Anderson,, S., Bankier,, A. T., Barrell,, B. G., De Bruijn,, M. H. L., Coulson,, A. R., Drouin,, J., … Young,, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457–465. https://doi.org/10.1038/290457a0
Aravind,, L., & Koonin,, E. V. (1999). DNA polymerase β‐like nucleotidyltransferase superfamily: Identification of three new families, classification and evolutionary history. Nucleic Acids Research, 27(7), 1609–1618. https://doi.org/10.1093/nar/27.7.1609
Bai,, Y., Srivastava,, S. K., Chang,, J. H., Manley,, J. L., & Tong,, L. (2011). Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase. Molecular Cell, 41(3), 311–320. https://doi.org/10.1016/j.molcel.2011.01.013
Balzeau,, J., Menezes,, M. R., Cao,, S., & Hagan,, J. P. (2017). The LIN28/let‐7 pathway in cancer. Frontiers in Genetics, 8(March), 1–16. https://doi.org/10.3389/fgene.2017.00031
Barbieri,, M., Manzoni,, M., Fabris,, S., Ciceri,, G., Todoerti,, K., Simeon,, V., … Lionetti,, M. (2016). Compendium of FAM46C gene mutations in plasma cell dyscrasias. British Journal of Haematology, 174(4), 642–645. https://doi.org/10.1111/bjh.13793
Barnard,, D. C., Ryan,, K., Manley,, J. L., & Richter,, J. D. (2004). Symplekin and xGLD‐2 are required for CPEB‐mediated cytoplasmic polyadenylation. Cell, 119(5), 641–651. https://doi.org/10.1016/j.cell.2004.10.029
Barragán,, I., Borrego,, S., Abd El‐Aziz,, M. M., El‐Ashry,, M. F., Abu‐Safieh,, L., Bhattacharya,, S. S., & Antiñolo,, G. (2008). Genetic analysis of FAM46A in Spanish families with autosomal recessive retinitis pigmentosa: Characterisation of novel VNTRs. Annals of Human Genetics, 72(1), 26–34. https://doi.org/10.1111/j.1469-1809.2007.00393.x
Bartel,, D. P. (2018). Metazoan microRNAs. Cell, 173(1), 20–51. https://doi.org/10.1016/j.cell.2018.03.006
Beck,, C. R., Garcia‐Perez,, J. L., Badge,, R. M., & Moran,, J. V. (2011). LINE‐1 elements in structural variation and disease. Annual Review of Genomics and Human Genetics, 12(1), 187–215. https://doi.org/10.1146/annurev-genom-082509-141802
Benjachat,, T., Tongyoo,, P., Tantivitayakul,, P., Somparn,, P., Hirankarn,, N., Prom‐On,, S., … Townamchai,, N. (2015). Biomarkers for refractory lupus nephritis: A microarray study of kidney tissue. International Journal of Molecular Sciences, 16(6), 14276–14290. https://doi.org/10.3390/ijms160614276
Benoit,, P., Papin,, C., Kwak,, J. E., Wickens,, M., & Simonelig,, M. (2008). PAP‐ and GLD‐2‐type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Development, 135(11), 1969–1979. https://doi.org/10.1242/dev.021444
Berndt,, H., Harnisch,, C., Rammelt,, C., Stöhr,, N., Zirkel,, A., Dohm,, J. C., … Wahle,, E. (2012). Maturation of mammalian H/ACA box snoRNAs: PAPD5‐dependent adenylation and PARN‐dependent trimming. RNA, 18(5), 958–972. https://doi.org/10.1261/rna.032292.112
Bettoni,, F., Filho,, F. C., Grosso,, D. M., Galante,, P. A. F., Parmigiani,, R. B., Geraldo,, M. V., … Camargo,, A. A. (2009). Identification of FAM46D as a novel cancer/testis antigen using EST data and serological analysis. Genomics, 94(3), 153–160. https://doi.org/10.1016/j.ygeno.2009.06.001
