Adler,, E. M. (2012). Cell biology 2011: Signaling breakthroughs of the year. Science Signaling, 5, eg1. https://doi.org/10.1126/scisignal.2002787
Al‐Husini,, N., Tomares,, D. T., Bitar,, O., Childers,, W. S., & Schrader,, J. M. (2018). α‐Proteobacterial RNA degradosomes assemble liquid–liquid phase‐separated RNP bodies. Molecular Cell, 71(6), 1027–1039.e14. https://doi.org/10.1016/j.molcel.2018.08.003
Amster‐Choder,, O. (2011). The compartmentalized vessel. Cellular Logistics, 1(2), 77–81. https://doi.org/10.4161/cl.1.2.16152
Anderson,, D. M., & Schneewind,, O. (1997). A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science, 278(5340), 1140–1143. https://doi.org/10.1126/science.278.5340.1140
Anderson,, D. M., & Schneewind,, O. (1999). Yersinia enterocolitica type III secretion: An mRNA signal that couples translation and secretion of YopQ. Molecular Microbiology, 31(4), 1139–1148. https://doi.org/10.1046/j.1365-2958.1999.01254.x
Anderson,, P. E., & Gober,, J. W. (2000). FlbT, the post‐transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5′ untranslated region of flagellin mRNA. Molecular Microbiology, 38(1), 41–52. https://doi.org/10.1046/j.1365-2958.2000.02108.x
Attaiech,, L., Boughammoura,, A., Brochier‐Armanet,, C., Allatif,, O., Peillard‐Fiorente,, F., Edwards,, R. A., … Charpentier,, X. (2016). Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proceedings of the National Academy of Sciences of the United States of America, 113(31), 8813–8818. https://doi.org/10.1073/pnas.1601626113
Azam,, T. A., Hiraga,, S., & Ishihama,, A. (2000). Two types of localization of the DNA‐binding proteins within the Escherichia coli nucleoid. Genes to Cells, 5(8), 613–626. https://doi.org/10.1046/j.1365-2443.2000.00350.x
Bae,, W., Xia,, B., Inouye,, M., & Severinov,, K. (2000). Escherichia coli CspA‐family RNA chaperones are transcription antiterminators. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 7784–7789. https://doi.org/10.1073/pnas.97.14.7784
Bakermans,, C., & Madsen,, E. L. (2002). Detection in coal tar waste‐contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridization with tyramide signal amplification. Journal of Microbiological Methods, 50(1), 75–84. https://doi.org/10.1016/S0167-7012(02)00015-5
Bakshi,, S., Choi,, H., Mondal,, J., & Weisshaar,, J. C. (2014). Time‐dependent effects of transcription‐ and translation‐halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes. Molecular Microbiology, 94(4), 871–887. https://doi.org/10.1111/mmi.12805
Bakshi,, S., Siryaporn,, A., Goulian,, M., & Weisshaar,, J. C. (2012). Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Molecular Microbiology, 85(1), 21–38. https://doi.org/10.1111/j.1365-2958.2012.08081.x
Banani,, S. F., Lee,, H. O., Hyman,, A. A., & Rosen,, M. K. (2017). Biomolecular condensates: Organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 18, 285–298. https://doi.org/10.1038/nrm.2017.7
Bayas,, C. A., Wang,, J., Lee,, M. K., Schrader,, J. M., Shapiro,, L., & Moerner,, W. E. (2018). Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus. Proceedings of the National Academy of Sciences of the United States of America, 115(16), E3721–E3721, E3721. https://doi.org/10.1073/pnas.1721648115
Benhalevy,, D., Biran,, I., Bochkareva,, E. S., Sorek,, R., & Bibi,, E. (2017). Evidence for a cytoplasmic pool of ribosome‐free mRNAs encoding inner membrane proteins in Escherichia coli. PLoS One, 12(8), 1–28. https://doi.org/10.1371/journal.pone.0183862
Benhalevy,, D., Bochkareva,, E. S., Biran,, I., & Bibi,, E. (2015). Model uracil‐rich RNAs and membrane protein mRNAs interact specifically with cold shock proteins in Escherichia coli. PLoS One, 10(7), e0134413. https://doi.org/10.1371/journal.pone.0134413
Bibi,, E. (2012). Is there a twist in the Escherichia coli signal recognition particle pathway? Trends in Biochemical Sciences, 37, 1–6. https://doi.org/10.1016/j.tibs.2011.09.004
Borgnia,, M. J., Subramaniam,, S., & Milne,, J. L. S. (2008). Three‐dimensional imaging of the highly bent architecture of Bdellovibrio bacteriovorus by using cryo‐electron tomography. Journal of Bacteriology, 190(7), 2588–2596. https://doi.org/10.1128/JB.01538-07
Bowman,, G. R., Comolli,, L. R., Gaietta,, G. M., Fero,, M., Hong,, S. H., Jones,, Y., … Shapiro,, L. (2010). Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Molecular Microbiology, 76(1), 173–189. https://doi.org/10.1111/j.1365-2958.2010.07088.x
Bryant,, J. A., Sellars,, L. E., Busby,, S. J. W., & Lee,, D. J. (2014). Chromosome position effects on gene expression in Escherichia coli K‐12. Nucleic Acids Research, 42(18), 11383–11392. https://doi.org/10.1093/nar/gku828
Bubunenko,, M., Court,, D. L., Al Refaii,, A., Saxena,, S., Korepanov,, A., Friedman,, D. I., … Alix,, J. H. (2013). Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli. Molecular Microbiology, 87(2), 382–393. https://doi.org/10.1111/mmi.12105
Burke,, K. A., Janke,, A. M., Rhine,, C. L., & Fawzi,, N. L. (2015). Residue‐by‐residue view of in vitro FUS granules that bind the C‐terminal domain of RNA polymerase II. Molecular Cell, 60(2), 231–241. https://doi.org/10.1016/j.molcel.2015.09.006
Buskila,, A. A., Kannaiah,, S., & Amster‐Choder,, O. (2014). RNA localization in bacteria. RNA Biology, 11(8), 1051–1060. https://doi.org/10.4161/rna.36135
