Ahmad,, Z., Magyar,, Z., Bogre,, L., & Papdi,, C. (2019). Cell cycle control by the target of rapamycin signalling pathway in plants. Journal of Experimental Botany, 70, 2275–2284.
Ahn,, C. S., Ahn,, H. K., & Pai,, H. S. (2015). Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. Journal of Experimental Botany, 66, 827–840.
Ahn,, C. S., Han,, J. A., Lee,, H. S., Lee,, S., & Pai,, H. S. (2011). The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell, 23, 185–209.
Ahn,, C. S., Lee,, D. H., & Pai,, H. S. (2019). Characterization of Maf1 in Arabidopsis: Function under stress conditions and regulation by the TOR signaling pathway. Planta, 249, 527–542.
Aibara,, I., Hirai,, T., Kasai,, K., Takano,, J., Onouchi,, H., Naito,, S., … Miwa,, K. (2018). Boron‐dependent translational suppression of the borate exporter BOR1 contributes to the avoidance of boron toxicity. Plant Physiology, 177, 759–774.
Alatorre‐Cobos,, F., Cruz‐Ramirez,, A., Hayden,, C. A., Perez‐Torres,, C. A., Chauvin,, A. L., Ibarra‐Laclette,, E., … Herrera‐Estrella,, L. (2012). Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. Journal of Experimental Botany, 63, 5203–5221.
Albar,, L., Bangratz‐Reyser,, M., Hebrard,, E., Ndjiondjop,, M. N., Jones,, M., & Ghesquiere,, A. (2006). Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. The Plant Journal, 47, 417–426.
Alves,, C. S., Vicentini,, R., Duarte,, G. T., Pinoti,, V. F., Vincentz,, M., & Nogueira,, F. T. (2017). Genome‐wide identification and characterization of tRNA‐derived RNA fragments in land plants. Plant Molecular Biology, 93, 35–48.
Anderson,, P., Kedersha,, N., & Ivanov,, P. (2015). Stress granules, P‐bodies and cancer. Biochimica et Biophysica Acta, 1849, 861–870.
Anderson,, S. J., Kramer,, M. C., Gosai,, S. J., Yu,, X., Vandivier,, L. E., Nelson,, A. D. L., … Gregory,, B. D. (2018). N(6)‐methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis. Cell Reports, 25, 1146–1157.
Arimoto‐Matsuzaki,, K., Saito,, H., & Takekawa,, M. (2016). TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress‐induced apoptosis. Nature Communications, 7, 10252.
Armache,, J. P., Jarasch,, A., Anger,, A. M., Villa,, E., Becker,, T., Bhushan,, S., … Beckmann,, R. (2010). Localization of eukaryote‐specific ribosomal proteins in a 5.5‐A cryo‐EM map of the 80S eukaryotic ribosome. Proceedings of the National Academy of Sciences of the United States of America, 107, 19754–19759.
Aubry,, S., Smith‐Unna,, R. D., Boursnell,, C. M., Kopriva,, S., & Hibberd,, J. M. (2014). Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. The Plant Journal, 78, 659–673.
Baerenfaller,, K., Massonnet,, C., Walsh,, S., Baginsky,, S., Buhlmann,, P., Hennig,, L., … Gruissem,, W. (2012). Systems‐based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Molecular Systems Biology, 8, 606.
Bai,, B., Peviani,, A., van der Horst,, S., Gamm,, M., Snel,, B., Bentsink,, L., & Hanson,, J. (2017). Extensive translational regulation during seed germination revealed by polysomal profiling. The New Phytologist, 214, 233–244.
Bai,, B., van der Horst,, S., Cordewener,, J., America,, T., Hanson,, J., & Bentsink,, L. (2020). Seed stored mRNAs that are specifically associated to monosome are translationally regulated during germination. Plant Physiology, 182, 378–392.
Ban,, N., Beckmann,, R., Cate,, J. H., Dinman,, J. D., Dragon,, F., Ellis,, S. R., … Yusupov,, M. (2014). A new system for naming ribosomal proteins. Current Opinion in Structural Biology, 24, 165–169.
Barrada,, A., Djendli,, M., Desnos,, T., Mercier,, R., Robaglia,, C., Montane,, M. H., & Menand,, B. (2019). A TOR‐YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis. Development, 146, dev171298.
Basbouss‐Serhal,, I., Soubigou‐Taconnat,, L., Bailly,, C., & Leymarie,, J. (2015). Germination potential of dormant and nondormant Arabidopsis seeds is driven by distinct recruitment of messenger RNAs to polysomes. Plant Physiology, 168, 1049–1065.
Bastet,, A., Lederer,, B., Giovinazzo,, N., Arnoux,, X., German‐Retana,, S., Reinbold,, C., … Gallois,, J. L. (2018). Trans‐species synthetic gene design allows resistance pyramiding and broad‐spectrum engineering of virus resistance in plants. Plant Biotechnology Journal, 16, 1569–1581.
Bastet,, A., Zafirov,, D., Giovinazzo,, N., Guyon‐Debast,, A., Nogue,, F., Robaglia,, C., & Gallois,, J. L. (2019). Mimicking natural polymorphism in eIF4E by CRISPR‐Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal, 17, 1736–1750.
Baute,, J., Herman,, D., Coppens,, F., De Block,, J., Slabbinck,, B., Dell`Acqua,, M., … Inze,, D. (2016). Combined large‐scale phenotyping and transcriptomics in maize reveals a robust growth regulatory network. Plant Physiology, 170, 1848–1867.
Bazin,, J., Baerenfaller,, K., Gosai,, S. J., Gregory,, B. D., Crespi,, M., & Bailey‐Serres,, J. (2017). Global analysis of ribosome‐associated noncoding RNAs unveils new modes of translational regulation. Proceedings of the National Academy of Sciences of the United States of America, 114, E10018–E10027.
Bi,, C., Ma,, Y., Jiang,, S. C., Mei,, C., Wang,, X. F., & Zhang,, D. P. (2019). Arabidopsis translation initiation factors eIFiso4G1/2 link repression of mRNA cap‐binding complex eIFiso4F assembly with RNA‐binding protein SOAR1‐mediated ABA signaling. The New Phytologist, 223, 1388–1406.
Boex‐Fontvieille,, E., Daventure,, M., Jossier,, M., Zivy,, M., Hodges,, M., & Tcherkez,, G. (2013). Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation. PLoS One, 8, e70692.
Branco‐Price,, C., Kaiser,, K. A., Jang,, C. J., Larive,, C. K., & Bailey‐Serres,, J. (2008). Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. The Plant Journal, 56, 743–755.
Branco‐Price,, C., Kawaguchi,, R., Ferreira,, R. B., & Bailey‐Serres,, J. (2005). Genome‐wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Annals of Botany, 96, 647–660.
Brodersen,, P., Sakvarelidze‐Achard,, L., Bruun‐Rasmussen,, M., Dunoyer,, P., Yamamoto,, Y. Y., Sieburth,, L., & Voinnet,, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320, 1185–1190.
Brosnan,, C. A., Sarazin,, A., Lim,, P., Bologna,, N. G., Hirsch‐Hoffmann,, M., & Voinnet,, O. (2019). Genome‐scale, single‐cell‐type resolution of microRNA activities within a whole plant organ. The EMBO Journal, 38, e100754.
Browning,, K. S., & Bailey‐Serres,, J. (2015). Mechanism of cytoplasmic mRNA translation. Arabidopsis Book, 13, e0176.
Bruns,, A. N., Li,, S., Mohannath,, G., & Bisaro,, D. M. (2019). Phosphorylation of Arabidopsis eIF4E and eIFiso4E by SnRK1 inhibits translation. The FEBS Journal, 286, 3778–3796.
Brustolini,, O. J. B., Machado,, J. P. B., Condori‐Apfata,, J. A., Coco,, D., Deguchi,, M., Loriato,, V. A. P., … Fontes,, E. P. B. (2015). Sustained NIK‐mediated antiviral signalling confers broad‐spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnology Journal, 13, 1300–1311.
Bush,, M. S., Pierrat,, O., Nibau,, C., Mikitova,, V., Zheng,, T., Corke,, F. M., & Vlachonasios,, K. (2016). eIF4A RNA helicase associates with cyclin‐dependent protein kinase A in proliferating cells and is modulated by phosphorylation. Plant Physiology, 172, 128–140.
Byrne,, E. H., Prosser,, I., Muttucumaru,, N., Curtis,, T. Y., Wingler,, A., Powers,, S., & Halford,, N. G. (2012). Overexpression of GCN2‐type protein kinase in wheat has profound effects on free amino acid concentration and gene expression. Plant Biotechnology Journal, 10, 328–340.
Caldana,, C., Martins,, M. C. M., Mubeen,, U., & Urrea‐Castellanos,, R. (2019). The magic `hammer` of TOR: The multiple faces of a single pathway in the metabolic regulation of plant growth and development. Journal of Experimental Botany, 70, 2217–2225.
Callot,, C., & Gallois,, J. L. (2014). Pyramiding resistances based on translation initiation factors in Arabidopsis is impaired by male gametophyte lethality. Plant Signaling %26 Behavior, 9, e27940.
Casanova‐Saez,, R., Candela,, H., & Micol,, J. L. (2014). Combined haploinsufficiency and purifying selection drive retention of RPL36a paralogs in Arabidopsis. Scientific Reports, 4, 4122.
Chandrasekaran,, J., Brumin,, M., Wolf,, D., Leibman,, D., Klap,, C., Pearlsman,, M., … Gal‐On,, A. (2016). Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17, 1140–1153.
Chantarachot,, T., & Bailey‐Serres,, J. (2018). Polysomes, stress granules, and processing bodies: A dynamic triumvirate controlling cytoplasmic mRNA fate and function. Plant Physiology, 176, 254–269.
Chen,, G. H., Liu,, M. J., Xiong,, Y., Sheen,, J., & Wu,, S. H. (2018). TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America, 115, 12823–12828.
Chen,, K., Guo,, T., Li,, X. M., Zhang,, Y. M., Yang,, Y. B., Ye,, W. W., … Lin,, H. X. (2019). Translational regulation of plant response to high temperature by a dual‐function tRNA(His) guanylyltransferase in rice. Molecular Plant, 12, 1123–1142.
Cho,, H. Y., Lu,, M. J., & Shih,, M. C. (2019). The SnRK1‐eIFiso4G1 signaling relay regulates the translation of specific mRNAs in Arabidopsis under submergence. The New Phytologist, 222, 366–381.
Cho,, H. Y., Wen,, T. N., Wang,, Y. T., & Shih,, M. C. (2016). Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. Journal of Experimental Botany, 67, 2745–2760.
Choudhary,, M. K., Nomura,, Y., Wang,, L., Nakagami,, H., & Somers,, D. E. (2015). Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic, and signaling pathways. Molecular %26 Cellular Proteomics, 14, 2243–2260.