Bilska,, A., Kusio‐kobia,, M., Krawczyk,, P. S., Gewartowska,, O., Tarkowski,, B., Koby,, K., … Mroczek,, S. (2020). Immunoglobulin expression and the humoral immune response is regulated by the non‐canonical poly(A) polymerase TENT5C. Nature Communications, 11(2031), 1–17. https://doi.org/10.1038/s41467-020-15835-3
Boele,, J., Persson,, H., Shin,, J. W., Ishizu,, Y., Newie,, I. S., Søkilde,, R., … De Hoon,, M. J. L. (2014). PAPD5‐mediated 3′ adenylation and subsequent degradation of miR‐21 is disrupted in proliferative disease. Proceedings of the National Academy of Sciences of the United States of America, 111(31), 11467–11472. https://doi.org/10.1073/pnas.1317751111
Borowski,, L. S., Szczesny,, R. J., Brzezniak,, L. K., & Stepien,, P. P. (2010). RNA turnover in human mitochondria: More questions than answers? Biochimica et Biophysica Acta – Bioenergetics, 1797(6–7), 1066–1070. https://doi.org/10.1016/j.bbabio.2010.01.028
Bortolamiol‐Becet,, D., Hu,, F., Jee,, D., Wen,, J., Okamura,, K., Lin,, C. J., … Lai,, E. C. (2015). Selective suppression of the splicing‐mediated microRNA pathway by the terminal uridyltransferase tailor. Molecular Cell, 59(2), 217–228. https://doi.org/10.1016/j.molcel.2015.05.034
Boyd,, K. D., Ross,, F. M., Walker,, B. A., Wardell,, C. P., Tapper,, W. J., Chiecchio,, L., … Morgan,, G. J. (2011). Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clinical Cancer Research, 17(24), 7776–7784. https://doi.org/10.1158/1078-0432.CCR-11-1791
Bratic,, A., Clemente,, P., Calvo‐Garrido,, J., Maffezzini,, C., Felser,, A., Wibom,, R., … Wredenberg,, A. (2016). Mitochondrial polyadenylation is a one‐step process required for mRNA integrity and tRNA maturation. PLoS Genetics, 12(5), e1006028. https://doi.org/10.1371/journal.pgen.1006028
Bratic,, A., Wredenberg,, A., Grönke,, S., Stewart,, J. B., Mourier,, A., Ruzzenente,, B., … Larsson,, N. G. (2011). The bicoid stability factor controls polyadenylation and expression of specific mitochondrial mRNAs in Drosophila melanogaster. PLoS Genetics, 7(10), 1–14. https://doi.org/10.1371/journal.pgen.1002324
Burns,, D. M., D`Ambrogio,, A., Nottrott,, S., & Richter,, J. D. (2011). CPEB and two poly(A) polymerases control miR‐122 stability and p53 mRNA translation. Nature, 473(7345), 105–108. https://doi.org/10.1038/nature09908
Burroughs,, A. M., Ando,, Y., de Hoon,, M. J. L., Tomaru,, Y., Nishibu,, T., Ukekawa,, R., … Daub,, C. O. (2010). A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Research, 20(10), 1398–1410. https://doi.org/10.1101/gr.106054.110
Carayol,, J., Chabert,, C., Di Cara,, A., Armenise,, C., Lefebvre,, G., Langin,, D., … Hager,, J. (2017). Protein quantitative trait locus study in obesity during weight‐loss identifies a leptin regulator. Nature Communications, 8(1), 1–14. https://doi.org/10.1038/s41467-017-02182-z
Chan,, S. N., & Pek,, J. W. (2019). Stable intronic sequence RNAs (sisRNAs): An expanding universe. Trends in Biochemical Sciences, 44(3), 258–272. https://doi.org/10.1016/j.tibs.2018.09.016
Chang,, H., Lim,, J., Ha,, M., & Kim,, V. N. (2014). TAIL‐seq: Genome‐wide determination of poly(A) tail length and 3′ end modifications. Molecular Cell, 53(6), 1044–1052. https://doi.org/10.1016/j.molcel.2014.02.007