Buxbaum,, A. R., Haimovich,, G., & Singer,, R. H. (2015). In the right place at the right time: Visualizing and understanding mRNA localization. Nature Reviews Molecular Cell Biology, 16, 95–109. https://doi.org/10.1038/nrm3918
Buxbaum,, A. R., Wu,, B., & Singer,, R. H. (2014). Single β‐actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science, 343(6169), 419–422. https://doi.org/10.1126/science.1242939
Carreras‐Puigvert,, J., Zitnik,, M., Jemth,, A. S., Carter,, M., Unterlass,, J. E., Hallström,, B., … Helleday,, T. (2017). A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nature Communications, 8(1), 1–17. https://doi.org/10.1038/s41467-017-01642-w
Castellana,, M., & Wingreen,, N. S. (2016). Spatial organization of bacterial transcription and translation. Proceedings of the National Academy of Sciences of the United States of America, 113, 1–6. https://doi.org/10.1073/pnas.1604995113
Chai,, Q., Singh,, B., Peisker,, K., Metzendorf,, N., Ge,, X., Dasgupta,, S., & Sanyal,, S. (2014). Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. Journal of Biological Chemistry, 289(16), 11342–11352. https://doi.org/10.1074/jbc.M114.557348
Chappell,, J., Takahashi,, M. K., Meyer,, S., Loughrey,, D., Watters,, K. E., & Lucks,, J. (2013). The centrality of RNA for engineering gene expression. Biotechnology Journal, 8, 1379–1395. https://doi.org/10.1002/biot.201300018
Chaulk,, S. G., Smith‐Frieday,, M. N., Arthur,, D. C., Culham,, D. E., Edwards,, R. A., Soo,, P., … Wood,, J. M. (2011). ProQ is an RNA chaperone that controls ProP levels in Escherichia coli. Biochemistry, 50(15), 3095–3106. https://doi.org/10.1021/bi101683a
Chen,, M., & Fredrick,, K. (2018). Measures of single‐versus multiple‐round translation argue against a mechanism to ensure coupling of transcription and translation. Proceedings of the National Academy of Sciences of the United States of America, 115(42), 10774–10779. https://doi.org/10.1073/pnas.1812940115
Chin,, A., & Lécuyer,, E. (2017). RNA localization: Making its way to the center stage. Biochimica et Biophysica Acta – General Subjects, 1861, 2956–2970. https://doi.org/10.1016/j.bbagen.2017.06.011
Choder,, M. (2011). mRNA imprinting. Cellular Logistics, 1(1), 37–40. https://doi.org/10.4161/cl.1.1.14465
Clarke,, J. E., Kime,, L., Romero,, A. D., & McDowall,, K. J. (2014). Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli. Nucleic Acids Research, 42(18), 11733–11751. https://doi.org/10.1093/nar/gku808
Cohen‐Zontag,, O., Baez,, C., Lim,, L. Q. J., Olender,, T., Schirman,, D., Dahary,, D., … Gerst,, J. E. (2019). A secretion‐enhancing cis regulatory targeting element (SECReTE) involved in mRNA localization and protein synthesis. PLoS Genetics, 15(7), e1008248. https://doi.org/10.1371/journal.pgen.1008248
Dar,, D., Prasse,, D., Schmitz,, R. A., & Sorek,, R. (2016). Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nature Microbiology, 1, 16143. https://doi.org/10.1038/nmicrobiol.2016.143
Davis,, J. H., Tan,, Y. Z., Carragher,, B., Potter,, C. S., Lyumkis,, D., & Williamson,, J. R. (2016). Modular assembly of the bacterial large ribosomal subunit. Cell, 167(6), 1610–1622.e15. https://doi.org/10.1016/j.cell.2016.11.020
Davis,, J. H., & Williamson,, J. R. (2017). Structure and dynamics of bacterial ribosome biogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160181. https://doi.org/10.1098/rstb.2016.0181
Deana,, A., Celesnik,, H., & Belasco,, J. G. (2008). The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature, 451(7176), 355–358. https://doi.org/10.1038/nature06475
Deneke,, C., Lipowsky,, R., & Valleriani,, A. (2013). Effect of ribosome shielding on mRNA stability. Physical Biology, 10(4), 46008. https://doi.org/10.1088/1478-3975/10/4/046008
Dennis,, P. P., & Bremer,, H. (2008). Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus, 3(1), 1–49. https://doi.org/10.1128/ecosal.5.2.3
Di Noto,, G. P., Molina,, M. C., & Quiroga,, C. (2019). Insights into non‐coding RNAs as novel antimicrobial drugs. Frontiers in Genetics, 10, 1–7. https://doi.org/10.3389/fgene.2019.00057
Diestra,, E., Cayrol,, B., Arluison,, V., & Risco,, C. (2009). Cellular electron microscopy imaging reveals the localization of the hfq protein close to the bacterial membrane. PLoS One, 4(12), e8301. https://doi.org/10.1371/journal.pone.0008301
Dorman,, C. J. (2013). Genome architecture and global gene regulation in bacteria: Making progress towards a unified model? Nature Reviews Microbiology, 11, 349–355. https://doi.org/10.1038/nrmicro3007
dos Santos,, V. T., Bisson‐Filho,, A. W., & Gueiros‐Filho,, F. J. (2012). DivIVA‐mediated polar localization of ComN, a posttranscriptional regulator of Bacillus subtilis. Journal of Bacteriology, 194(14), 3661–3669. https://doi.org/10.1128/JB.05879-11
Driessen,, A. J. M., & Nouwen,, N. (2008). Protein translocation across the bacterial cytoplasmic membrane. Annual Review of Biochemistry, 77(1), 643–667. https://doi.org/10.1146/annurev.biochem.77.061606.160747
Drino,, A., & Schaefer,, M. R. (2018). RNAs, phase separation, and membrane‐less organelles: Are post‐transcriptional modifications modulating organelle dynamics? BioEssays, 40, 1–12. https://doi.org/10.1002/bies.201800085
Dugar,, G., Svensson,, S. L., Bischler,, T., Wäldchen,, S., Reinhardt,, R., Sauer,, M., & Sharma,, C. M. (2016). The CsrA‐FliW network controls polar localization of the dual‐function flagellin mRNA in Campylobacter jejuni. Nature Communications, 7(1), 11667. https://doi.org/10.1038/ncomms11667