Cognat,, V., Morelle,, G., Megel,, C., Lalande,, S., Molinier,, J., Vincent,, T., … Marechal‐Drouard,, L. (2017). The nuclear and organellar tRNA‐derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Research, 45, 3460–3472.
Collum,, T. D., & Culver,, J. N. (2017). Tobacco mosaic virus infection disproportionately impacts phloem associated translatomes in Arabidopsis thaliana and Nicotiana benthamiana. Virology, 510, 76–89.
Collum,, T. D., Stone,, A. L., Sherman,, D. J., Rogers,, E. E., Dardick,, C., & Culver,, J. N. (2019). Translatome profiling of plum pox virus‐infected leaves in European plum reveals temporal and spatial coordination of defense responses in phloem tissues. Molecular Plant‐Microbe Interactions, 33, 66–77.
Coutinho de Oliveira,, L., Volpon,, L., Rahardjo,, A. K., Osborne,, M. J., Culjkovic‐Kraljacic,, B., Trahan,, C., … Borden,, K. L. B. (2019). Structural studies of the eIF4E‐VPg complex reveal a direct competition for capped RNA: Implications for translation. Proceedings of the National Academy of Sciences of the United States of America, 116, 24056–24065.
Creff,, A., Sormani,, R., & Desnos,, T. (2010). The two Arabidopsis RPS6 genes, encoding for cytoplasmic ribosomal proteins S6, are functionally equivalent. Plant Molecular Biology, 73, 533–546.
Crisp,, P. A., Ganguly,, D. R., Smith,, A. B., Murray,, K. D., Estavillo,, G. M., Searle,, I., … Pogson,, B. J. (2017). Rapid recovery gene downregulation during excess‐light stress and recovery in Arabidopsis. Plant Cell, 29, 1836–1863.
Cui,, Y., Rao,, S., Chang,, B., Wang,, X., Zhang,, K., Hou,, X., … Huang,, T. (2015). AtLa1 protein initiates IRES‐dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards. Plant, Cell %26 Environment, 38, 2098–2114.
David,, R., Burgess,, A., Parker,, B., Li,, J., Pulsford,, K., Sibbritt,, T., … Searle,, I. R. (2017). Transcriptome‐wide mapping of RNA 5‐methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell, 29, 445–460.
Dennis,, M. D., Person,, M. D., & Browning,, K. S. (2009). Phosphorylation of plant translation initiation factors by CK2 enhances the in vitro interaction of multifactor complex components. The Journal of Biological Chemistry, 284, 20615–20628.
Deprost,, D., Yao,, L., Sormani,, R., Moreau,, M., Leterreux,, G., Nicolai,, M., … Meyer,, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports, 8, 864–870.
Desai,, V. P., Frank,, F., Lee,, A., Righini,, M., Lancaster,, L., Noller,, H. F., … Bustamante,, C. (2019). Co‐temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs. Molecular Cell, 75, 1007–1019.
Devis,, D., Firth,, S. M., Liang,, Z., & Byrne,, M. E. (2015). Dosage sensitivity of RPL9 and concerted evolution of ribosomal protein genes in plants. Frontiers in Plant Science, 6, 1102.
Di,, R., & Tumer,, N. E. (2015). Pokeweed antiviral protein: Its cytotoxicity mechanism and applications in plant disease resistance. Toxins (Basel), 7, 755–772.
Ding,, Y., Tang,, Y., Kwok,, C. K., Zhang,, Y., Bevilacqua,, P. C., & Assmann,, S. M. (2014). In vivo genome‐wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505, 696–700.
Dinkova,, T. D., Keiper,, B. D., Korneeva,, N. L., Aamodt,, E. J., & Rhoads,, R. E. (2005). Translation of a small subset of Caenorhabditis elegans mRNAs is dependent on a specific eukaryotic translation initiation factor 4E isoform. Molecular and Cellular Biology, 25, 100–113.
Dobrenel,, T., Caldana,, C., Hanson,, J., Robaglia,, C., Vincentz,, M., Veit,, B., & Meyer,, C. (2016). TOR signaling and nutrient sensing. Annual Review of Plant Biology, 67, 261–285.
Dobrenel,, T., Mancera‐Martinez,, E., Forzani,, C., Azzopardi,, M., Davanture,, M., Moreau,, M., … Meyer,, C. (2016). The Arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6. Frontiers in Plant Science, 7, 1611.
Domashevskiy,, A. V., Williams,, S., Kluge,, C., & Cheng,, S. Y. (2017). Plant translation initiation complex eIFiso4F directs pokeweed antiviral protein to selectively depurinate uncapped tobacco etch virus RNA. Biochemistry, 56, 5980–5990.
Dong,, J., Chen,, H., Deng,, X. W., Irish,, V. F., & Wei,, N. (2020). Phytochrome B induces intron retention and translational inhibition of PHYTOCHROME‐INTERACTING FACTOR 3. Plant Physiology, 182, 159–166.
Dong,, J., Qiu,, H., Garcia‐Barrio,, M., Anderson,, J., & Hinnebusch,, A. G. (2000). Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA‐binding domain. Molecular Cell, 6, 269–279.
Dong,, Y., Silbermann,, M., Speiser,, A., Forieri,, I., Linster,, E., Poschet,, G., … Wirtz,, M. (2017). Sulfur availability regulates plant growth via glucose‐TOR signaling. Nature Communications, 8, 1174.
Du,, Z., Alekhina,, O. M., Vassilenko,, K. S., & Simon,, A. E. (2017). Concerted action of two 3` cap‐independent translation enhancers increases the competitive strength of translated viral genomes. Nucleic Acids Research, 45, 9558–9572.
Ebina,, I., Takemoto‐Tsutsumi,, M., Watanabe,, S., Koyama,, H., Endo,, Y., Kimata,, K., … Onouchi,, H. (2015). Identification of novel Arabidopsis thaliana upstream open reading frames that control expression of the main coding sequences in a peptide sequence‐dependent manner. Nucleic Acids Research, 43, 1562–1576.
Elakhdar,, A., Ushijima,, T., Fukuda,, M., Yamashiro,, N., Kawagoe,, Y., & Kumamaru,, T. (2019). Eukaryotic peptide chain release factor 1 participates in translation termination of specific cysteine‐poor prolamines in rice endosperm. Plant Science, 281, 223–231.
Emara,, M. M., Fujimura,, K., Sciaranghella,, D., Ivanova,, V., Ivanov,, P., & Anderson,, P. (2012). Hydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylation. Biochemical and Biophysical Research Communications, 423, 763–769.
Enganti,, R., Cho,, S. K., Toperzer,, J. D., Urquidi‐Camacho,, R. A., Cakir,, O. S., Ray,, A. P., … von Arnim,, A. G. (2018). Phosphorylation of ribosomal protein RPS6 integrates light signals and circadian clock signals. Frontiers in Plant Science, 8, 2210.
Farny,, N. G., Kedersha,, N. L., & Silver,, P. A. (2009). Metazoan stress granule assembly is mediated by P‐eIF2alpha‐dependent and ‐independent mechanisms. RNA, 15, 1814–1821.
Faus,, I., Ninoles,, R., Kesari,, V., Llabata,, P., Tam,, E., Nebauer,, S. G., … Gadea,, J. (2018). Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2alpha phosphorylation. Journal of Plant Physiology, 224–225, 173–182.
Faus,, I., Zabalza,, A., Santiago,, J., Nebauer,, S. G., Royuela,, M., Serrano,, R., & Gadea,, J. (2015). Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis. BMC Plant Biology, 15, 14.
Ferreyra,, M. L., Biarc,, J., Burlingame,, A. L., & Casati,, P. (2010). Arabidopsis L10 ribosomal proteins in UV‐B responses. Plant Signaling %26 Behavior, 5, 1222–1225.
Figueroa,, C. M., Feil,, R., Ishihara,, H., Watanabe,, M., Kolling,, K., Krause,, U., … Lunn,, J. E. (2016). Trehalose 6‐phosphate coordinates organic and amino acid metabolism with carbon availability. The Plant Journal, 85, 410–423.
Figueroa,, C. M., & Lunn,, J. E. (2016). A tale of two sugars: Trehalose 6‐phosphate and sucrose. Plant Physiology, 172, 7–27.
Fila,, J., Radau,, S., Matros,, A., Hartmann,, A., Scholz,, U., Fecikova,, J., … Honys,, D. (2016). Phosphoproteomics profiling of tobacco mature pollen and pollen activated in vitro. Molecular %26 Cellular Proteomics, 15, 1338–1350.
Firth,, A. E., Wills,, N. M., Gesteland,, R. F., & Atkins,, J. F. (2011). Stimulation of stop codon readthrough: Frequent presence of an extended 3` RNA structural element. Nucleic Acids Research, 39, 6679–6691.
Flis,, A., Mengin,, V., Ivakov,, A. A., Mugford,, S. T., Hubberten,, H. M., Encke,, B., … Stitt,, M. (2019). Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves. Plant, Cell %26 Environment, 42, 549–573.
Forzani,, C., Duarte,, G. T., Van Leene,, J., Clement,, G., Huguet,, S., Paysant‐Le‐Roux,, C., … Meyer,, C. (2019). Mutations of the AtYAK1 kinase suppress TOR deficiency in Arabidopsis. Cell Reports, 27, 3696–3708.e5.
Forzani,, C., & Meyer,, C. (2019). Exploring the nine realms of TOR. Nature Plants, 5, 251–252.
Galland,, M., He,, D., Lounifi,, I., Arc,, E., Clement,, G., Balzergue,, S., … Rajjou,, L. (2017). An integrated "multi‐omics" comparison of embryo and endosperm tissue‐specific features and their impact on rice seed quality. Frontiers in Plant Science, 8, 1984.
Gallie,, D. R. (2016). Eukaryotic initiation factor eIFiso4G1 and eIFiso4G2 are isoforms exhibiting distinct functional differences in supporting translation in Arabidopsis. The Journal of Biological Chemistry, 291, 1501–1513.
Gallie,, D. R. (2017). Class II members of the poly(A) binding protein family exhibit distinct functions during Arabidopsis growth and development. Translation (Austin), 5, e1295129.
Gallie,, D. R. (2018). Plant growth and fertility requires functional interactions between specific PABP and eIF4G gene family members. PLoS One, 13, e0191474.
Gallie,, D. R., Le,, H., Caldwell,, C., Tanguay,, R. L., Hoang,, N. X., & Browning,, K. S. (1997). The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. Journal of Biological Chemistry, 272, 1046–1053.
Gallois,, J. L., Charron,, C., Sanchez,, F., Pagny,, G., Houvenaghel,, M. C., Moretti,, A., … German‐Retana,, S. (2010). Single amino acid changes in the turnip mosaic virus viral genome‐linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. The Journal of General Virology, 91, 288–293.
Gamm,, M., Peviani,, A., Honsel,, A., Snel,, B., Smeekens,, S., & Hanson,, J. (2014). Increased sucrose levels mediate selective mRNA translation in Arabidopsis. BMC Plant Biology, 14, 306.
