Nature Methods, 12(8), 767–772. https://doi.org/10.1038/nmeth.3453
Liu,, B., Merriman,, D. K., Choi,, S. H., Schumacher,, M. A., Plangger,, R., Kreutz,, C., … Al‐Hashimi,, H. M. (2018). A potentially abundant junctional RNA motif stabilized by m(6)A and Mg(2). Nature Communications, 9(1), 2761. https://doi.org/10.1038/s41467-018-05243-z
Liu,, F., Clark,, W., Luo,, G., Wang,, X., Fu,, Y., Wei,, J., … He,, C. (2016). ALKBH1‐mediated tRNA demethylation regulates translation. Cell, 167(3), 816–828 e816. https://doi.org/10.1016/j.cell.2016.09.038
Liu,, N., Parisien,, M., Dai,, Q., Zheng,, G., He,, C., & Pan,, T. (2013). Probing N6‐methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA, 19(12), 1848–1856. https://doi.org/10.1261/rna.041178.113
Lovejoy,, A. F., Riordan,, D. P., & Brown,, P. O. (2014). Transcriptome wide mapping of pseudouridines: Pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One, 9(10), e110799. https://doi.org/10.1371/journal.pone.0110799
Lugowski,, A., Nicholson,, B., & Rissland,, O. S. (2018). Determining mRNA half‐lives on a transcriptome wide scale. Methods, 137, 90–98. https://doi.org/10.1016/j.ymeth.2017.12.006
Ma,, C. J., Ding,, J. H., Ye,, T. T., Yuan,, B. F., & Feng,, Y. Q. (2019). AlkB homologue 1 demethylates N(3)‐methylcytidine in mRNA of mammals. ACS Chemical Biology, 14(7), 1418–1425. https://doi.org/10.1021/acschembio.8b01001
Maraia,, R. J., & Arimbasseri,, A. G. (2017). Factors that shape eukaryotic tRNAomes: Processing, modification and anticodon‐codon use. Biomolecules, 7(1), E26. https://doi.org/10.3390/biom7010026
Martinez‐Perez,, M., Aparicio,, F., Lopez‐Gresa,, M. P., Belles,, J. M., Sanchez‐Navarro,, J. A., & Pallas,, V. (2017). Arabidopsis m(6)A demethylase activity modulates viral infection of a plant virus and the m(6)A abundance in its genomic RNAs. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10755–10760. https://doi.org/10.1073/pnas.1703139114
Mauger,, D. M., Cabral,, B. J., Presnyak,, V., Su,, S. V., Reid,, D. W., Goodman,, B., … McFadyen,, I. J. (2019). mRNA structure regulates protein expression through changes in functional half‐life. Proceedings of the National Academy of Sciences of the United States of America, 116(48), 24075–24083. https://doi.org/10.1073/pnas.1908052116
Meyer,, K. D., Saletore,, Y., Zumbo,, P., Elemento,, O., Mason,, C. E., & Jaffrey,, S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3` UTRs and near stop codons. Cell, 149(7), 1635–1646. https://doi.org/10.1016/j.cell.2012.05.003
Molinie,, B., Wang,, J., Lim,, K. S., Hillebrand,, R., Lu,, Z. X., Van Wittenberghe,, N., … Giallourakis,, C. C. (2016). m(6)A‐LAIC‐seq reveals the census and complexity of the m(6)A epitranscriptome. Nature Methods, 13(8), 692–698. https://doi.org/10.1038/nmeth.3898
Morse,, D. P., & Bass,, B. L. (1997). Detection of inosine in messenger RNA by inosine‐specific cleavage. Biochemistry, 36(28), 8429–8434. https://doi.org/10.1021/bi9709607
Motorin,, Y., & Helm,, M. (2019). Methods for RNA modification mapping using deep sequencing: Established and new emerging technologies. Genes (Basel), 10(1), E35. https://doi.org/10.3390/genes10010035