Elowitz,, M. B., Surette,, M. G., Wolf,, P. E., Stock,, J. B., & Leibler,, S. (1999). Protein mobility in the cytoplasm of Escherichia coli. Journal of Bacteriology, 181(1), 197–203. https://doi.org/10.1128/jb.181.1.197-203.1999
El‐Sharoud,, W. M., & Graumann,, P. L. (2007). Cold shock proteins aid coupling of transcription and translation in bacteria. Science Progress, 90(1), 15–27. https://doi.org/10.3184/003685007780440549
Falahati,, H., Pelham‐Webb,, B., Blythe,, S., & Wieschaus,, E. (2016). Nucleation by rRNA dictates the precision of nucleolus assembly. Current Biology, 26(3), 277–285. https://doi.org/10.1016/j.cub.2015.11.065
Fei,, J., & Sharma,, C. M. (2018). RNA localization in bacteria. Microbiology Spectrum, 6(5), 1–19. https://doi.org/10.1128/microbiolspec.rwr-0024-2018
Fei,, J., Singh,, D., Zhang,, Q., Park,, S., Balasubramanian,, D., Golding,, I., … Ha,, T. (2015). Determination of in vivo target search kinetics of regulatory noncoding RNA. Science, 347(6228), 1371–1374. https://doi.org/10.1126/science.1258849
Fisher,, J. K., Bourniquel,, A., Witz,, G., Weiner,, B., Prentiss,, M., & Kleckner,, N. (2013). Four‐dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell, 153(4), 882–895. https://doi.org/10.1016/j.cell.2013.04.006
Franks,, T. M., & Lykke‐Andersen,, J. (2008). The control of mRNA decapping and P‐body formation. Molecular Cell, 32, 605–615. https://doi.org/10.1016/j.molcel.2008.11.001
French,, S. L., Santangelo,, T. J., Beyer,, A. L., & Reeve,, J. N. (2007). Transcription and translation are coupled in archaea. Molecular Biology and Evolution, 24(4), 893–895. https://doi.org/10.1093/molbev/msm007
Frye,, M., Harada,, B. T., Behm,, M., & He,, C. (2018). RNA modifications modulate gene expression during development. Science, 361(6409), 1346–1349. https://doi.org/10.1126/science.aau1646
Gaal,, T., Bratton,, B. P., Sanchez‐Vazquez,, P., Sliwicki,, A., Sliwicki,, K., Vegel,, A., … Gourse,, R. L. (2016). Colocalization of distant chromosomal loci in space in E. coli: A bacterial nucleolus. Genes and Development, 30(20), 2272–2285. https://doi.org/10.1101/gad.290312.116
Garcia,, J. F., & Parker,, R. (2015). MS2 coat protein bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: Implications for the localization of mRNAs by MS2‐MCP system. RNA, 21(8), 1–3. https://doi.org/10.1261/rna.051797.115/
Garcia,, J. F., & Parker,, R. (2016). Ubiquitous accumulation of 3′ mRNA decay fragments in Saccharomyces cerevisiae mRNAs with chromosomally integrated MS2 arrays. RNA (New York, N.Y.), 22(5), 657–659. https://doi.org/10.1261/rna.056325.116
Golding,, I., & Cox,, E. C. (2004). RNA dynamics in live Escherichia coli cells. Proceedings of the National Academy of Sciences of the United States of America, 101(31), 11310–11315. https://doi.org/10.1073/pnas.0404443101
Golding,, I., Paulsson,, J., Zawilski,, S. M., & Cox,, E. C. (2005). Real‐time kinetics of gene activity in individual bacteria. Cell, 123(6), 1025–1036. https://doi.org/10.1016/j.cell.2005.09.031
Gotta,, S. L., Miller,, O. L., & French,, S. L. (1991). rRNA transcription rate in Escherichia coli. Journal of Bacteriology, 173, 6647–6649. https://doi.org/10.1128/jb.173.20.6647-6649.1991
Gottshall,, E. Y., Seebart,, C., Gatlin,, J. C., & Ward,, N. L. (2014). Spatially segregated transcription and translation in cells of the endomembrane‐containing bacterium Gemmata obscuriglobus. Proceedings of the National Academy of Sciences of the United States of America, 111(30), 11067–11072. https://doi.org/10.1073/pnas.1409187111
Govindarajan,, S., & Amster‐Choder,, O. (2016). Where are things inside a bacterial cell? Current Opinion in Microbiology, 33, 83–90. https://doi.org/10.1016/j.mib.2016.07.003
Gray,, W. T., Govers,, S. K., Xiang,, Y., Parry,, B. R., Campos,, M., Kim,, S., & Jacobs‐Wagner,, C. (2019). Nucleoid size scaling and intracellular organization of translation across bacteria. Cell, 177(6), 1632–1648.e20. https://doi.org/10.1016/j.cell.2019.05.017
Hadjeras,, L., Poljak,, L., Bouvier,, M., Morin‐Ogier,, Q., Canal,, I., Cocaign‐Bousquet,, M., … Carpousis,, A. J. (2019). Detachment of the RNA degradosome from the inner membrane of Escherichia coli results in a global slowdown of mRNA degradation, proteolysis of RNase E and increased turnover of ribosome‐free transcripts. Molecular Microbiology, 111(6), 1715–1731. https://doi.org/10.1111/mmi.14248
Hahn,, D., Amann,, R. I., & Zeyer,, J. (1993). Detection of mRNA in Streptomyces cells by whole‐cell hybridization with digoxigenin‐labeled probes. Applied and Environmental Microbiology, 59(8), 2753–2757. https://doi.org/10.1128/aem.59.8.2753-2757.1993
Hamouche,, L., Billaudeau,, C., Rocca,, A., Chastanet,, A., Ngo,, S., Laalami,, S., & Putzer,, H. (2020). Dynamic membrane localization of RNase Y in Bacillus subtilis. MBio, 11(1), 1–7. https://doi.org/10.1128/mBio.03337-19
Hanna,, M. M., & Liu,, K. (1998). Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. Journal of Molecular Biology, 282(2), 227–239. https://doi.org/10.1006/jmbi.1998.2005
Heinkel,, F., Abraham,, L., Ko,, M., Chao,, J., Bach,, H., Hui,, L. T., … Gsponer,, J. (2019). Phase separation and clustering of an ABC transporter in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16326–16331. https://doi.org/10.1073/pnas.1820683116