Gao,, F., Alekhina,, O. M., Vassilenko,, K. S., & Simon,, A. E. (2018). Unusual dicistronic expression from closely spaced initiation codons in an umbravirus subgenomic RNA. Nucleic Acids Research, 46, 11726–11742.
Gao,, F., Kasprzak,, W., Stupina,, V. A., Shapiro,, B. A., & Simon,, A. E. (2012). A ribosome‐binding, 3` translational enhancer has a T‐shaped structure and engages in a long‐distance RNA‐RNA interaction. Journal of Virology, 86, 9828–9842.
Garcia‐Barrio,, M., Dong,, J., Ufano,, S., & Hinnebusch,, A. G. (2000). Association of GCN1‐GCN20 regulatory complex with the N‐terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. The EMBO Journal, 19, 1887–1899.
Garriz,, A., Qiu,, H., Dey,, M., Seo,, E. J., Dever,, T. E., & Hinnebusch,, A. G. (2009). A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Molecular and Cellular Biology, 29, 1592–1607.
Gauffier,, C., Lebaron,, C., Moretti,, A., Constant,, C., Moquet,, F., Bonnet,, G., … Gallois,, J. L. (2016). A TILLING approach to generate broad‐spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. The Plant Journal, 85, 717–729.
Gibon,, Y., Pyl,, E. T., Sulpice,, R., Lunn,, J. E., Hohne,, M., Gunther,, M., & Stitt,, M. (2009). Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant, Cell %26 Environment, 32, 859–874.
Glenn,, W. S., Stone,, S. E., Ho,, S. H., Sweredoski,, M. J., Moradian,, A., Hess,, S., … Tirrell,, D. A. (2017). Bioorthogonal noncanonical amino acid tagging (BONCAT) enables time‐resolved analysis of protein synthesis in native plant tissue. Plant Physiology, 173, 1543–1553.
Goldenkova‐Pavlova,, I. V., Pavlenko,, O. S., Mustafaev,, O. N., Deyneko,, I. V., Kabardaeva,, K. V., & Tyurin,, A. A. (2018). Computational and experimental tools to monitor the changes in translation efficiency of plant mRNA on a genome‐wide scale: Advantages, limitations, and solutions. International Journal of Molecular Sciences, 20, 33.
Gomez,, M. A., Lin,, Z. D., Moll,, T., Chauhan,, R. D., Hayden,, L., Renninger,, K., … Bart,, R. S. (2019). Simultaneous CRISPR/Cas9‐mediated editing of cassava eIF4E isoforms nCBP‐1 and nCBP‐2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal, 17, 421–434.
Griffin,, B. D., & Bass,, H. W. (2018). Review: Plant G‐quadruplex (G4) motifs in DNA and RNA; abundant, intriguing sequences of unknown function. Plant Science, 269, 143–147.
Gunisova,, S., Hronova,, V., Mohammad,, M. P., Hinnebusch,, A. G., & Valasek,, L. S. (2018). Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiology Reviews, 42, 165–192.
Guo,, J., Jin,, Z., Yang,, X., Li,, J. F., & Chen,, J. G. (2011). Eukaryotic initiation factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation. Plant Signaling %26 Behavior, 6, 766–771.
Gupta,, P., Rangan,, L., Ramesh,, T. V., & Gupta,, M. (2016). Comparative analysis of contextual bias around the translation initiation sites in plant genomes. Journal of Theoretical Biology, 404, 303–311.
Gutierrez,, E., Shin,, B. S., Woolstenhulme,, C. J., Kim,, J. R., Saini,, P., Buskirk,, A. R., & Dever,, T. E. (2013). eIF5A promotes translation of polyproline motifs. Molecular Cell, 51, 35–45.
Gutierrez‐Beltran,, E., Moschou,, P. N., Smertenko,, A. P., & Bozhkov,, P. V. (2015). Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis. Plant Cell, 27, 926–943.
Hafidh,, S., Potesil,, D., Muller,, K., Fila,, J., Michailidis,, C., Herrmannova,, A., … Honys,, D. (2018). Dynamics of the pollen sequestrome defined by subcellular coupled omics. Plant Physiology, 178, 258–282.
Hamada,, T., Yako,, M., Minegishi,, M., Sato,, M., Kamei,, Y., Yanagawa,, Y., … Hara‐Nishimura,, I. (2018). Stress granule formation is induced by a threshold temperature rather than a temperature difference in Arabidopsis. Journal of Cell Science, 131, jcs216051.
Hanfrey,, C., Elliott,, K. A., Franceschetti,, M., Mayer,, M. J., Illingworth,, C., & Michael,, A. J. (2005). A dual upstream open reading frame‐based autoregulatory circuit controlling polyamine‐responsive translation. The Journal of Biological Chemistry, 280, 39229–39237.
Hanson,, J., Hanssen,, M., Wiese,, A., Hendriks,, M. M., & Smeekens,, S. (2008). The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. The Plant Journal, 53, 935–949.
Hayashi,, N., Sasaki,, S., Takahashi,, H., Yamashita,, Y., Naito,, S., & Onouchi,, H. (2017). Identification of Arabidopsis thaliana upstream open reading frames encoding peptide sequences that cause ribosomal arrest. Nucleic Acids Research, 45, 8844–8858.
Horiguchi,, G., Van Lijsebettens,, M., Candela,, H., Micol,, J. L., & Tsukaya,, H. (2012). Ribosomes and translation in plant developmental control. Plant Science, 191–192, 24–34.
Hou,, C. Y., Lee,, W. C., Chou,, H. C., Chen,, A. P., Chou,, S. J., & Chen,, H. M. (2016). Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants. Plant Cell, 28, 2398–2416.
Hsu,, P. Y., Calviello,, L., Wu,, H. L., Li,, F. W., Rothfels,, C. J., Ohler,, U., & Benfey,, P. N. (2016). Super‐resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 113, E7126–E7135.
Hummel,, M., Cordewener,, J. H., de Groot,, J. C., Smeekens,, S., America,, A. H., & Hanson,, J. (2012). Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics. Proteomics, 12, 1024–1038.
Hummel,, M., Dobrenel,, T., Cordewener,, J. J., Davanture,, M., Meyer,, C., Smeekens,, S. J., … Hanson,, J. (2015). Proteomic LC‐MS analysis of Arabidopsis cytosolic ribosomes: Identification of ribosomal protein paralogs and re‐annotation of the ribosomal protein genes. Journal of Proteomics, 128, 436–449.
Hutchins,, A. P., Roberts,, G. R., Lloyd,, C. W., & Doonan,, J. H. (2004). In vivo interactionbetween CDKA and eIF4A: a possible mechanism linking translation and cell proliferation. FEBS Letters, 556, 91–94.
Ibiza,, V. P., Canizares,, J., & Nuez,, F. (2010). EcoTILLING in Capsicum species: Searching for new virus resistances. BMC Genomics, 11, 631.
Inglis,, A. J., Masson,, G. R., Shao,, S., Perisic,, O., McLaughlin,, S. H., Hegde,, R. S., & Williams,, R. L. (2019). Activation of GCN2 by the ribosomal P‐stalk. Proceedings of the National Academy of Sciences of the United States of America, 116, 4946–4954.
Ischebeck,, T., Valledor,, L., Lyon,, D., Gingl,, S., Nagler,, M., Meijon,, M., … Weckwerth,, W. (2014). Comprehensive cell‐specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Molecular %26 Cellular Proteomics, 13, 295–310.
Ishihara,, H., Moraes,, T. A., Pyl,, E. T., Schulze,, W. X., Obata,, T., Scheffel,, A., … Stitt,, M. (2017). Growth rate correlates negatively with protein turnover in Arabidopsis accessions. The Plant Journal, 91, 416–429.
Ishihara,, H., Obata,, T., Sulpice,, R., Fernie,, A. R., & Stitt,, M. (2015). Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. Plant Physiology, 168, 74–93.
Ishitsuka,, S., Yamamoto,, M., Miyamoto,, M., Kuwashiro,, Y., Imai,, A., Motose,, H., & Takahashi,, T. (2019). Complexity and conservation of thermospermine‐responsive uORFs of SAC51 family genes in angiosperms. Frontiers in Plant Science, 10, 564.
Ivanov,, I. P., Loughran,, G., Sachs,, M. S., & Atkins,, J. F. (2010). Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). Proceedings of the National Academy of Sciences of the United States of America, 107, 18056–18060.
Iwakawa,, H. O., & Tomari,, Y. (2013). Molecular insights into microRNA‐mediated translational repression in plants. Molecular Cell, 52, 591–601.
Izquierdo,, Y., Kulasekaran,, S., Benito,, P., Lopez,, B., Marcos,, R., Cascon,, T., … Castresana,, C. (2018). Arabidopsis nonresponding to oxylipins locus NOXY7 encodes a yeast GCN1 homolog that mediates noncanonical translation regulation and stress adaptation. Plant, Cell %26 Environment, 41, 1438–1452.
Jang,, G. J., Yang,, J. Y., Hsieh,, H. L., & Wu,, S. H. (2019). Processing bodies control the selective translation for optimal development of Arabidopsis young seedlings. Proceedings of the National Academy of Sciences of the United States of America, 116, 6451–6456.
Jaramillo‐Mesa,, H., Gannon,, M., Holshbach,, E., Zhang,, J., Roberts,, R., Buettner,, M., & Rakotondrafara,, A. M. (2019). The triticum mosaic virus internal ribosome entry site relies on a picornavirus‐like YX‐AUG motif to designate the preferred translation initiation site and to likely target the 18S rRNA. Journal of Virology, 93, e01705‐18.
Jiao,, Y., & Meyerowitz,, E. M. (2010). Cell‐type specific analysis of translating RNAs in developing flowers reveals new levels of control. Molecular Systems Biology, 6, 419.
Jimenez‐Lopez,, S., Mancera‐Martinez,, E., Donayre‐Torres,, A., Rangel,, C., Uribe,, L., March,, S., … Sanchez de Jimenez,, E. (2011). Expression profile of maize (Zea mays L.) embryonic axes during germination: Translational regulation of ribosomal protein mRNAs. Plant %26 Cell Physiology, 52, 1719–1733.
Jorgensen,, R. A., & Dorantes‐Acosta,, A. E. (2012). Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms. Frontiers in Plant Science, 3, 191.
Juntawong,, P., & Bailey‐Serres,, J. (2012). Dynamic light regulation of translation status in Arabidopsis thaliana. Frontiers in Plant Science, 3, 66.
Juntawong,, P., Girke,, T., Bazin,, J., & Bailey‐Serres,, J. (2014). Translational dynamics revealed by genome‐wide profiling of ribosome footprints in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 111, E203–E212.
Juntawong,, P., Sorenson,, R., & Bailey‐Serres,, J. (2013). Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana. The Plant Journal, 74, 1016–1028.
Kasaras,, A., & Kunze,, R. (2017). Dual‐targeting of Arabidopsis DMP1 isoforms to the tonoplast and the plasma membrane. PLoS One, 12, e0174062.