Nachtergaele,, S., & He,, C. (2017). The emerging biology of RNA post‐transcriptional modifications. RNA Biology, 14(2), 156–163. https://doi.org/10.1080/15476286.2016.1267096
Nakamoto,, M. A., Lovejoy,, A. F., Cygan,, A. M., & Boothroyd,, J. C. (2017). mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii. RNA, 23(12), 1834–1849. https://doi.org/10.1261/rna.062794.117
Nishikura,, K. (2016). A‐to‐I editing of coding and non‐coding RNAs by ADARs. Nature Reviews. Molecular Cell Biology, 17(2), 83–96. https://doi.org/10.1038/nrm.2015.4
Olsen,, J. V., Vermeulen,, M., Santamaria,, A., Kumar,, C., Miller,, M. L., Jensen,, L. J., … Mann,, M. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3(104), ra3. https://doi.org/10.1126/scisignal.2000475
Pan,, T. (2018). Modifications and functional genomics of human transfer RNA. Cell Research, 28(4), 395–404. https://doi.org/10.1038/s41422-018-0013-y
Pandey,, R. R., & Pillai,, R. S. (2019). Counting the cuts: MAZTER‐Seq quantifies m(6)A levels using a methylation‐sensitive ribonuclease. Cell, 178(3), 515–517. https://doi.org/10.1016/j.cell.2019.07.006
Patil,, D. P., Pickering,, B. F., & Jaffrey,, S. R. (2018). Reading m(6)A in the transcriptome: m(6)A‐binding proteins. Trends in Cell Biology, 28(2), 113–127. https://doi.org/10.1016/j.tcb.2017.10.001
Paul,, M. S. (1998). Inosine exists in mRNA at tissue‐specific levels and is most abundant in brain mRNA. The EMBO Journal, 17(4), 1120–1127. https://doi.org/10.1093/emboj/17.4.1120
Peer,, E., Rechavi,, G., & Dominissini,, D. (2017). Epitranscriptomics: Regulation of mRNA metabolism through modifications. Current Opinion in Chemical Biology, 41, 93–98. https://doi.org/10.1016/j.cbpa.2017.10.008
Pendleton,, K. E., Chen,, B., Liu,, K., Hunter,, O. V., Xie,, Y., Tu,, B. P., & Conrad,, N. K. (2017). The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 169(5), 824–835 e814. https://doi.org/10.1016/j.cell.2017.05.003
Peng,, X., Xu,, X., Wang,, Y., Hawke,, D. H., Yu,, S., Han,, L., … Mills,, G. B. (2018). A‐to‐I RNA editing contributes to proteomic diversity in cancer. Cancer Cell, 33(5), 817–828 e817. https://doi.org/10.1016/j.ccell.2018.03.026
Perry,, R. P., & Kelley,, D. E. (1974). Existence of methylated messenger RNA in mouse L cells. Cell, 1(1), 37–42. https://doi.org/10.1016/0092-8674(74)90153-6
Perry,, R. P., Kelley,, D. E., Friderici,, K., & Rottman,, F. (1975). The methylated constituents of L cell messenger RNA: Evidence for an unusual cluster at the 5′ terminus. Cell, 4(4), 387–394. https://doi.org/10.1016/0092-8674(75)90159-2
Phizicky,, E. M., & Hopper,, A. K. (2015). tRNA processing, modification, and subcellular dynamics: Past, present, and future. RNA, 21(4), 483–485. https://doi.org/10.1261/rna.049932.115
Pietrocola,, F., Galluzzi,, L., Bravo‐San Pedro,, J. M., Madeo,, F., & Kroemer,, G. (2015). Acetyl coenzyme A: A central metabolite and second messenger. Cell Metabolism, 21(6), 805–821. https://doi.org/10.1016/j.cmet.2015.05.014