Herskovits,, A. A., & Bibi,, E. (2000). Association of Escherichia coli ribosomes with the inner membrane requires the signal recognition particle receptor but is independent of the signal recognition particle. Proceedings of the National Academy of Sciences of the United States of America, 97(9), 4621–4626. https://doi.org/10.1073/pnas.080077197
Higgs,, P. G., & Lehman,, N. (2015). The RNA world: Molecular cooperation at the origins of life. Nature Reviews Genetics, 16, 7–17. https://doi.org/10.1038/nrg3841
Hoernes,, T. P., Clementi,, N., Faserl,, K., Glasner,, H., Breuker,, K., Lindner,, H., … Erlacher,, M. D. (2016). Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Research, 44(2), 852–862. https://doi.org/10.1093/nar/gkv1182
Höfer,, K., & Jäschke,, A. (2018). Epitranscriptomics: RNA modifications in bacteria and archaea. In Microbiology spectrum (Vol. 6, pp. 399–420). American Society of Microbiology. https://doi.org/10.1128/microbiolspec.rwr-0015-2017
Hönerlage,, W., Hahn,, D., & Zeyer,, J. (1995). Detection of mRNA of nprM in Bacillus megaterium ATCC 14581 grown in soil by whole‐cell hybridization. Archives of Microbiology, 163(4), 235–241. https://doi.org/10.1007/BF00393374
Hunt,, A., Rawlins,, J. P., Thomaides,, H. B., & Errington,, J. (2006). Functional analysis of 11 putative essential genes in Bacillus subtilis. Microbiology, 152(10), 2895–2907. https://doi.org/10.1099/mic.0.29152-0
Hyman,, A. A., Weber,, C. A., & Jülicher,, F. (2014). Liquid–liquid phase separation in biology. Annual Review of Cell and Developmental Biology, 30(1), 39–58. https://doi.org/10.1146/annurev-cellbio-100913-013325
Ingolia,, N. T., Hussmann,, J. A., & Weissman,, J. S. (2018). Ribosome profiling: Global views of translation. Cold Spring Harbor Perspectives in Biology, 11, a032698. https://doi.org/10.1101/cshperspect.a032698
Jin,, D. J., Mata Martin,, C., Sun,, Z., Cagliero,, C., & Zhou,, Y. N. (2016). Nucleolus‐like compartmentalization of the transcription machinery in fast‐growing bacterial cells. Critical Reviews in Biochemistry and Molecular Biology, 9238(December), 1–11. https://doi.org/10.1080/10409238.2016.1269717
Joyeux,, M. (2016). In vivo compaction dynamics of bacterial DNA: A fingerprint of DNA/RNA demixing? Current Opinion in Colloid and Interface Science, 26, 17–27. https://doi.org/10.1016/j.cocis.2016.08.005
Kannaiah,, S., & Amster‐Choder,, O. (2014). Protein targeting via mRNA in bacteria. Biochimica et Biophysica Acta – Molecular Cell Research, 1843(8), 1457–1465. https://doi.org/10.1016/j.bbamcr.2013.11.004
Kannaiah,, S., & Amster‐Choder,, O. (2016). Methods for studying RNA localization in bacteria. Methods, 98, 99–103. https://doi.org/10.1016/j.ymeth.2015.12.010
Kannaiah,, S., Livny,, J., & Amster‐Choder,, O. (2019). Spatiotemporal organization of the E. coli transcriptome: Translation independence and engagement in regulation. Molecular Cell, 76(4), 574–589.e7. https://doi.org/10.1016/j.molcel.2019.08.013
Kawamoto,, H., Morita,, T., Shimizu,, A., Inada,, T., & Aiba,, H. (2005). Implication of membrane localization of target mRNA in the action of a small RNA: Mechanism of post‐transcriptional regulation of glucose transporter in Escherichia coli. Genes and Development, 19(3), 328–338. https://doi.org/10.1101/gad.1270605
Khemici,, V., Poljak,, L., Luisi,, B. F., & Carpousis,, A. J. (2008). The RNase E of Escherichia coli is a membrane‐binding protein. Molecular Microbiology, 70(4), 799–813. https://doi.org/10.1111/j.1365-2958.2008.06454.x
Kim,, J., Goñi‐Moreno,, A., Calles,, B., & de Lorenzo,, V. (2019). Spatial organization of the gene expression hardware in Pseudomonas putida. Environmental Microbiology, 21(5), 1645–1658. https://doi.org/10.1111/1462-2920.14544
Kirkpatrick,, C. L., & Viollier,, P. H. (2011). Poles apart: Prokaryotic polar organelles and their spatial regulation. Cold Spring Harbor Perspectives in Biology, 3(3), 1–14. https://doi.org/10.1101/cshperspect.a006809
Koch,, G., Wermser,, C., Acosta,, I. C., Kricks,, L., Stengel,, S. T., Yepes,, A., & Lopez,, D. (2017). Attenuating Staphylococcus aureus virulence by targeting flotillin protein scaffold activity. Cell Chemical Biology, 24(7), 845–857.e6. https://doi.org/10.1016/j.chembiol.2017.05.027
Korkmazhan,, E., Teimouri,, H., Peterman,, N., & Levine,, E. (2017). Dynamics of translation can determine the spatial organization of membrane‐bound proteins and their mRNA. Proceedings of the National Academy of Sciences of the United States of America, 114, 201700941. https://doi.org/10.1073/pnas.1700941114
Kuhlman,, T. E., & Cox,, E. C. (2012). Gene location and DNA density determine transcription factor distributions in Escherichia coli. Molecular Systems Biology, 8(1), 610. https://doi.org/10.1038/msb.2012.42
Laloux,, G., & Jacobs‐Wagner,, C. (2014). How do bacteria localize proteins to the cell pole? Journal of Cell Science, 127(1), 11–19. https://doi.org/10.1242/jcs.138628
Langdon,, E. M., & Gladfelter,, A. S. (2018). A new lens for RNA localization: Liquid–liquid phase separation. Annual Review of Microbiology, 72(1), 255–271. https://doi.org/10.1146/annurev-micro-090817-062814
Lécuyer,, E., Yoshida,, H., Parthasarathy,, N., Alm,, C., Babak,, T., Cerovina,, T., … Krause,, H. M. (2007). Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell, 131(1), 174–187. https://doi.org/10.1016/j.cell.2007.08.003