Kawaguchi,, R., & Bailey‐Serres,, J. (2005). mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Research, 33, 955–965.
Khan,, M. A., & Goss,, D. J. (2018). Kinetic analyses of phosphorylated and non‐phosphorylated eIFiso4E binding to mRNA cap analogues. International Journal of Biological Macromolecules, 106, 387–395.
Khan,, M. A., & Goss,, D. J. (2019). Poly (A) binding protein enhances the binding affinity of potyvirus VPg to eukaryotic initiation factor eIF4F and activates in vitro translation. International Journal of Biological Macromolecules, 121, 947–955.
Kim,, B. H., Cai,, X., Vaughn,, J. N., & von Arnim,, A. G. (2007). On the functions of the h subunit of eukaryotic initiation factor 3 in late stages of translation initiation. Genome Biology, 8, R60.
Kim,, D. H., Lee,, J. E., Xu,, Z. Y., Geem,, K. R., Kwon,, Y., Park,, J. W., & Hwang,, I. (2015). Cytosolic targeting factor AKR2A captures chloroplast outer membrane‐localized client proteins at the ribosome during translation. Nature Communications, 6, 6843.
Kopec,, P. M., & Karlowski,, W. M. (2019). Sequence dynamics of pre‐mRNA G‐quadruplexes in plants. Frontiers in Plant Science, 10, 812.
Kosmacz,, M., Gorka,, M., Schmidt,, S., Luzarowski,, M., Moreno,, J. C., Szlachetko,, J., … Skirycz,, A. (2019). Protein and metabolite composition of Arabidopsis stress granules. The New Phytologist, 222, 1420–1433.
Kosmacz,, M., Luzarowski,, M., Kerber,, O., Leniak,, E., Gutierrez‐Beltran,, E., Moreno,, J. C., … Skirycz,, A. (2018). Interaction of 2`,3`‐cAMP with Rbp47b plays a role in stress granule formation. Plant Physiology, 177, 411–421.
Kougioumoutzi,, E., Cartolano,, M., Canales,, C., Dupre,, M., Bramsiepe,, J., Vlad,, D., … Tsiantis,, M. (2013). SIMPLE LEAF3 encodes a ribosome‐associated protein required for leaflet development in Cardamine hirsuta. The Plant Journal, 73, 533–545.
Kraft,, J. J., Peterson,, M. S., Cho,, S. K., Wang,, Z., Hui,, A., Rakotondrafara,, A. M., … Miller,, W. A. (2019). The 3` untranslated region of a plant viral RNA directs efficient cap‐independent translation in plant and mammalian systems. Pathogens, 8, 28.
Kropiwnicka,, A., Kuchta,, K., Lukaszewicz,, M., Kowalska,, J., Jemielity,, J., Ginalski,, K., … Zuberek,, J. (2015). Five eIF4E isoforms from Arabidopsis thaliana are characterized by distinct features of cap analogs binding. Biochemical and Biophysical Research Communications, 456, 47–52.
Kuhlmann,, M. M., Chattopadhyay,, M., Stupina,, V. A., Gao,, F., & Simon,, A. E. (2016). An RNA element that facilitates programmed ribosomal readthrough in turnip crinkle virus adopts multiple conformations. Journal of Virology, 90, 8575–8591.
Kurihara,, Y., Makita,, Y., Kawashima,, M., Fujita,, T., Iwasaki,, S., & Matsui,, M. (2018). Transcripts from downstream alternative transcription start sites evade uORF‐mediated inhibition of gene expression in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 115, 7831–7836.
Kurihara,, Y., Makita,, Y., Shimohira,, H., Fujita,, T., Iwasaki,, S., & Matsui,, M. (2020). Translational landscape of protein‐coding and non‐protein‐coding RNAs upon light exposure in Arabidopsis. Plant %26 Cell Physiology, 61, 536–545.
Kwasnik,, A., Wang,, V. Y., Krzyszton,, M., Gozdek,, A., Zakrzewska‐Placzek,, M., Stepniak,, K., … Kufel,, J. (2019). Arabidopsis DXO1 links RNA turnover and chloroplast function independently of its enzymatic activity. Nucleic Acids Research, 47, 4910.
Kwok,, C. K., Ding,, Y., Shahid,, S., Assmann,, S. M., & Bevilacqua,, P. C. (2015). A stable RNA G‐quadruplex within the 5`‐UTR of Arabidopsis thaliana ATR mRNA inhibits translation. The Biochemical Journal, 467, 91–102.
Lageix,, S., Lanet,, E., Pouch‐Pelissier,, M. N., Espagnol,, M. C., Robaglia,, C., Deragon,, J. M., & Pelissier,, T. (2008). Arabidopsis eIF2alpha kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8, 134.
Lageix,, S., Zhang,, J., Rothenburg,, S., & Hinnebusch,, A. G. (2015). Interaction between the tRNA‐binding and C‐terminal domains of Yeast Gcn2 regulates kinase activity in vivo. PLoS Genetics, 11, e1004991.
Lalande,, S., Merret,, R., Salinas‐Giegé,, T., & Drouard,, L. (2020). Arabidopsis tRNA‐derived fragments as potential modulators of translation. RNA Biology, 1–12. https://doi.org/10.1080/15476286.2020.1722514. [Epub ahead of print]
Laing,, W. A., Martinez‐Sanchez,, M., Wright,, M. A., Bulley,, S. M., Brewster,, D., Dare,, A. P., … Hellens,, R. P. (2015). An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell, 27, 772–786.
Lanet,, E., Delannoy,, E., Sormani,, R., Floris,, M., Brodersen,, P., Crete,, P., … Robaglia,, C. (2009). Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell, 21, 1762–1768.
Le,, M. T., Kasprzak,, W. K., Shapiro,, B. A., & Simon,, A. E. (2017). Combined single molecule experimental and computational approaches for understanding the unfolding pathway of a viral translation enhancer that participates in a conformational switch. RNA Biology, 14, 1466–1472.
Lee,, D. H., Park,, S. J., Ahn,, C. S., & Pai,, H. S. (2017). MRF family genes are involved in translation control, especially under energy‐deficient conditions, and their expression and functions are modulated by the TOR signaling pathway. Plant Cell, 29, 2895–2920.
Lee,, J. H., Muhsin,, M., Atienza,, G. A., Kwak,, D. Y., Kim,, S. M., De Leon,, T. B., … Choi,, I. R. (2010). Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. Molecular Plant‐Microbe Interactions, 23, 29–38.
Lee,, T. A., & Bailey‐Serres,, J. (2019). Integrative analysis from the epigenome to translatome uncovers patterns of dominant nuclear regulation during transient stress. Plant Cell, 31, 2573–2595.
Lei,, L., Shi,, J., Chen,, J., Zhang,, M., Sun,, S., Xie,, S., … Lai,, J. (2015). Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. The Plant Journal, 84, 1206–1218.
Lellis,, A. D., Patrick,, R. M., Mayberry,, L. K., Lorence,, A., Campbell,, Z. C., Roose,, J. L., … Browning,, K. S. (2019). eIFiso4G augments the synthesis of specific plant proteins involved in normal chloroplast function. Plant Physiology, 181, 85–96.
Lewandowska,, D., ten Have,, S., Hodge,, K., Tillemans,, V., Lamond,, A. I., & Brown,, J. W. (2013). Plant SILAC: Stable‐isotope labelling with amino acids of arabidopsis seedlings for quantitative proteomics. PLoS One, 8, e72207.
Li,, F., Zheng,, Q., Vandivier,, L. E., Willmann,, M. R., Chen,, Y., & Gregory,, B. D. (2012). Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell, 24, 4346–4359.
Li,, L., Nelson,, C. J., Solheim,, C., Whelan,, J., & Millar,, A. H. (2012). Determining degradation and synthesis rates of arabidopsis proteins using the kinetics of progressive 15N labeling of two‐dimensional gel‐separated protein spots. Molecular %26 Cellular Proteomics, 11(M111), 010025.
Li,, L., Nelson,, C. J., Trosch,, J., Castleden,, I., Huang,, S., & Millar,, A. H. (2017). Protein degradation rate in Arabidopsis thaliana leaf growth and development. Plant Cell, 29, 207–228.
Li,, Q., Shen,, W., Zheng,, Q., Tan,, Y., Gao,, J., Shen,, J., … Zou,, J. (2017). Effects of eIFiso4G1 mutation on seed oil biosynthesis. The Plant Journal, 90, 966–978.
Li,, S., Liu,, L., Zhuang,, X., Yu,, Y., Liu,, X., Cui,, X., … Chen,, X. (2013). MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell, 153, 562–574.
Li,, W., Ward,, F. R., McClure,, K. F., Chang,, S. T., Montabana,, E., Liras,, S., … Cate,, J. H. D. (2019). Structural basis for selective stalling of human ribosome nascent chain complexes by a drug‐like molecule. Nature Structural %26 Molecular Biology, 26, 501–509.
Li,, X., Cai,, W., Liu,, Y., Li,, H., Fu,, L., Liu,, Z., … Xiong,, Y. (2017). Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proceedings of the National Academy of Sciences of the United States of America, 114, 2765–2770.
Lin,, S. Y., Chen,, P. W., Chuang,, M. H., Juntawong,, P., Bailey‐Serres,, J., & Jauh,, G. Y. (2014). Profiling of translatomes of in vivo‐grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell, 26, 602–618.
Liu,, M. J., Wu,, S. H., & Chen,, H. M. (2012). Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Molecular Systems Biology, 8, 566.
Liu,, M. J., Wu,, S. H., Wu,, J. F., Lin,, W. D., Wu,, Y. C., Tsai,, T. Y., … Wu,, S. H. (2013). Translational landscape of photomorphogenic Arabidopsis. Plant Cell, 25, 3699–3710.
Liu,, Q., & Goss,, D. J. (2018). The 3` mRNA I‐shaped structure of maize necrotic streak virus binds to eukaryotic translation factors for eIF4F‐mediated translation initiation. The Journal of Biological Chemistry, 293, 9486–9495.
Liu,, X., Afrin,, T., & Pajerowska‐Mukhtar,, K. M. (2019). Arabidopsis GCN2 kinase contributes to ABA homeostasis and stomatal immunity. Communications Biology, 2, 302.
Llabata,, P., Richter,, J., Faus,, I., Slominska‐Durdasiak,, K., Zeh,, L. H., Gadea,, J., & Hauser,, M. T. (2019). Involvement of the eIF2alpha kinase GCN2 in UV‐B responses. Frontiers in Plant Science, 10, 1492.
Lokdarshi,, A., Conner,, W. C., McClintock,, C., Li,, T., & Roberts,, D. M. (2016). Arabidopsis CML38, a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress. Plant Physiology, 170, 1046–1059.