Pomerantz,, S. C., & Mccloskey,, J. A. (1990). Analysis of RNA hydrolyzates by liquid‐chromatography mass‐spectrometry. Methods in Enzymology, 193, 796–824. https://doi.org/10.1016/0076-6879(90)93452-Q
Presnyak,, V., Alhusaini,, N., Chen,, Y. H., Martin,, S., Morris,, N., Kline,, N., … Coller,, J. (2015). Codon optimality is a major determinant of mRNA stability. Cell, 160(6), 1111–1124. https://doi.org/10.1016/j.cell.2015.02.029
Prus,, G., Hoegl,, A., Weinert,, B. T., & Choudhary,, C. (2019). Analysis and interpretation of protein post‐translational modification site stoichiometry. Trends in Biochemical Sciences, 44(11), 943–960. https://doi.org/10.1016/j.tibs.2019.06.003
Radhakrishnan,, A., Chen,, Y. H., Martin,, S., Alhusaini,, N., Green,, R., & Coller,, J. (2016). The DEAD‐box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell, 167(1), 122–132 e129. https://doi.org/10.1016/j.cell.2016.08.053
Rajecka,, V., Skalicky,, T., & Vanacova,, S. (2019). The role of RNA adenosine demethylases in the control of gene expression. Biochimica et Biophysica Acta ‐ Gene Regulatory Mechanisms, 1862(3), 343–355. https://doi.org/10.1016/j.bbagrm.2018.12.001
Ramaswami,, G., Zhang,, R., Piskol,, R., Keegan,, L. P., Deng,, P., O`Connell,, M. A., & Li,, J. B. (2013). Identifying RNA editing sites using RNA sequencing data alone. Nature Methods, 10(2), 128–132. https://doi.org/10.1038/nmeth.2330
Ranjan,, N., & Rodnina,, M. V. (2017). Thio‐modification of tRNA at the wobble position as regulator of the kinetics of decoding and translocation on the ribosome. Journal of the American Chemical Society, 139(16), 5857–5864. https://doi.org/10.1021/jacs.7b00727
Roost,, C., Lynch,, S. R., Batista,, P. J., Qu,, K., Chang,, H. Y., & Kool,, E. T. (2015). Structure and thermodynamics of N6‐methyladenosine in RNA: A spring‐loaded base modification. Journal of the American Chemical Society, 137(5), 2107–2115. https://doi.org/10.1021/ja513080v
Rottman,, F., Shatkin,, A. J., & Perry,, R. P. (1974). Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: Possible implications for processing. Cell, 3(3), 197–199. https://doi.org/10.1016/0092-8674(74)90131-7
Roundtree,, I. A., Evans,, M. E., Pan,, T., & He,, C. (2017). Dynamic RNA modifications in gene expression regulation. Cell, 169(7), 1187–1200. https://doi.org/10.1016/j.cell.2017.05.045
Roundtree,, I. A., Luo,, G. Z., Zhang,, Z., Wang,, X., Zhou,, T., Cui,, Y., … He,, C. (2017). YTHDC1 mediates nuclear export of N(6)‐methyladenosine methylated mRNAs. eLife, 6, e31311. https://doi.org/10.7554/eLife.31311
Rueter,, S. M., Dawson,, T. R., & Emeson,, R. B. (1999). Regulation of alternative splicing by RNA editing. Nature, 399(6731), 75–80. https://doi.org/10.1038/19992
Russell,, S. P., & Limbach,, P. A. (2013). Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC‐UV‐MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 923‐924, 74–82. https://doi.org/10.1016/j.jchromb.2013.02.010
Safra,, M., Sas‐Chen,, A., Nir,, R., Winkler,, R., Nachshon,, A., Bar‐Yaacov,, D., … Schwartz,, S. (2017). The m1A landscape on cytosolic and mitochondrial mRNA at single‐base resolution. Nature, 551(7679), 251–255. https://doi.org/10.1038/nature24456