Leewenhoeck,, A. (1684). An abstract of a letter from Mr. Anthony Leevvenhoeck at Delft, dated Sep. 17. 1683. Containing some microscopical observations, about animals in the scurf of the teeth, the substance call`d worms in the nose, the cuticula consisting of scales. Philosophical Transactions of the Royal Society of London, 14(159), 568–574. https://doi.org/10.1098/rstl.1684.0030
Lehnik‐Habrink,, M., Newman,, J., Rothe,, F. M., Solovyova,, A. S., Rodrigues,, C., Herzberg,, C., … Stülke,, J. (2011). RNase Y in Bacillus subtilis: A natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. Journal of Bacteriology, 193(19), 5431–5441. https://doi.org/10.1128/JB.05500-11
Lewis,, P. J., Thaker,, S. D., & Errington,, J. (2000). Compartmentalization of transcription and translation in Bacillus subtilis. The EMBO Journal, 19(4), 710–718. https://doi.org/10.1093/emboj/19.4.710
Li,, G. W., Burkhardt,, D., Gross,, C., & Weissman,, J. S. (2014). Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell, 157(3), 624–635. https://doi.org/10.1016/j.cell.2014.02.033
Li,, Y., Ke,, K., & Spitale,, R. C. (2019). Biochemical methods to image and analyze RNA localization: From one to many. Biochemistry, 58(5), 379–386. https://doi.org/10.1021/acs.biochem.8b01087
Liang,, J. C., Bloom,, R. J., & Smolke,, C. D. (2011). Engineering biological systems with synthetic RNA molecules. Molecular Cell, 43, 915–926. https://doi.org/10.1016/j.molcel.2011.08.023
Libby,, E. A., Roggiani,, M., & Goulian,, M. (2012). Membrane protein expression triggers chromosomal locus repositioning in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7445–7450. https://doi.org/10.1073/pnas.1109479109
Liou,, G. G., Jane,, W. N., Cohen,, S. N., Lin,, N. S., & Lin‐Chao,, S. (2001). RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N‐terminal region of ribonuclease E. Proceedings of the National Academy of Sciences of the United States of America, 98(1), 63–68. https://doi.org/10.1073/pnas.98.1.63
Lopian,, L., Nussbaum‐Shochat,, A., O`Day‐Kerstein,, K., Wright,, A., & Amster‐Choder,, O. (2003). The BgIF sensor recruits the BgIG transcription regulator to the membrane and releases it on stimulation. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7099–7104. https://doi.org/10.1073/pnas.1037608100
Maamar,, H., Raj,, A., & Dubnau,, D. (2007). Noise in gene expression determines cell fate in Bacillus subtilis. Science, 317(5837), 526–529. https://doi.org/10.1126/science.1140818
Mackie,, G. A. (1998). Ribonuclease E is a 5′‐end‐dependent endonuclease. Nature, 395(6703), 720–723. https://doi.org/10.1038/27246
Majander,, K., Anton,, L., Antikainen,, J., Lång,, H., Brummer,, M., Korhonen,, T. K., & Westerlund‐Wikström,, B. (2005). Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus. Nature Biotechnology, 23(4), 475–481. https://doi.org/10.1038/nbt1077
Malabirade,, A., Morgado‐Brajones,, J., Trépout,, S., Wien,, F., Marquez,, I., Seguin,, J., … Véronique,, A. (2017). Membrane association of the bacterial riboregulator Hfq and functional perspectives. Scientific Reports, 7(1), 10724. https://doi.org/10.1038/s41598-017-11157-5
Marbaniang,, C. N., & Vogel,, J. (2016). Emerging roles of RNA modifications in bacteria. Current Opinion in Microbiology, 30, 50–57. https://doi.org/10.1016/j.mib.2016.01.001
Mascarenhas,, J., Weber,, M. H. W., & Graumann,, P. L. (2001). Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription. EMBO Reports, 2(8), 685–689. https://doi.org/10.1093/embo-reports/kve160
Matsumoto,, K., Hara,, H., Fishov,, I., Mileykovskaya,, E., & Norris,, V. (2015). The membrane: Transertion as an organizing principle in membrane heterogeneity. Frontiers in Microbiology, 6(JUN), 1–21. https://doi.org/10.3389/fmicb.2015.00572
Melamed,, S., Adams,, P. P., Zhang,, A., Zhang,, H., & Storz,, G. (2020). RNA–RNA interactomes of ProQ and Hfq reveal overlapping and competing roles. Molecular Cell, 77(2), 411–425.e7. https://doi.org/10.1016/j.molcel.2019.10.022
Melamed,, S., Peer,, A., Faigenbaum‐Romm,, R., Gatt,, Y. E., Reiss,, N., Bar,, A., … Margalit,, H. (2016). Global mapping of small RNA–target interactions in bacteria. Molecular Cell, 63(5), 884–897. https://doi.org/10.1016/j.molcel.2016.07.026
Miller,, O. L., & Beatty,, B. R. (1969). Visualization of nucleolar genes. Science, 164(3882), 955–957. https://doi.org/10.1126/science.164.3882.955
Miller,, O. L., Hamkalo,, B. A., & Thomas,, C. A. (1970). Visualization of bacterial genes in action. Science (New York, N.Y.), 169(943), 392–395. https://doi.org/10.1126/science.169.3943.392
Moffitt,, J. R., Pandey,, S., Boettiger,, A. N., Wang,, S., & Zhuang,, X. (2016). Spatial organization shapes the turnover of a bacterial transcriptome. eLife, 5(MAY2016), 1–22. https://doi.org/10.7554/eLife.13065
Mondal,, J., Bratton,, B. P., Li,, Y., Yethiraj,, A., & Weisshaar,, J. C. (2011). Entropy‐based mechanism of ribosome‐nucleoid segregation in E. coli cells. Biophysical Journal, 100(11), 2605–2613. https://doi.org/10.1016/j.bpj.2011.04.030
Montero Llopis,, P., Sliusarenko,, O., Heinritz,, J., & Jacobs‐Wagner,, C. (2012). In vivo biochemistry in bacterial cells using FRAP: Insight into the translation cycle. Biophysical Journal, 103(9), 1848–1859. https://doi.org/10.1016/j.bpj.2012.09.035
Montero Llopis,, P., Jackson,, A. F., Sliusarenko,, O., Surovtsev,, I., Heinritz,, J., Emonet,, T., & Jacobs‐wagner,, C. (2010). Spatial organization of the flow of genetic information in bacteria. Nature, 466(7302), 77–81. https://doi.org/10.1038/nature09152