Lokdarshi,, A., Guan,, J., Urquidi Camacho,, R. A., Cho,, S. K., Morgan,, P., Leonard,, M., … von Arnim,, A. G. (2020). Light activates the translational regulatory GCN2 kinase via reactive oxygen species emanating from the chloroplast. Plant Cell, 32(4), 1161–1178. https://doi.org/10.1105/tpc.19.00751
Lokdarshi,, A., Morgan,, P. W., Franks,, M., Emert,, Z., Emanuel,, C., & von Arnim,, A. G. (2020). Light dependent activation of the GCN2 kinase under cold and salt stress is mediated by the photosynthetic status of the chloroplast. Frontiers in Plant Science (in press). https://doi.org/10.3389/fpls.2020.00431
Loughran,, G., Firth,, A. E., Atkins,, J. F., & Ivanov,, I. P. (2018). Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection. PLoS One, 13, e0192648.
Lukhovitskaya,, N., & Ryabova,, L. A. (2019). Cauliflower mosaic virus transactivator protein (TAV) can suppress nonsense‐mediated decay by targeting VARICOSE, a scaffold protein of the decapping complex. Scientific Reports, 9, 7042.
Lukoszek,, R., Feist,, P., & Ignatova,, Z. (2016). Insights into the adaptive response of Arabidopsis thaliana to prolonged thermal stress by ribosomal profiling and RNA‐Seq. BMC Plant Biology, 16, 221.
Luna,, E., van Hulten,, M., Zhang,, Y., Berkowitz,, O., Lopez,, A., Petriacq,, P., … Ton,, J. (2014). Plant perception of beta‐aminobutyric acid is mediated by an aspartyl‐tRNA synthetase. Nature Chemical Biology, 10, 450–456.
Luo,, G. Z., MacQueen,, A., Zheng,, G., Duan,, H., Dore,, L. C., Lu,, Z., … He,, C. (2014). Unique features of the m6A methylome in Arabidopsis thaliana. Nature Communications, 5, 5630.
Ma,, J., Hanssen,, M., Lundgren,, K., Hernandez,, L., Delatte,, T., Ehlert,, A., … Hanson,, J. (2011). The sucrose‐regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. The New Phytologist, 191, 733–745.
Ma,, X., Ibrahim,, F., Kim,, E. J., Shaver,, S., Becker,, J., Razvi,, F., … Cerutti,, H. (2020). An ortholog of the Vasa intronic gene is required for small RNA‐mediated translation repression in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 117, 761–770.
Ma,, X., Zhou,, Y., & Moffett,, P. (2019). Alterations in cellular RNA decapping dynamics affect tomato spotted wilt virus cap snatching and infection in Arabidopsis. The New Phytologist, 224, 789–803.
Macovei,, A., Sevilla,, N. R., Cantos,, C., Jonson,, G. B., Slamet‐Loedin,, I., Cermak,, T., … Chadha‐Mohanty,, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16, 1918–1927.
Marchais,, A., Chevalier,, C., & Voinnet,, O. (2019). Extensive profiling in Arabidopsis reveals abundant polysome‐associated 24‐nt small RNAs including AGO5‐dependent pseudogene‐derived siRNAs. RNA, 25, 1098–1117.
Mardanova,, E. S., Zamchuk,, L. A., Skulachev,, M. V., & Ravin,, N. V. (2008). The 5` untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene, 420, 11–16.
Margalha,, L., Confraria,, A., & Baena‐Gonzalez,, E. (2019). SnRK1 and TOR: Modulating growth‐defense trade‐offs in plant stress responses. Journal of Experimental Botany, 70, 2261–2274.
Martinez,, G., Choudury,, S. G., & Slotkin,, R. K. (2017). tRNA‐derived small RNAs target transposable element transcripts. Nucleic Acids Research, 45, 5142–5152.
Martinez‐Silva,, A. V., Aguirre‐Martinez,, C., Flores‐Tinoco,, C. E., Alejandri‐Ramirez,, N. D., & Dinkova,, T. D. (2012). Translation initiation factor AteIF(iso)4E is involved in selective mRNA translation in Arabidopsis thaliana seedlings. PLoS One, 7, e31606.
Mauger,, D. M., Cabral,, B. J., Presnyak,, V., Su,, S. V., Reid,, D. W., Goodman,, B., … McFadyen,, I. J. (2019). mRNA structure regulates protein expression through changes in functional half‐life. Proceedings of the National Academy of Sciences of the United States of America, 116, 24075–24083.
May,, J., Johnson,, P., Saleem,, H., & Simon,, A. E. (2017). A sequence‐independent, unstructured internal ribosome entry site is responsible for internal expression of the coat protein of turnip crinkle virus. Journal of Virology, 91, e02421‐16.
May,, J. P., Yuan,, X., Sawicki,, E., & Simon,, A. E. (2018). RNA virus evasion of nonsense‐mediated decay. PLoS Pathogens, 14, e1007459.
Mayberry,, L. K., Allen,, M. L., Dennis,, M. D., & Browning,, K. S. (2009). Evidence for variation in the optimal translation initiation complex: Plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs. Plant Physiology, 150, 1844–1854.
Mazier,, M., Flamain,, F., Nicolai,, M., Sarnette,, V., & Caranta,, C. (2011). Knock‐down of both eIF4E1 and eIF4E2 genes confers broad‐spectrum resistance against potyviruses in tomato. PLoS One, 6, e29595.
Mazzoni‐Putman,, S. M., & Stepanova,, A. N. (2018). A plant biologist`s toolbox to study translation. Frontiers in Plant Science, 9, 873.
McLoughlin,, F., Basha,, E., Fowler,, M. E., Kim,, M., Bordowitz,, J., Katiyar‐Agarwal,, S., & Vierling,, E. (2016). Class I and II small heat shock proteins together with HSP101 protect protein translation factors during heat stress. Plant Physiology, 172, 1221–1236.
McWhite,, C. D., Papoulas,, O., Drew,, K., Cox,, R. M., June,, V., Dong,, O. X., … Marcotte,, E. M. (2020). A pan‐plant protein complex map reveals deep conservation and novel assemblies. Cell, 181, 460–474. https://doi.org/10.1016/j.cell.2020.02.049
Mei,, C., Jiang,, S. C., Lu,, Y. F., Wu,, F. Q., Yu,, Y. T., Liang,, S., … Zhang,, D. P. (2014). Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role inabscisic acid signalling. Journal of Experimental Botany, 65, 5317–5330.
Megel,, C., Hummel,, G., Lalande,, S., Ubrig,, E., Cognat,, V., Morelle,, G., … Marechal‐Drouard,, L. (2019). Plant RNases T2, but not Dicer‐like proteins, are major players of tRNA‐derived fragments biogenesis. Nucleic Acids Research, 47, 941–952.
Merchante,, C., Brumos,, J., Yun,, J., Hu,, Q., Spencer,, K. R., Enriquez,, P., … Alonso,, J. M. (2015). Gene‐specific translation regulation mediated by the hormone‐signaling molecule EIN2. Cell, 163, 684–697.
Merchante,, C., Stepanova,, A. N., & Alonso,, J. M. (2017). Translation regulation in plants: An interesting past, an exciting present and a promising future. The Plant Journal, 90, 628–653.
Merret,, R., Carpentier,, M. C., Favory,, J. J., Picart,, C., Descombin,, J., Bousquet‐Antonelli,, C., … Charng,, Y. Y. (2017). Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock. Plant Physiology, 174, 1216–1225.
Merret,, R., Descombin,, J., Juan,, Y. T., Favory,, J. J., Carpentier,, M. C., Chaparro,, C., … Bousquet‐Antonelli,, C. (2013). XRN4 and LARP1 are required for a heat‐triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress. Cell Reports, 5, 1279–1293.
Merret,, R., Nagarajan,, V. K., Carpentier,, M. C., Park,, S., Favory,, J. J., Descombin,, J., … Bousquet‐Antonelli,, C. (2015). Heat‐induced ribosome pausing triggers mRNA co‐translational decay in Arabidopsis thaliana. Nucleic Acids Research, 43, 4121–4132.
Meteignier,, L. V., El Oirdi,, M., Cohen,, M., Barff,, T., Matteau,, D., Lucier,, J. F., … Moffett,, P. (2017). Translatome analysis of an NB‐LRR immune response identifies important contributors to plant immunity in Arabidopsis. Journal of Experimental Botany, 68, 2333–2344.
Michel,, V., Julio,, E., Candresse,, T., Cotucheau,, J., Decorps,, C., Volpatti,, R., … German‐Retana,, S. (2019). A complex eIF4E locus impacts the durability of va resistance to Potato virus Y in tobacco. Molecular Plant Pathology, 20, 1051–1066.
Missbach,, S., Weis,, B. L., Martin,, R., Simm,, S., Bohnsack,, M. T., & Schleiff,, E. (2013). 40S ribosome biogenesis co‐factors are essential for gametophyte and embryo development. PLoS One, 8, e54084.
Missra,, A., Ernest,, B., Lohoff,, T., Jia,, Q., Satterlee,, J., Ke,, K., & von Arnim,, A. G. (2015). The circadian clock modulates global daily cycles of mRNA ribosome loading. Plant Cell, 27, 2582–2599.
Mitchell,, D., 3rd, Assmann,, S. M., & Bevilacqua,, P. C. (2019). Probing RNA structure in vivo. Current Opinion in Structural Biology, 59, 151–158.
Miyoshi,, H., Suehiro,, N., Tomoo,, K., Muto,, S., Takahashi,, T., Tsukamoto,, T., … Natsuaki,, T. (2006). Binding analyses for the interaction between plant virus genome‐linked protein (VPg) and plant translational initiation factors. Biochimie, 88, 329–340.
Moeller,, J. R., Moscou,, M. J., Bancroft,, T., Skadsen,, R. W., Wise,, R. P., & Whitham,, S. A. (2012). Differential accumulation of host mRNAs on polyribosomes during obligate pathogen‐plant interactions. Molecular BioSystems, 8, 2153–2165.
Moin,, M., Bakshi,, A., Madhav,, M. S., & Kirti,, P. B. (2017). Expression profiling of ribosomal protein gene family in dehydration stress responses and characterization of transgenic rice plants overexpressing RPL23A for water‐use efficiency and tolerance to drought and salt stresses. Frontiers in Chemistry, 5, 97.
Moreau,, M., Azzopardi,, M., Clement,, G., Dobrenel,, T., Marchive,, C., Renne,, C., … Meyer,, C. (2012). Mutations in the Arabidopsis homolog of LST8/GbetaL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell, 24, 463–481.
Mubeen,, U., Juppner,, J., Alpers,, J., Hincha,, D. K., & Giavalisco,, P. (2018). Target of rapamycin inhibition in Chlamydomonas reinhardtii triggers de novo amino acid synthesis by enhancing nitrogen assimilation. Plant Cell, 30, 2240–2254.
Mustroph,, A., Lee,, S. C., Oosumi,, T., Zanetti,, M. E., Yang,, H., Ma,, K., … Bailey‐Serres,, J. (2010). Cross‐kingdom comparison of transcriptomic adjustments to low‐oxygen stress highlights conserved and plant‐specific responses. Plant Physiology, 152, 1484–1500.