Sakurai,, M., Ueda,, H., Yano,, T., Okada,, S., Terajima,, H., Mitsuyama,, T., … Suzuki,, T. (2014). A biochemical landscape of A‐to‐I RNA editing in the human brain transcriptome. Genome Research, 24(3), 522–534. https://doi.org/10.1101/gr.162537.113
Sakurai,, M., Yano,, T., Kawabata,, H., Ueda,, H., & Suzuki,, T. (2010). Inosine cyanoethylation identifies A‐to‐I RNA editing sites in the human transcriptome. Nature Chemical Biology, 6(10), 733–740. https://doi.org/10.1038/nchembio.434
Saletore,, Y., Meyer,, K., Korlach,, J., Vilfan,, I. D., Jaffrey,, S., & Mason,, C. E. (2012). The birth of the epitranscriptome: Deciphering the function of RNA modifications. Genome Biology, 13(10), 175. https://doi.org/10.1186/gb-2012-13-10-175
Schwartz,, M. H., & Pan,, T. (2016). Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures. Nucleic Acids Research, 44(1), 294–303. https://doi.org/10.1093/nar/gkv1379
Schwartz,, S. (2016). Cracking the epitranscriptome. RNA, 22(2), 169–174. https://doi.org/10.1261/rna.054502.115
Schwartz,, S., Bernstein,, D. A., Mumbach,, M. R., Jovanovic,, M., Herbst,, R. H., Leon‐Ricardo,, B. X., … Regev,, A. (2014). Transcriptome wide mapping reveals widespread dynamic‐regulated pseudouridylation of ncRNA and mRNA. Cell, 159(1), 148–162. https://doi.org/10.1016/j.cell.2014.08.028
Sendinc,, E., Valle‐Garcia,, D., Dhall,, A., Chen,, H., Henriques,, T., Navarrete‐Perea,, J., … Shi,, Y. (2019). PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Molecular Cell, 75(3), 620–630 e629. https://doi.org/10.1016/j.molcel.2019.05.030
Sergiev,, P. V., Aleksashin,, N. A., Chugunova,, A. A., Polikanov,, Y. S., & Dontsova,, O. A. (2018). Structural and evolutionary insights into ribosomal RNA methylation. Nature Chemical Biology, 14(3), 226–235. https://doi.org/10.1038/nchembio.2569
Shi,, H., Wei,, J., & He,, C. (2019). Where, when, and how: Context‐dependent functions of RNA methylation writers, readers, and erasers. Molecular Cell, 74(4), 640–650. https://doi.org/10.1016/j.molcel.2019.04.025
Shi,, L., & Tu,, B. P. (2015). Acetyl‐CoA and the regulation of metabolism: Mechanisms and consequences. Current Opinion in Cell Biology, 33, 125–131. https://doi.org/10.1016/j.ceb.2015.02.003
Sibbritt,, T., Patel,, H. R., & Preiss,, T. (2013). Mapping and significance of the mRNA methylome. WIREs RNA, 4(4), 397–422. https://doi.org/10.1002/wrna.1166
Singh,, G., Pratt,, G., Yeo,, G. W., & Moore,, M. J. (2015). The clothes make the mRNA: Past and present trends in mRNP fashion. Annual Review of Biochemistry, 84, 325–354. https://doi.org/10.1146/annurev-biochem-080111-092106
Spitale,, R. C., Flynn,, R. A., Zhang,, Q. C., Crisalli,, P., Lee,, B., Jung,, J. W., … Chang,, H. Y. (2015). Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 519(7544), 486–490. https://doi.org/10.1038/nature14263
Squires,, J. E., Patel,, H. R., Nousch,, M., Sibbritt,, T., Humphreys,, D. T., Parker,, B. J., … Preiss,, T. (2012). Widespread occurrence of 5‐methylcytosine in human coding and non‐coding RNA. Nucleic Acids Research, 40(11), 5023–5033. https://doi.org/10.1093/nar/gks144