Monterroso,, B., Zorrilla,, S., Sobrinos‐Sanguino,, M., Robles‐Ramos,, M. A., López‐Álvarez,, M., Margolin,, W., … Rivas,, G. (2019). Bacterial FtsZ protein forms phase‐separated condensates with its nucleoid‐associated inhibitor SlmA. EMBO Reports, 20(1), 1–13. https://doi.org/10.15252/embr.201845946
Morikawa,, N., & Imamoto,, F. (1969). Degradation of tryptophan messenger: On the degradation of messenger RNA for the tryptophan operon in Escherichia coli. Nature, 223(5201), 37–40. https://doi.org/10.1038/223037a0
Morse,, D. E., Mosteller,, R., Baker,, R. F., & Yanofsky,, C. (1969). Degradation of tryptophan messenger: Direction of in vivo degradation of tryptophan messenger RNA‐A correction. Nature, 223(5201), 40–43. https://doi.org/10.1038/223040a0
Müller,, A., Beeby,, M., McDowall,, A. W., Chow,, J., Jensen,, G. J., & Clemons,, W. M. (2014). Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. MicrobiologyOpen, 3(5), 702–710. https://doi.org/10.1002/mbo3.200
Murashko,, O. N., & Lin‐Chao,, S. (2017). Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology. Proceedings of the National Academy of Sciences of the United States of America, 201703731, E8025–E8034. https://doi.org/10.1073/pnas.1703731114
Mustafi,, M., & Weisshaar,, J. C. (2018). Simultaneous binding of multiple EF‐Tu copies to translating ribosomes in live Escherichia coli. MBio, 9(1), e02143–e02117. https://doi.org/10.1128/mBio.02143-17
Narula,, J., Kuchina,, A., Lee,, D. Y. D., Fujita,, M., Süel,, G. M., & Igoshin,, O. A. (2015). Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication. Cell, 162(2), 328–337. https://doi.org/10.1016/j.cell.2015.06.012
Nevo‐Dinur,, K., Nussbaum‐Shochat,, A., Ben‐Yehuda,, S., & Amster‐Choder,, O. (2011). Translation‐independent localization of mRNA in E. coli. Science, 331(6020), 1081–1084. https://doi.org/10.1126/science.1195691
Nguyen,, J., & Castellana,, M. (2018). Optimal localization patterns in bacterial protein synthesis. Physical Review E, 98(3), 032417. https://doi.org/10.1103/PhysRevE.98.032417
Norris,, V., Mileykovskaya,, E., & Matsumoto,, K. (2015). Extending the Transertion hypothesis. Biochemistry %26 Analytical Biochemistry, 4(4), 1–4. https://doi.org/10.4172/2161-1009.1000234
Ohniwa,, R. L., Morikawa,, K., Takeshita,, S. L., Kim,, J., Ohta,, T., Wada,, C., & Takeyasu,, K. (2007). Transcription‐coupled nucleoid architecture in bacteria. Genes to Cells, 12(10), 1141–1152. https://doi.org/10.1111/j.1365-2443.2007.01125.x
Ortiz,, J. O., Förster,, F., Kürner,, J., Linaroudis,, A. A., & Baumeister,, W. (2006). Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. Journal of Structural Biology, 156(2), 334–341. https://doi.org/10.1016/j.jsb.2006.04.014
Padrón,, A., Iwasaki,, S., & Ingolia,, N. T. (2019). Proximity RNA labeling by APEX‐Seq reveals the organization of translation initiation complexes and repressive RNA granules. Molecular Cell, 75(4), 875–887.e5. https://doi.org/10.1016/j.molcel.2019.07.030
Parry,, B. R., Surovtsev,, I. V., Cabeen,, M. T., O`Hern,, C. S., Dufresne,, E. R., & Jacobs‐Wagner,, C. (2014). The bacterial cytoplasm has glass‐like properties and is fluidized by metabolic activity. Cell, 156(1–2), 183–194. https://doi.org/10.1016/j.cell.2013.11.028
Persson,, F., Lindén,, M., Unoson,, C., & Elf,, J. (2013). Extracting intracellular diffusive states and transition rates from single‐molecule tracking data. Nature Methods, 10(3), 265–269. https://doi.org/10.1038/nmeth.2367
Pettijohn,, D. E., & Hecht,, R. (1974). RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harbor Symposia on Quantitative Biology, 38, 31–41. https://doi.org/10.1101/SQB.1974.038.01.006
Phadtare,, S., & Inouye,, M. (1999). Sequence‐selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Molecular Microbiology, 33(5), 1004–1014. https://doi.org/10.1046/j.1365-2958.1999.01541.x
Phadtare,, S., Tadigotla,, V., Shin,, W. H., Sengupta,, A., & Severinov,, K. (2006). Analysis of Escherichia coli global gene expression profiles in response to overexpression and deletion of CspC and CspE. Journal of Bacteriology, 188(7), 2521–2527. https://doi.org/10.1128/JB.188.7.2521-2527.2006
Pilhofer,, M., Pavlekovic,, M., Lee,, N. M., Ludwig,, W., & Schleifer,, K. H. (2009). Fluorescence in situ hybridization for intracellular localization of nifH mRNA. Systematic and Applied Microbiology, 32(3), 186–192. https://doi.org/10.1016/j.syapm.2008.12.007
Plochowietz,, A., Farrell,, I., Smilansky,, Z., Cooperman,, B. S., & Kapanidis,, A. N. (2016). In vivo single‐RNA tracking shows that most tRNA diffuses freely in live bacteria. Nucleic Acids Research, 45, 926–937. https://doi.org/10.1093/nar/gkw787
Prilusky,, J., & Bibi,, E. (2009). Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6662–6666. https://doi.org/10.1073/pnas.0902029106
Qian,, Z., Macvanin,, M., Dimitriadis,, E. K., He,, X., Zhurkin,, V., & Adhya,, S. (2015). A new noncoding RNA arranges bacterial chromosome organization. MBio, 6(4), 1–8. https://doi.org/10.1128/mBio.00998-15
Qian,, Z., Zhurkin,, V. B., & Adhya,, S. (2017). DNA–RNA interactions are critical for chromosome condensation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 114(46), 12225–12230. https://doi.org/10.1073/pnas.1711285114
Roggiani,, M., & Goulian,, M. (2015). Chromosome–membrane interactions in bacteria. Annual Review of Genetics, 49(1), 115–129. https://doi.org/10.1146/annurev-genet-112414-054958