Mustroph,, A., Zanetti,, M. E., Jang,, C. J., Holtan,, H. E., Repetti,, P. P., Galbraith,, D. W., … Bailey‐Serres,, J. (2009). Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 106, 18843–18848.
Navarro‐Quiles,, C., Mateo‐Bonmati,, E., & Micol,, J. L. (2018). ABCE proteins: From molecules to development. Frontiers in Plant Science, 9, 1125.
Nguyen,, C. C., Nakaminami,, K., Matsui,, A., Kobayashi,, S., Kurihara,, Y., Toyooka,, K., … Seki,, M. (2016). Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance. Frontiers in Plant Science, 7, 853.
Nguyen,, C. C., Nakaminami,, K., Matsui,, A., Watanabe,, S., Kanno,, Y., Seo,, M., & Seki,, M. (2017). Overexpression of oligouridylate binding protein 1b results in ABA hypersensitivity. Plant Signaling %26 Behavior, 12, e1282591.
Nicolai,, M., Roncato,, M. A., Canoy,, A. S., Rouquie,, D., Sarda,, X., Freyssinet,, G., & Robaglia,, C. (2006). Large‐scale analysis of mRNA translation states during sucrose starvation in arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Plant Physiology, 141, 663–673.
Nishimura,, T., Wada,, T., Yamamoto,, K. T., & Okada,, K. (2005). The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin‐mediated gynoecium patterning. Plant Cell, 17, 2940–2953.
Nukarinen,, E., Nagele,, T., Pedrotti,, L., Wurzinger,, B., Mair,, A., Landgraf,, R., … Weckwerth,, W. (2016). Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Scientific Reports, 6, 31697.
Nyikó,, T., Auber,, A., Szabadkai,, L., Benkovics,, A., Auth,, M., Merai,, Z., … Silhavy,, D. (2017). Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense‐mediated decay in plants. Nucleic Acids Research, 45, 4174–4188.
Nyikó,, T., Sonkoly,, B., Mérai,, Z., Benkovics,, A. H., & Silhavy,, D. (2009). Plant upstream ORFs can trigger nonsense‐mediated mRNA decay in a size‐dependent manner. Plant Molecular Biology, 71, 367–378.
Ohtani,, M., & Wachter,, A. (2019). NMD‐based gene regulation—A strategy for fitness enhancement in plants? Plant %26 Cell Physiology, 60, 1953–1960.
O`Leary,, B. M., Lee,, C. P., Atkin,, O. K., Cheng,, R., Brown,, T. B., & Millar,, A. H. (2017). Variation in leaf respiration rates at night correlates with carbohydrate and amino acid supply. Plant Physiology, 174, 2261–2273.
Oracz,, K., & Stawska,, M. (2016). Cellular recycling of proteins in seed dormancy alleviation and germination. Frontiers in Plant Science, 7, 1128.
Pajerowska‐Mukhtar,, K. M., Wang,, W., Tada,, Y., Oka,, N., Tucker,, C. L., Fonseca,, J. P., & Dong,, X. (2012). The HSF‐like transcription factor TBF1 is a major molecular switch for plant growth‐to‐defense transition. Current Biology, 22, 103–112.
Pal,, S. K., Liput,, M., Piques,, M., Ishihara,, H., Obata,, T., Martins,, M. C., … Stitt,, M. (2013). Diurnal changes of polysome loading track sucrose content in the rosette of wildtype Arabidopsis and the starchless pgm mutant. Plant Physiology, 162, 1246–1265.
Pan,, S., Li,, K. E., Huang,, W., Zhong,, H., Wu,, H., Wang,, Y., … Xia,, Y. (2019). Arabidopsis DXO1 possesses deNADding and exonuclease activities and its mutation affects defense‐related and photosynthetic gene expression. Journal of Integrative Plant Biology. https://doi.org/10.1111/jipb.12867
Park,, E. J., & Kim,, T. H. (2018). Fine‐tuning of gene expression by tRNA‐derived fragments during abiotic stress signal transduction. International Journal of Molecular Sciences, 19, E518.
Park,, S. H., Chung,, P. J., Juntawong,, P., Bailey‐Serres,, J., Kim,, Y. S., Jung,, H., … Kim,, J. K. (2012). Posttranscriptional control of photosynthetic mRNA decay under stress conditions requires 3` and 5` untranslated regions and correlates with differential polysome association in rice. Plant Physiology, 159, 1111–1124.
Patrick,, R. M., Lee,, J. C. H., Teetsel,, J. R. J., Yang,, S. H., Choy,, G. S., & Browning,, K. S. (2018). Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E‐binding plant protein. The Journal of Biological Chemistry, 293, 17240–17247.
Pfeiffer,, A., Janocha,, D., Dong,, Y., Medzihradszky,, A., Schone,, S., Daum,, G., … Lohmann,, J. U. (2016). Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife, 5, e17023.
Piques,, M., Schulze,, W. X., Hohne,, M., Usadel,, B., Gibon,, Y., Rohwer,, J., & Stitt,, M. (2009). Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Molecular Systems Biology, 5, 314.
Poidevin,, L., Unal,, D., Belda‐Palazon,, B., & Ferrando,, A. (2019). Polyamines as quality control metabolites operating at the post‐transcriptional level. Plants (Basel), 8, E109.
Pooggin,, M. M., & Ryabova,, L. A. (2018). Ribosome shunting, polycistronic translation, and evasion of antiviral defenses in plant pararetroviruses and beyond. Frontiers in Microbiology, 9, 644.
Przydacz,, M., Jones,, R., Pennington,, H. G., Belmans,, G., Bruderer,, M., Greenhill,, R., … Spanu,, P. D. (2020). Mode of action of the catalytic site in the N‐terminal ribosome‐inactivating domain of JIP60. Plant Physiology. https://doi.org/10.1104/pp.19.01029
Pyl,, E. T., Piques,, M., Ivakov,, A., Schulze,, W., Ishihara,, H., Stitt,, M., & Sulpice,, R. (2012). Metabolism and growth in Arabidopsis depend on the daytime temperature but are temperature‐compensated against cool nights. Plant Cell, 24, 2443–2469.
Pyott,, D. E., Sheehan,, E., & Molnar,, A. (2016). Engineering of CRISPR/Cas9‐mediated potyvirus resistance in transgene‐free Arabidopsis plants. Molecular Plant Pathology, 17, 1276–1288.
Raabe,, K., Honys,, D., & Michailidis,, C. (2019). The role of eukaryotic initiation factor 3 in plant translation regulation. Plant Physiology and Biochemistry, 145, 75–83.
Rahmani,, F., Hummel,, M., Schuurmans,, J., Wiese‐Klinkenberg,, A., Smeekens,, S., & Hanson,, J. (2009). Sucrose control of translation mediated by an upstream open reading frame‐encoded peptide. Plant Physiology, 150, 1356–1367.
Reichel,, M., Koster,, T., & Staiger,, D. (2019). Marking RNA: m6A writers, readers, and functions in Arabidopsis. Journal of Molecular Cell Biology, 11, 899–910.
Ren,, M., Qiu,, S., Venglat,, P., Xiang,, D., Feng,, L., Selvaraj,, G., & Datla,, R. (2011). Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiology, 155, 1367–1382.
Reynoso,, M. A., Blanco,, F. A., Bailey‐Serres,, J., Crespi,, M., & Zanetti,, M. E. (2013). Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. The Plant Journal, 73, 289–301.
Reynoso,, M. A., Juntawong,, P., Lancia,, M., Blanco,, F. A., Bailey‐Serres,, J., & Zanetti,, M. E. (2015). Translating ribosome affinity purification (TRAP) followed by RNA sequencing technology (TRAP‐SEQ) for quantitative assessment of plant translatomes. Methods in Molecular Biology, 1284, 185–207.
Ribone,, P. A., Capella,, M., Arce,, A. L., & Chan,, R. L. (2017). A uORF represses the transcription factor AtHB1 in aerial tissues to avoid a deleterious phenotype. Plant Physiology, 175, 1238–1253.
Roberts,, R., Mayberry,, L. K., Browning,, K. S., & Rakotondrafara,, A. M. (2017). The triticum mosaic virus 5` leader binds to both eIF4G and eIFiso4G for translation. PLoS One, 12, e0169602.
Roberts,, R., Zhang,, J., Mayberry,, L. K., Tatineni,, S., Browning,, K. S., & Rakotondrafara,, A. M. (2015). A unique 5` translation element discovered in triticum mosaic virus. Journal of Virology, 89, 12427–12440.
Rodrigues,, A., Adamo,, M., Crozet,, P., Margalha,, L., Confraria,, A., Martinho,, C., … Baena‐Gonzalez,, E. (2013). ABI1 and PP2CA phosphatases are negative regulators of Snf1‐related protein kinase1 signaling in Arabidopsis. Plant Cell, 25, 3871–3884.
Rodriguez,, M., Parola,, R., Andreola,, S., Pereyra,, C., & Martinez‐Noel,, G. (2019). TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the "yin‐yang" model? Plant Science, 288, 110220.
Roy,, B., Vaughn,, J. N., Kim,, B. H., Zhou,, F., Gilchrist,, M. A., & Von Arnim,, A. G. (2010). The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. RNA, 16, 748–761.
Rubio,, J., Sanchez,, E., Tricon,, D., Montes,, C., Eyquard,, J. P., Chague,, A., … Decroocq,, V. (2019). Silencing of one copy of the translation initiation factor eIFiso4G in Japanese plum (Prunus salicina) impacts susceptibility to Plum pox virus (PPV) and small RNA production. BMC Plant Biology, 19, 440.
Ruffel,, S., Dussault,, M. H., Palloix,, A., Moury,, B., Bendahmane,, A., Robaglia,, C., & Caranta,, C. (2002). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). The Plant Journal, 32, 1067–1075.
Rustgi,, S., Pollmann,, S., Buhr,, F., Springer,, A., Reinbothe,, C., von Wettstein,, D., & Reinbothe,, S. (2014). JIP60‐mediated, jasmonate‐ and senescence‐induced molecular switch in translation toward stress and defense protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 111, 14181–14186.
Ruzicka,, K., Zhang,, M., Campilho,, A., Bodi,, Z., Kashif,, M., Saleh,, M., … Fray,, R. G. (2017). Identification of factors required for m(6) A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. The New Phytologist, 215, 157–172.
Sajeev,, N., Bai,, B., & Bentsink,, L. (2019). Seeds: A unique system to study translational regulation. Trends in Plant Science, 24, 487–495.
Sanfaçon,, H. (2015). Plant translation factors and virus resistance. Viruses, 7, 3392–3419.
Schepetilnikov,, M., Dimitrova,, M., Mancera‐Martinez,, E., Geldreich,, A., Keller,, M., & Ryabova,, L. A. (2013). TOR and S6K1 promote translation reinitiation of uORF‐containing mRNAs via phosphorylation of eIF3h. The EMBO Journal, 32, 1087–1102.