Su,, D., Chan,, C. T., Gu,, C., Lim,, K. S., Chionh,, Y. H., McBee,, M. E., … Dedon,, P. C. (2014). Quantitative analysis of ribonucleoside modifications in tRNA by HPLC‐coupled mass spectrometry. Nature Protocols, 9(4), 828–841. https://doi.org/10.1038/nprot.2014.047
Sun,, H., Zhang,, M., Li,, K., Bai,, D., & Yi,, C. (2019). Cap‐specific, terminal N(6)‐methylation by a mammalian m(6)Am methyltransferase. Cell Research, 29(1), 80–82. https://doi.org/10.1038/s41422-018-0117-4
Sun,, L., Xu,, Y., Bai,, S., Bai,, X., Zhu,, H., Dong,, H., … Song,, C. P. (2019). Transcriptome wide analysis of pseudouridylation of mRNA and non‐coding RNAs in arabidopsis. Journal of Experimental Botany, 70(19), 5089–5600. https://doi.org/10.1093/jxb/erz273
Sun,, S., & Zhang,, H. (2015). Large‐scale measurement of absolute protein glycosylation stoichiometry. Analytical Chemistry, 87(13), 6479–6482. https://doi.org/10.1021/acs.analchem.5b01679
Svidritskiy,, E., Madireddy,, R., & Korostelev,, A. A. (2016). Structural basis for translation termination on a pseudouridylated stop codon. Journal of Molecular Biology, 428(10 Pt B), 2228–2236. https://doi.org/10.1016/j.jmb.2016.04.018
Tardu,, M., Jones,, J. D., Kennedy,, R. T., Lin,, Q., & Koutmou,, K. S. (2019). Identification and quantification of modified nucleosides in Saccharomyces cerevisiae mRNAs. ACS Chemical Biology, 14(7), 1403–1409. https://doi.org/10.1021/acschembio.9b00369
Trixl,, L., & Lusser,, A. (2019). The dynamic RNA modification 5‐methylcytosine and its emerging role as an epitranscriptomic mark. WIREs RNA, 10(1), e1510. https://doi.org/10.1002/wrna.1510
Tsai,, C. F., Wang,, Y. T., Yen,, H. Y., Tsou,, C. C., Ku,, W. C., Lin,, P. Y., … Chen,, Y. J. (2015). Large‐scale determination of absolute phosphorylation stoichiometries in human cells by motif‐targeting quantitative proteomics. Nature Communications, 6, 6622. https://doi.org/10.1038/ncomms7622
Ule,, J., Jensen,, K. B., Ruggiu,, M., Mele,, A., Ule,, A., & Darnell,, R. B. (2003). CLIP identifies Nova‐regulated RNA networks in the brain. Science, 302(5648), 1212–1215. https://doi.org/10.1126/science.1090095
Vaidyanathan,, P. P., AlSadhan,, I., Merriman,, D. K., Al‐Hashimi,, H. M., & Herschlag,, D. (2017). Pseudouridine and N(6)‐methyladenosine modifications weaken PUF protein/RNA interactions. RNA, 23(5), 611–618. https://doi.org/10.1261/rna.060053.116
Walkley,, C. R., & Li,, J. B. (2017). Rewriting the transcriptome: Adenosine‐to‐inosine RNA editing by ADARs. Genome Biology, 18(1), 205. https://doi.org/10.1186/s13059-017-1347-3
Wang,, H., Hu,, X., Huang,, M., Liu,, J., Gu,, Y., Ma,, L., … Cao,, X. (2019). Mettl3‐mediated mRNA m(6)A methylation promotes dendritic cell activation. Nature Communications, 10(1), 1898. https://doi.org/10.1038/s41467-019-09903-6
Wang,, R., Luo,, Z., He,, K., Delaney,, M. O., Chen,, D., & Sheng,, J. (2016). Base pairing and structural insights into the 5‐formylcytosine in RNA duplex. Nucleic Acids Research, 44(10), 4968–4977. https://doi.org/10.1093/nar/gkw235