Roppelt,, V., Hobel,, C. F. V., Albers,, S. V., Lassek,, C., Schwarz,, H., Klug,, G., & Evguenieva‐Hackenberg,, E. (2010). The archaeal exosome localizes to the membrane. FEBS Letters, 584(13), 2791–2795. https://doi.org/10.1016/j.febslet.2010.05.013
Roundtree,, I. A., Evans,, M. E., Pan,, T., & He,, C. (2017). Dynamic RNA modifications in gene expression regulation. Cell, 169, 1187–1200. https://doi.org/10.1016/j.cell.2017.05.045
Rudner,, D. Z., & Losick,, R. (2010). Protein subcellular localization in bacteria. Cold Spring Harbor Perspectives in Biology, 2, a000307. https://doi.org/10.1101/cshperspect.a000307
Russell,, J. H., & Keiler,, K. C. (2009). Subcellular localization of a bacterial regulatory RNA. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 16405–16409. https://doi.org/10.1073/pnas.0904904106
Sáenz‐Lahoya,, S., Bitarte,, N., García,, B., Burgui,, S., Vergara‐Irigaray,, M., Valle,, J., … Lasa,, I. (2019). Noncontiguous operon is a genetic organization for coordinating bacterial gene expression. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1733–1738. https://doi.org/10.1073/pnas.1812746116
Sanamrad,, A., Persson,, F., Lundius,, E. G., Fange,, D., Gynnå,, A. H., & Elf,, J. (2014). Single‐particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proceedings of the National Academy of Sciences of the United States of America, 111(31), 11413–11418. https://doi.org/10.1073/pnas.1411558111
Schibich,, D., Gloge,, F., Pöhner,, I., Björkholm,, P., Wade,, R. C., von Heijne,, G., … Kramer,, G. (2016). Global profiling of SRP interaction with nascent polypeptides. Nature, 536(7615), 219–223. https://doi.org/10.1038/nature19070
Sedlyarova,, N., Shamovsky,, I., Bharati,, B. K., Epshtein,, V., Chen,, J., Gottesman,, S., … Nudler,, E. (2016). sRNA‐mediated control of transcription termination in E. coli. Cell, 167(1), 111–121.e13. https://doi.org/10.1016/j.cell.2016.09.004
Seto,, S., Layh‐Schmitt,, G., Kenri,, T., & Miyata,, M. (2001). Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy. Journal of Bacteriology, 183(5), 1621–1630. https://doi.org/10.1128/JB.183.5.1621-1630.2001
Sheidy,, D. T., & Zielke,, R. A. (2013). Analysis and expansion of the role of the Escherichia coli protein ProQ. PLoS One, 8(10), e79656. https://doi.org/10.1371/journal.pone.0079656
Sheng,, H., Stauffer,, W. T., Hussein,, R., Lin,, C., & Lim,, H. N. (2017). Nucleoid and cytoplasmic localization of small RNAs in Escherichia coli. Nucleic Acids Research, 45(5), 2919–2934. https://doi.org/10.1093/nar/gkx023
Singer,, H. M., Erhardt,, M., & Hughes,, K. T. (2014). Comparative analysis of the secretion capability of early and late flagellar type III secretion substrates. Molecular Microbiology, 93(3), 505–520. https://doi.org/10.1111/mmi.12675
Smirnov,, A., Wang,, C., Drewry,, L. L., & Vogel,, J. (2017). Molecular mechanism of mRNA repression in trans by a ProQ‐dependent small RNA. The EMBO Journal, 36(8), 1029–1045. https://doi.org/10.15252/embj.201696127
So,, L. H., Ghosh,, A., Zong,, C., Sepúlveda,, L. A., Segev,, R., & Golding,, I. (2011). General properties of transcriptional time series in Escherichia coli. Nature Genetics, 43(6), 554–560. https://doi.org/10.1038/ng.821
Soneson,, C., Yao,, Y., Bratus‐Neuenschwander,, A., Patrignani,, A., Robinson,, M. D., & Hussain,, S. (2019). A comprehensive examination of nanopore native RNA sequencing for characterization of complex transcriptomes. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11272-z
Stracy,, M., Lesterlin,, C., Garza de Leon,, F., Uphoff,, S., Zawadzki,, P., & Kapanidis,, A. N. (2015). Live‐cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proceedings of the National Academy of Sciences of the United States of America, 112(32), E4390–E4399. https://doi.org/10.1073/pnas.1507592112
Strahl,, H., Turlan,, C., Khalid,, S., Bond,, P. J., Kebalo,, J. M., Peyron,, P., … Carpousis,, A. J. (2015). Membrane recognition and dynamics of the RNA degradosome. PLoS Genetics, 11(2), 1–23. https://doi.org/10.1371/journal.pgen.1004961
Sukhodolets,, M. V., & Garges,, S. (2003). Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm‐like ATPase Hfq. Biochemistry, 42(26), 8022–8034. https://doi.org/10.1021/bi020638i
Surovtsev,, I. V., & Jacobs‐Wagner,, C. (2018). Subcellular organization: A critical feature of bacterial cell replication. Cell, 172(6), 1271–1293. https://doi.org/10.1016/j.cell.2018.01.014
Taghbalout,, A., & Rothfield,, L. (2007). RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 104(5), 1667–1672. https://doi.org/10.1073/pnas.0610491104
Taghbalout,, A., Yang,, Q., & Arluison,, V. (2014). The Escherichia coli RNA processing and degradation machinery is compartmentalized within an organized cellular network. Biochemical Journal, 458(1), 11–22. https://doi.org/10.1042/BJ20131287
Taliaferro,, J. M. (2019). Classical and emerging techniques to identify and quantify localized RNAs. WIREs: RNA, 10, 1–4. https://doi.org/10.1002/wrna.1542
Teimouri,, H., Korkmazhan,, E., Stavans,, J., & Levine,, E. (2017). Sub‐cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria. Physical Biology, 14(5), 056001. https://doi.org/10.1088/1478-3975/aa69ac
Tolker‐Nielsen,, T., Holmstrøm,, K., Boe,, L., & Molin,, S. (1998). Non‐genetic population heterogeneity studied by in situ polymerase chain reaction. Molecular Microbiology, 27(6), 1099–1105. https://doi.org/10.1046/j.1365-2958.1998.00760.x