Schepetilnikov,, M., Makarian,, J., Srour,, O., Geldreich,, A., Yang,, Z., Chicher,, J., … Ryabova,, L. A. (2017). GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. The EMBO Journal, 36, 886–903.
Schepetilnikov,, M., & Ryabova,, L. A. (2018). Recent discoveries on the role of TOR (target of rapamycin) signaling in translation in plants. Plant Physiology, 176, 1095–1105.
Scialdone,, A., Mugford,, S. T., Feike,, D., Skeffington,, A., Borrill,, P., Graf,, A., … Howard,, M. (2013). Arabidopsis plants perform arithmetic division to prevent starvation at night. eLife, 2, e00669.
Scutenaire,, J., Deragon,, J. M., Jean,, V., Benhamed,, M., Raynaud,, C., Favory,, J. J., … Bousquet‐Antonelli,, C. (2018). The YTH domain protein ECT2 is an m(6)A reader required for normal trichome branching in Arabidopsis. Plant Cell, 30, 986–1005.
Seaton,, D. D., Graf,, A., Baerenfaller,, K., Stitt,, M., Millar,, A. J., & Gruissem,, W. (2018). Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism. Molecular Systems Biology, 14, e7962.
Sesma,, A., Castresana,, C., & Castellano,, M. M. (2017). Regulation of translation by TOR, eIF4E and eIF2alpha in plants: Current knowledge, challenges and future perspectives. Frontiers in Plant Science, 8, 644.
Shamimuzzaman,, M., & Vodkin,, L. (2018). Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development. PLoS One, 13, e0194596.
Shen,, L., Liang,, Z., Gu,, X., Chen,, Y., Teo,, Z. W., Hou,, X., … Yu,, H. (2016). N(6)‐methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Developmental Cell, 38, 186–200.
Shi,, L., Wu,, Y., & Sheen,, J. (2018). TOR signaling in plants: Conservation and innovation. Development, 145, dev160887.
Shin,, B. S., Katoh,, T., Gutierrez,, E., Kim,, J. R., Suga,, H., & Dever,, T. E. (2017). Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis. Nucleic Acids Research, 45, 8392–8402.
Si,, X., Zhang,, H., Wang,, Y., Chen,, K., & Gao,, C. (2020). Manipulating gene translation in plants by CRISPR‐Cas9‐mediated genome editing of upstream open reading frames. Nature Protocols, 15, 338–363.
Soprano,, A. S., Smetana,, J. H. C., & Benedetti,, C. E. (2018). Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1861, 344–353.
Sorenson,, R., & Bailey‐Serres,, J. (2014). Selective mRNA sequestration by OLIGOURIDYLATE‐BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 111, 2373–2378.
Sormani,, R., Delannoy,, E., Lageix,, S., Bitton,, F., Lanet,, E., Saez‐Vasquez,, J., … Robaglia,, C. (2011). Sublethal cadmium intoxication in Arabidopsis thaliana impacts translation at multiple levels. Plant %26 Cell Physiology, 52, 436–447.
Speiser,, A., Silbermann,, M., Dong,, Y., Haberland,, S., Uslu,, V. V., Wang,, S., … Hell,, R. (2018). Sulfur partitioning between glutathione and protein synthesis determines plant growth. Plant Physiology, 177, 927–937.
Srivastava,, A. K., Lu,, Y., Zinta,, G., Lang,, Z., & Zhu,, J. K. (2018). UTR‐dependent control of gene expression in plants. Trends in Plant Science, 23, 248–259.
Su,, Z., Tang,, Y., Ritchey,, L. E., Tack,, D. C., Zhu,, M., Bevilacqua,, P. C., & Assmann,, S. M. (2018). Genome‐wide RNA structurome reprogramming by acute heat shock globally regulates mRNA abundance. Proceedings of the National Academy of Sciences of the United States of America, 115, 12170–12175.
Sugio,, T., Matsuura,, H., Matsui,, T., Matsunaga,, M., Nosho,, T., Kanaya,, S., … Kato,, K. (2010). Effect of the sequence context of the AUG initiation codon on the rate of translation in dicotyledonous and monocotyledonous plant cells. Journal of Bioscience and Bioengineering, 109, 170–173.
Sulkowska,, A., Auber,, A., Sikorski,, P. J., Silhavy,, D., Auth,, M., Sitkiewicz,, E., … Kufel,, J. (2019). RNA helicases from the DEA(D/H)‐box family contribute to plant NMD efficiency. Plant %26 Cell Physiology, 61, 144–157.
Sulpice,, R., Flis,, A., Ivakov,, A. A., Apelt,, F., Krohn,, N., Encke,, B., … Stitt,, M. (2014). Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Molecular Plant, 7, 137–155.
Szadeczky‐Kardoss,, I., Csorba,, T., Auber,, A., Schamberger,, A., Nyiko,, T., Taller,, J., … Silhavy,, D. (2018). The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Research, 46, 4632–4648.
Szadeczky‐Kardoss,, I., Gal,, L., Auber,, A., Taller,, J., & Silhavy,, D. (2018). The No‐go decay system degrades plant mRNAs that contain a long A‐stretch in the coding region. Plant Science, 275, 19–27.
Tabassum,, N., Eschen‐Lippold,, L., Athmer,, B., Baruah,, M., Brode,, M., Maldonado‐Bonilla,, L. D., … Lee,, J. (2020). Phosphorylation‐dependent control of an RNA granule‐localized protein that fine‐tunes defence gene expression at a post‐transcriptional level. The Plant Journal, 101, 1023–1039.
Takakura,, Y., Udagawa,, H., Shinjo,, A., & Koga,, K. (2018). Mutation of a Nicotiana tabacum L. eukaryotic translation‐initiation factor gene reduces susceptibility to a resistance‐breaking strain of Potato virus Y. Molecular Plant Pathology, 19, 2124–2133.
Takamatsu,, S., Ohashi,, Y., Onoue,, N., Tajima,, Y., Imamichi,, T., Yonezawa,, S., … Naito,, S. (2020). Reverse genetics‐based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: Spatial allocation of the regulatory nascent peptide at the constriction. Nucleic Acids Research, 48, 1985–1999.
Tanaka,, M., Sotta,, N., Yamazumi,, Y., Yamashita,, Y., Miwa,, K., Murota,, K., … Fujiwara,, T. (2016). The minimum open reading frame, AUG‐Stop, induces boron‐dependent ribosome stalling and mRNA degradation. Plant Cell, 28, 2830–2849.
Tang,, Y., Assmann,, S. M., & Bevilacqua,, P. C. (2016). Protein structure is related to RNA structural reactivity in vivo. Journal of Molecular Biology, 428, 758–766.
Teixeira,, R. M., Ferreira,, M. A., Raimundo,, G. A. S., Loriato,, V. A. P., Reis,, P. A. B., & Fontes,, E. P. B. (2019). Virus perception at the cell surface: Revisiting the roles of receptor‐like kinases as viral pattern recognition receptors. Molecular Plant Pathology, 20, 1196–1202.
Thompson,, D. M., Lu,, C., Green,, P. J., & Parker,, R. (2008). tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA, 14, 2095–2103.
Tian,, C., Wang,, Y., Yu,, H., He,, J., Wang,, J., Shi,, B., … Jiao,, Y. (2019). A gene expression map of shoot domains reveals regulatory mechanisms. Nature Communications, 10, 141.
Tiruneh,, B. S., Kim,, B. H., Gallie,, D. R., Roy,, B., & von Arnim,, A. G. (2013). The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant. BMC Biology, 11, 123.
Toribio,, R., Munoz,, A., Castro‐Sanz,, A. B., Merchante,, C., & Castellano,, M. M. (2019). A novel eIF4E‐interacting protein that forms non‐canonical translation initiation complexes. Nature Plants, 5, 1283–1296.
Trolet,, A., Baldrich,, P., Criqui,, M. C., Dubois,, M., Clavel,, M., Meyers,, B. C., & Genschik,, P. (2019). Cell cycle‐dependent regulation and function of ARGONAUTE1 in plants. Plant Cell, 31, 1734–1750.
Truniger,, V., Miras,, M., & Aranda,, M. A. (2017). Structural and functional diversity of plant virus 3`‐cap‐independent translation enhancers (3`‐CITEs). Frontiers in Plant Science, 8, 2047.
Turck,, F., Zilbermann,, F., Kozma,, S. C., Thomas,, G., & Nagy,, F. (2004). Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiology, 134, 1527–1535.
Uchiyama‐Kadokura,, N., Murakami,, K., Takemoto,, M., Koyanagi,, N., Murota,, K., Naito,, S., & Onouchi,, H. (2014). Polyamine‐responsive ribosomal arrest at the stop codon of an upstream open reading frame of the AdoMetDC1 gene triggers nonsense‐mediated mRNA decay in Arabidopsis thaliana. Plant %26 Cell Physiology, 55, 1556–1567.
Ueda,, K., Matsuura,, H., Yamaguchi,, M., Demura,, T., & Kato,, K. (2012). Genome‐wide analyses of changes in translation state caused by elevated temperature in Oryza sativa. Plant %26 Cell Physiology, 53, 1481–1491.
Ueno,, D., Mukuta,, T., Yamasaki,, S., Mikami,, M., Demura,, T., Matsui,, T., … Kato,, K. (2019). Different plant species have common sequence features related to mRNA degradation intermediates. Plant %26 Cell Physiology, 61, 53–63.
Ueno,, D., Yamasaki,, S., Demura,, T., & Kato,, K. (2018). Comprehensive analysis of mRNA internal cleavage sites in Arabidopsis thaliana. Journal of Bioscience and Bioengineering, 125, 723–728.
van der Horst,, S., Filipovska,, T., Hanson,, J., & Smeekens,, S. C. M. (2020). Metabolite control of translation by conserved peptide uORFs: The ribosome as a metabolite multi‐sensor. Plant Physiology, 182, 110–122.
van der Horst,, S., Snel,, B., Hanson,, J., & Smeekens,, S. (2019). Novel pipeline identifies new upstream ORFs and non‐AUG initiating main ORFs with conserved amino acid sequences in the 5` leader of mRNAs in Arabidopsis thaliana. RNA, 25, 292–304.
Van Leene,, J., Han,, C., Gadeyne,, A., Eeckhout,, D., Matthijs,, C., Cannoot,, B., … De Jaeger,, G. (2019). Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nature Plants, 5, 316–327.
Vandivier,, L. E., Anderson,, S. J., Foley,, S. W., & Gregory,, B. D. (2016). The conservation and function of RNA secondary structure in plants. Annual Review of Plant Biology, 67, 463–488.
Vaughn,, J. N., Ellingson,, S. R., Mignone,, F., & von Arnim,, A. G. (2012). Known and novel post‐transcriptional regulatory sequences are conserved across plant families. RNA, 18, 368–384.