Wang,, X., Lu,, Z., Gomez,, A., Hon,, G. C., Yue,, Y., Han,, D., … He,, C. (2014). N6‐methyladenosine‐dependent regulation of messenger RNA stability. Nature, 505(7481), 117–120. https://doi.org/10.1038/nature12730
Wang,, R., Zhao,, B. S., Roundtree,, I. A., Zhike,, L., Dali,, H., Honghui,, M., … He,, C. (2015). N6‐methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 161(6), 1388–1399. https://doi:10.1016/j.cell.2015.05.014
Wang,, Y., Zheng,, Y., & Beal,, P. A. (2017). Adenosine deaminases that act on RNA (ADARs). Enzyme, 41, 215–268. https://doi.org/10.1016/bs.enz.2017.03.006
Wei,, J., Liu,, F., Lu,, Z., Fei,, Q., Ai,, Y., He,, P. C., … He,, C. (2018). Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Molecular Cell, 71(6), 973–985 e975. https://doi.org/10.1016/j.molcel.2018.08.011
Weinert,, B. T., Iesmantavicius,, V., Moustafa,, T., Scholz,, C., Wagner,, S. A., Magnes,, C., … Choudhary,, C. (2015). Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Molecular Systems Biology, 11(10), 833. https://doi.org/10.15252/msb.156513
Wu,, C. C., Zinshteyn,, B., Wehner,, K. A., & Green,, R. (2019). High‐resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Molecular Cell, 73(5), 959–970 e955. https://doi.org/10.1016/j.molcel.2018.12.009
Wu,, R., Haas,, W., Dephoure,, N., Huttlin,, E. L., Zhai,, B., Sowa,, M. E., & Gygi,, S. P. (2011). A large‐scale method to measure absolute protein phosphorylation stoichiometries. Nature Methods, 8(8), 677–683. https://doi.org/10.1038/nmeth.1636
Wu,, R., Li,, A., Sun,, B., Sun,, J. G., Zhang,, J., Zhang,, T., … Yuan,, Z. (2019). A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Research, 29(1), 23–41. https://doi.org/10.1038/s41422-018-0113-8
Xiao,, W., Adhikari,, S., Dahal,, U., Chen,, Y. S., Hao,, Y. J., Sun,, B. F., … Yang,, Y. G. (2016). Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Molecular Cell, 61(4), 507–519. https://doi.org/10.1016/j.molcel.2016.01.012
Xu,, L., Liu,, X., Sheng,, N., Oo,, K. S., Liang,, J., Chionh,, Y. H., … Fu,, X. Y. (2017). Three distinct 3‐methylcytidine (m(3)C) methyltransferases modify tRNA and mRNA in mice and humans. The Journal of Biological Chemistry, 292(35), 14695–14703. https://doi.org/10.1074/jbc.M117.798298
Yang,, X., Yang,, Y., Sun,, B. F., Chen,, Y. S., Xu,, J. W., Lai,, W. Y., … Yang,, Y. G. (2017). 5‐methylcytosine promotes mRNA export ‐ NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Research, 27(5), 606–625. https://doi.org/10.1038/cr.2017.55
Yoon,, K. J., Ringeling,, F. R., Vissers,, C., Jacob,, F., Pokrass,, M., Jimenez‐Cyrus,, D., … Song,, H. (2017). Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell, 171(4), 877–889 e817. https://doi.org/10.1016/j.cell.2017.09.003
You,, C., Dai,, X., & Wang,, Y. (2017). Position‐dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. Nucleic Acids Research, 45(15), 9059–9067. https://doi.org/10.1093/nar/gkx515
Yuan,, F., Bi,, Y., Siejka‐Zielinska,, P., Zhou,, Y. L., Zhang,, X. X., & Song,, C. X. (2019). Bisulfite‐free and base‐resolution analysis of 5‐methylcytidine and 5‐hydroxymethylcytidine in RNA with peroxotungstate. Chemical Communications, 55(16), 2328–2331. https://doi.org/10.1039/C9CC00274J