Tolker‐Nielsen,, T., Holmstrøm,, K., & Molin,, S. (1997). Visualization of specific gene expression in individual Salmonella typhimurium cells by in situ PCR. Applied and Environmental Microbiology, 63(11), 4196–4203. https://doi.org/10.1128/aem.63.11.4196-4203.1997
Toran,, P., Smolina,, I., Driscoll,, H., Ding,, F., Sun,, Y., Cantor,, C. R., & Broude,, N. E. (2014). Labeling native bacterial RNA in live cells. Cell Research, 24, 894–897. https://doi.org/10.1038/cr.2014.47
Valencia‐Burton,, M., McCullough,, R. M., Cantor,, C. R., & Broude,, N. E. (2007). RNA visualization in live bacterial cells using fluorescent protein complementation. Nature Methods, 4(5), 421–427. https://doi.org/10.1038/nmeth1023
Valencia‐Burton,, M., Shah,, A., Sutin,, J., Borogovac,, A., McCullough,, R. M., Cantor,, C. R., … Broude,, N. E. (2009). Spatiotemporal patterns and transcription kinetics of induced RNA in single bacterial cells. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 16399–16404. https://doi.org/10.1073/pnas.0907495106
van Gijtenbeek,, L. A., & Kok,, J. (2017). Illuminating messengers: An update and outlook on RNA visualization in bacteria. Frontiers in Microbiology, 8, 1–19. https://doi.org/10.3389/fmicb.2017.01161
van Gijtenbeek,, L. A., Robinson,, A., van Oijen,, A. M., Poolman,, B., & Kok,, J. (2016). On the spatial organization of mRNA, plasmids, and ribosomes in a bacterial host overexpressing membrane proteins. PLoS Genetics, 12(12), e1006523. https://doi.org/10.1371/journal.pgen.1006523
Van Nues,, R. W., Castro‐Roa,, D., Yuzenkova,, Y., & Zenkin,, N. (2015). Ribonucleoprotein particles of bacterial small non‐coding RNA IsrA (IS61 or McaS) and its interaction with RNA polymerase core may link transcription to mRNA fate. Nucleic Acids Research, 44(6), 2577–2592. https://doi.org/10.1093/nar/gkv1302
Vanderpool,, C. K., & Gottesman,, S. (2004). Involvement of a novel transcriptional activator and small RNA in post‐transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Molecular Microbiology, 54(4), 1076–1089. https://doi.org/10.1111/j.1365-2958.2004.04348.x
Vogel,, J. (2020). An RNA biology perspective on species‐specific programmable RNA antibiotics. Molecular Microbiology, 113(3), 550–559. https://doi.org/10.1111/mmi.14476
Vogel,, J., & Luisi,, B. F. (2011). Hfq and its constellation of RNA. Nature Reviews Microbiology, 9, 578–589. https://doi.org/10.1038/nrmicro2615
Volkov,, I. L., Lindén,, M., Aguirre Rivera,, J., Ieong,, K.‐W., Metelev,, M., Elf,, J., & Johansson,, M. (2018). tRNA tracking for direct measurements of protein synthesis kinetics in live cells. Nature Chemical Biology, 14(6), 618–626. https://doi.org/10.1038/s41589-018-0063-y
Wagner,, E. G. H., & Romby,, P. (2015). Small RNAs in bacteria and archaea: Who they are, what they do, and how they do it. Advances in Genetics, 90, 133–208. https://doi.org/10.1016/bs.adgen.2015.05.001
Wagner,, M., Schmid,, M., Juretschko,, S., Trebesius,, K.‐H., Bubert,, A., Goebel,, W., & Schleifer,, K.‐H. (1998). In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiology Letters, 160(1), 159–168. https://doi.org/10.1111/j.1574-6968.1998.tb12906.x
Wang,, M., Zhang,, J., Xu,, H., & Golding,, I. (2019). Measuring transcription at a single gene copy reveals hidden drivers of bacterial individuality. Nature Microbiology, 4, 2118–2127. https://doi.org/10.1038/s41564-019-0553-z
Wang,, W., Li,, G. W., Chen,, C., Xie,, X. S., & Zhuang,, X. (2011). Chromosome organization by a nucleoid‐associated protein in live bacteria. Science, 333(6048), 1445–1449. https://doi.org/10.1126/science.1204697
Weng,, X., Bohrer,, C. H., Bettridge,, K., Lagda,, A. C., Cagliero,, C., Jin,, D. J., & Xiao,, J. (2019). Spatial organization of RNA polymerase and its relationship with transcription in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 116(40), 20115–20123. https://doi.org/10.1073/pnas.1903968116
WHO. (2014). Global Report on Surveillance 2014. WHO 2014 AMR Report (April), 1–72. Retrieved from http://www.who.int/drugresistance/documents/AMR_report_Web_slide_set.pdf
Windbichler,, N., Von Pelchrzim,, F., Mayer,, O., Csaszar,, E., & Schroeder,, R. (2008). Isolation of small RNA‐binding proteins from E. coli: Evidence for frequent interaction of RNAs with RNA polymerase. RNA Biology, 5(1), 30–40. https://doi.org/10.4161/rna.5.1.5694
Woldringh,, C. L. (2002). The role of co‐transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Molecular Microbiology, 45(1), 17–29. https://doi.org/10.1046/j.1365-2958.2002.02993.x
Yan,, B., Boitano,, M., Clark,, T. A., & Ettwiller,, L. (2018). SMRT‐Cappable‐seq reveals complex operon variants in bacteria. Nature Communications, 9(1), 3676. https://doi.org/10.1038/s41467-018-05997-6
Yang,, S., Kim,, S., Kim,, D. K., Jeon An,, H., Bae Son,, J., Hedén Gynnå,, A., & Ki Lee,, N. (2019). Transcription and translation contribute to gene locus relocation to the nucleoid periphery in E. coli. Nature Communications, 10(1), 5131. https://doi.org/10.1038/s41467-019-13152-y
Yosef,, I., Bochkareva,, E. S., Adler,, J., & Bibi,, E. (2010). Membrane protein biogenesis in Ffh‐ or FtsY‐depleted Escherichia coli. PLoS One, 5(2), e9130. https://doi.org/10.1371/journal.pone.0009130
Zhang,, H., Elbaum‐Garfinkle,, S., Langdon,, E. M., Taylor,, N., Occhipinti,, P., Bridges,, A. A., … Gladfelter,, A. S. (2015). RNA controls PolyQ protein phase transitions. Molecular Cell, 60(2), 220–230. https://doi.org/10.1016/j.molcel.2015.09.017