Vicens,, Q., Kieft,, J. S., & Rissland,, O. S. (2018). Revisiting the closed‐loop model and the nature of mRNA 5`‐3` communication. Molecular Cell, 72, 805–812.
von Arnim,, A. G., Jia,, Q., & Vaughn,, J. N. (2014). Regulation of plant translation by upstream open reading frames. Plant Science, 214, 1–12.
Wamboldt,, Y., Mohammed,, S., Elowsky,, C., Wittgren,, C., de Paula,, W. B., & Mackenzie,, S. A. (2009). Participation of leaky ribosome scanning in protein dual targeting by alternative translation initiation in higher plants. Plant Cell, 21, 157–167.
Wang,, L., Li,, H., Zhao,, C., Li,, S., Kong,, L., Wu,, W., … Zhang,, H. (2017). The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. Plant, Cell %26 Environment, 40, 56–68.
Wang,, P., Zhao,, Y., Li,, Z., Hsu,, C. C., Liu,, X., Fu,, L., … Zhu,, J. K. (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Molecular Cell, 69, 100–112.e6.
Wang,, Y., Li,, S., Zhao,, Y., You,, C., Le,, B., Gong,, Z., … Chen,, X. (2019). NAD(+)‐capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proceedings of the National Academy of Sciences of the United States of America, 116, 12094–12102.
Weber,, C., Nover,, L., & Fauth,, M. (2008). Plant stress granules and mRNA processing bodies are distinct from heat stress granules. The Plant Journal, 56, 517–530.
Weiste,, C., Pedrotti,, L., Selvanayagam,, J., Muralidhara,, P., Froschel,, C., Novak,, O., … Droge‐Laser,, W. (2017). The Arabidopsis bZIP11 transcription factor links low‐energy signalling to auxin‐mediated control of primary root growth. PLoS Genetics, 13, e1006607.
Wek,, R. C. (2018). Role of eIF2alpha kinases in translational control and adaptation to cellular stress. Cold Spring Harbor Perspectives in Biology, 10, a032870.
Wiese,, A., Elzinga,, N., Wobbes,, B., & Smeekens,, S. (2004). A conserved upstream open reading frame mediates sucrose‐induced repression of translation. Plant Cell, 16, 1717–1729.
Wu,, H. L., Song,, G., Walley,, J. W., & Hsu,, P. Y. (2019). The tomato translational landscape revealed by transcriptome assembly and ribosome profiling. Plant Physiology, 181, 367–380.
Wu,, Z., Huang,, S., Zhang,, X., Wu,, D., Xia,, S., & Li,, X. (2017). Regulation of plant immune receptor accumulation through translational repression by a glycine‐tyrosine‐phenylalanine (GYF) domain protein. eLife, 6, e23684.
Xiong,, Y., & Sheen,, J. (2013). Moving beyond translation: Glucose‐TOR signaling in the transcriptional control of cell cycle. Cell Cycle, 12, 1989–1990.
Xu,, G., Greene,, G. H., Yoo,, H., Liu,, L., Marques,, J., Motley,, J., & Dong,, X. (2017). Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature, 545, 487–490.
Xu,, G., Yuan,, M., Ai,, C., Liu,, L., Zhuang,, E., Karapetyan,, S., … Dong,, X. (2017). uORF‐mediated translation allows engineered plant disease resistance without fitness costs. Nature, 545, 491–494.
Xu,, Y., Ju,, H. J., DeBlasio,, S., Carino,, E. J., Johnson,, R., MacCoss,, M. J., … Gray,, S. M. (2018). A stem‐loop structure in potato leafroll virus open reading frame 5 (ORF5) is essential for readthrough translation of the coat protein ORF stop codon 700 bases upstream. Journal of Virology, 92, e01544‐17.
Yadav,, U. P., Ivakov,, A., Feil,, R., Duan,, G. Y., Walther,, D., Giavalisco,, P., … Lunn,, J. E. (2014). The sucrose‐trehalose 6‐phosphate (Tre6P) nexus: Specificity and mechanisms of sucrose signalling by Tre6P. Journal of Experimental Botany, 65, 1051–1068.
Yamasaki,, S., Matsuura,, H., Demura,, T., & Kato,, K. (2015). Changes in polysome association of mRNA throughout growth and development in Arabidopsis thaliana. Plant %26 Cell Physiology, 56, 2169–2180.
Yamashita,, Y., Kadokura,, Y., Sotta,, N., Fujiwara,, T., Takigawa,, I., Satake,, A., … Naito,, S. (2014). Ribosomes in a stacked array: Elucidation of the step in translation elongation at which they are stalled during S‐adenosyl‐L‐methionine‐induced translation arrest of CGS1 mRNA. The Journal of Biological Chemistry, 289, 12693–12704.
Yamashita,, Y., Takamatsu,, S., Glasbrenner,, M., Becker,, T., Naito,, S., & Beckmann,, R. (2017). Sucrose sensing through nascent peptide‐meditated ribosome stalling at the stop codon of Arabidopsis bZIP11 uORF2. FEBS Letters, 591, 1266–1277.
Yan,, C., Yan,, Z., Wang,, Y., Yan,, X., & Han,, Y. (2014). Tudor‐SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. Journal of Experimental Botany, 65, 5933–5944.
Yan,, H., Chen,, D., Wang,, Y., Sun,, Y., Zhao,, J., Sun,, M., & Peng,, X. (2016). Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Scientific Reports, 6, 31195.
Yang,, L., Wu,, G., & Poethig,, R. S. (2012). Mutations in the GW‐repeat protein SUO reveal a developmental function for microRNA‐mediated translational repression in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 109, 315–320.
Yanguez,, E., Castro‐Sanz,, A. B., Fernandez‐Bautista,, N., Oliveros,, J. C., & Castellano,, M. M. (2013). Analysis of genome‐wide changes in the translatome of Arabidopsis seedlings subjected to heat stress. PLoS One, 8, e71425.
Yoo,, H., Greene,, G. H., Yuan,, M., Xu,, G., Burton,, D., Liu,, L., … Dong,, X. (2019). Translational regulation of metabolic dynamics during effector‐triggered immunity. Molecular Plant, 13, 88–98.
Yu,, X., Willmann,, M. R., Anderson,, S. J., & Gregory,, B. D. (2016). Genome‐wide mapping of uncapped and cleaved transcripts reveals a role for the nuclear mRNA cap‐binding complex in cotranslational RNA decay in Arabidopsis. Plant Cell, 28, 2385–2397.
Yu,, X., Zhao,, Z., Zheng,, X., Zhou,, J., Kong,, W., Wang,, P., … Wan,, J. (2018). A selfish genetic element confers non‐Mendelian inheritance in rice. Science, 360, 1130–1132.
Yu,, Y., Jia,, T., & Chen,, X. (2017). The `how` and `where` of plant microRNAs. The New Phytologist, 216, 1002–1017.
Zhai,, Z., Keereetaweep,, J., Liu,, H., Feil,, R., Lunn,, J. E., & Shanklin,, J. (2018). Trehalose 6‐phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell, 30, 2616–2627.
Zhang,, H., Si,, X., Ji,, X., Fan,, R., Liu,, J., Chen,, K., … Gao,, C. (2018). Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 36, 894–898.
Zhang,, H., Zhong,, H., Zhang,, S., Shao,, X., Ni,, M., Cai,, Z., … Xia,, Y. (2019). NAD tagSeq reveals that NAD(+)‐capped RNAs are mostly produced from a large number of protein‐coding genes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 116, 12072–12077.
Zhang,, L., Liu,, X., Gaikwad,, K., Kou,, X., Wang,, F., Tian,, X., … Vierling,, E. (2017). Mutations in eIF5B confer thermosensitive and pleiotropic phenotypes via translation defects in Arabidopsis thaliana. Plant Cell, 29, 1952–1969.
Zhang,, S., Sun,, L., & Kragler,, F. (2009). The phloem delivered RNA pool contains small non‐coding RNAs and interferes with translation. Plant Physiology, 150, 378–387.
Zhang,, Y., Wang,, Y., Kanyuka,, K., Parry,, M. A., Powers,, S. J., & Halford,, N. G. (2008). GCN2‐dependent phosphorylation of eukaryotic translation initiation factor‐2alpha in Arabidopsis. Journal of Experimental Botany, 59, 3131–3141.
Zhao,, L., Deng,, L., Zhang,, Q., Jing,, X., Ma,, M., Yi,, B., … Shen,, J. (2018). Autophagy contributes to sulfonylurea herbicide tolerance via GCN2‐independent regulation of amino acid homeostasis. Autophagy, 14, 702–714.
Zhao,, P., Liu,, Q., Miller,, W. A., & Goss,, D. J. (2017). Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3` cap‐independent translation element (BTE). The Journal of Biological Chemistry, 292, 5921–5931.
Zhao,, T., Huan,, Q., Sun,, J., Liu,, C., Hou,, X., Yu,, X., … Cao,, X. (2019). Impact of poly(A)‐tail G‐content on Arabidopsis PAB binding and their role in enhancing translational efficiency. Genome Biology, 20, 189.
Zheng,, M., Wang,, Y., Liu,, X., Sun,, J., Wang,, Y., Xu,, Y., … Wan,, J. (2016). The RICE MINUTE‐LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice. Journal of Experimental Botany, 67, 3457–3469.
Zhou,, F., Roy,, B., Dunlap,, J. R., Enganti,, R., & von Arnim,, A. G. (2014). Translational control of Arabidopsis meristem stability and organogenesis by the eukaryotic translation factor eIF3h. PLoS One, 9, e95396.
Zhu,, F., Zhou,, Y. K., Ji,, Z. L., & Chen,, X. R. (2018). The plant ribosome‐inactivating proteins play important roles in defense against pathogens and insect pest attacks. Frontiers in Plant Science, 9, 146.
Zhu,, X., Li,, Y., Fang,, W., & Kusano,, T. (2018). Galactinol is involved in sequence‐conserved upstream open reading frame‐mediated repression of Arabidopsis HsfB1 translation. Environmental and Experimental Botany, 156, 120–129.
Zhu,, X., Thalor,, S. K., Takahashi,, Y., Berberich,, T., & Kusano,, T. (2012). An inhibitory effect of the sequence‐conserved upstream open‐reading frame on the translation of the main open‐reading frame of HsfB1 transcripts in Arabidopsis. Plant, Cell %26 Environment, 35, 2014–2030.
Zorzatto,, C., Machado,, J. P., Lopes,, K. V., Nascimento,, K. J., Pereira,, W. A., Brustolini,, O. J., … Fontes,, E. P. (2015). NIK1‐mediated translation suppression functions as a plant antiviral immunity mechanism. Nature, 520, 679–682.
Zoschke,, R., & Bock,, R. (2018). Chloroplast translation: Structural and functional organization, operational control, and regulation. Plant Cell, 30, 745–770.
Zsogon,, A., Szakonyi,, D., Shi,, X., & Byrne,, M. E. (2014). Ribosomal protein RPL27a promotes female gametophyte development in a dose‐dependent manner. Plant Physiology, 165, 1133–1143.