Zaccara,, S., Ries,, R. J., & Jaffrey,, S. R. (2019). Reading, writing and erasing mRNA methylation. Nature Reviews. Molecular Cell Biology, 20(10), 608–624. https://doi.org/10.1038/s41580-019-0168-5
Zhang,, C., Samanta,, D., Lu,, H., Bullen,, J. W., Zhang,, H., Chen,, I., … Semenza,, G. L. (2016). Hypoxia induces the breast cancer stem cell phenotype by HIF‐dependent and ALKBH5‐mediated m(6)A‐demethylation of NANOG mRNA. Proceedings of the National Academy of Sciences of the United States of America, 113(14), E2047–E2056. https://doi.org/10.1073/pnas.1602883113
Zhang,, L. S., Liu,, C., Ma,, H., Dai,, Q., Sun,, H. L., Luo,, G., … He,, C. (2019). Transcriptome wide mapping of internal N(7)‐methylguanosine methylome in mammalian mRNA. Molecular Cell, 74(6), 1304–1316 e1308. https://doi.org/10.1016/j.molcel.2019.03.036
Zhang,, X., Wei,, L. H., Wang,, Y., Xiao,, Y., Liu,, J., Zhang,, W., … Jia,, G. (2019). Structural insights into FTO`s catalytic mechanism for the demethylation of multiple RNA substrates. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 2919–2924. https://doi.org/10.1073/pnas.1820574116
Zhao,, X., Yang,, Y., Sun,, B. F., Shi,, Y., Yang,, X., Xiao,, W., … Yang,, Y. G. (2014). FTO‐dependent demethylation of N6‐methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 24(12), 1403–1419. https://doi.org/10.1038/cr.2014.151
Zhao,, Y., Karijolich,, J., Glaunsinger,, B., & Zhou,, Q. (2016). Pseudouridylation of 7SK snRNA promotes 7SK snRNP formation to suppress HIV‐1 transcription and escape from latency. EMBO Reports, 17(10), 1441–1451. https://doi.org/10.15252/embr.201642682
Zheng,, G., Dahl,, J. A., Niu,, Y., Fedorcsak,, P., Huang,, C. M., Li,, C. J., … He,, C. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 49(1), 18–29. https://doi.org/10.1016/j.molcel.2012.10.015
Zhong,, X., Yu,, J., Frazier,, K., Weng,, X., Li,, Y., Cham,, C. M., … Leone,, V. (2018). Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Reports, 25(7), 1816–1828 e1814. https://doi.org/10.1016/j.celrep.2018.10.068
Zhou,, H., Kimsey,, I. J., Nikolova,, E. N., Sathyamoorthy,, B., Grazioli,, G., McSally,, J., … Al‐Hashimi,, H. M. (2016). m(1)A and m(1)G disrupt A‐RNA structure through the intrinsic instability of Hoogsteen base pairs. Nature Structural %26 Molecular Biology, 23(9), 803–810. https://doi.org/10.1038/nsmb.3270
Zhou,, J., Wan,, J., Gao,, X., Zhang,, X., Jaffrey,, S. R., & Qian,, S. B. (2015). Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature, 526(7547), 591–594.
Zhu,, Y., Zhou,, G., Yu,, X., Xu,, Q., Wang,, K., Xie,, D., … Wang,, L. (2017). LC‐MS‐MS quantitative analysis reveals the association between FTO and DNA methylation. PLoS One, 12(4), e0175849. https://doi.org/10.1371/journal.pone.0175849
Zielinska,, D. F., Gnad,, F., Wisniewski,, J. R., & Mann,, M. (2010). Precision mapping of an in vivo N‐glycoproteome reveals rigid topological and sequence constraints. Cell, 141(5), 897–907. https://doi.org/10.1016/j.cell.2010.04.012