Chang,, H., Yeo,, J., Kim,, J. g., Kim,, H., Lim,, J., Lee,, M., … Kim,, V. N. (2018). Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Molecular Cell, 70(1), 72–82.e7. https://doi.org/10.1016/j.molcel.2018.03.004
Chapman,, M. A., Lawrence,, M. S., Keats,, J. J., Cibulskis,, K., Sougnez,, C., Schinzel,, A. C., … Golub,, T. R. (2011). Initial genome sequencing and analysis of multiple myeloma. Nature, 471(7339), 467–472. https://doi.org/10.1038/nature09837
Charlesworth,, A., Meijer,, H. A., & De Moor,, C. H. (2013). Specificity factors in cytoplasmic polyadenylation. WIREs: RNA, 4(4), 437–461. https://doi.org/10.1002/wrna.1171
Chen,, C. C. G., Simard,, M. J., Tabara,, H., Brownell,, D. R., McCollough,, J. A., & Mello,, C. C. (2005). A member of the polymerase β nucleotidyltransferase superfamily is required for RNA interference in C. elegans. Current Biology, 15(4), 378–383. https://doi.org/10.1016/j.cub.2005.01.009
Cheng,, L., Li,, F., Jiang,, Y., Yu,, H., Xie,, C., Shi,, Y., & Gong,, Q. (2019). Structural insights into a unique preference for 3′ terminal guanine of mirtron in Drosophila TUTase tailor. Nucleic Acids Research, 47(1), 495–508. https://doi.org/10.1093/nar/gky1116
Choudhury,, N. R., Nowak,, J. S., Zuo,, J., Rappsilber,, J., Spoel,, S. H., & Michlewski,, G. (2014). Trim25 is an RNA‐specific activator of Lin28a/TuT4‐mediated uridylation. Cell Reports, 9(4), 1265–1272. https://doi.org/10.1016/j.celrep.2014.10.017
Chujo,, T., Ohira,, T., Sakaguchi,, Y., Goshima,, N., Nomura,, N., Nagao,, A., & Suzuki,, T. (2012). LRPPRC/SLIRP suppresses PNPase‐mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucleic Acids Research, 40(16), 8033–8047. https://doi.org/10.1093/nar/gks506
Coll,, O., Guitart,, T., Villalba,, A., Papin,, C., Simonelig,, M., & Gebauer,, F. (2018). Dicer‐2 promotes mRNA activation through cytoplasmic polyadenylation. RNA, 24(4), 529–539. https://doi.org/10.1261/rna.065417.117
Colland,, F., Jacq,, X., Trouplin,, V., Mougin,, C., Groizeleau,, C., Hamburger,, A., … Gauthier,, J. M. (2004). Functional proteomics mapping of a human signaling pathway. Genome Research, 14(7), 1324–1332. https://doi.org/10.1101/gr.2334104
Collins,, J., Saari,, B., & Anderson,, P. (1988). Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature, 328(6132), 726–728. https://doi.org/10.1038/328726a0
Crosby,, A. H., Patel,, H., Chioza,, B. A., Proukakis,, C., Gurtz,, K., Patton,, M. A., … Lightowlers,, R. N. (2010). Defective mitochondrial mRNA maturation is associated with spastic ataxia. American Journal of Human Genetics, 87(5), 655–660. https://doi.org/10.1016/j.ajhg.2010.09.013
Cui,, J., Sackton,, K. L., Horner,, V. L., Kumar,, K. E., & Wolfner,, M. F. (2008). Wispy, the Drosophila homolog of GLD‐2, is required during oogenesis and egg activation. Genetics, 178(4), 2017–2029. https://doi.org/10.1534/genetics.107.084558
Cui,, J., Sartain,, C. V., Pleiss,, J. A., & Wolfner,, M. F. (2013). Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Developmental Biology, 383(1), 121–131. https://doi.org/10.1016/j.ydbio.2013.08.013
D`Ambrogio,, A., Gu,, W., Udagawa,, T., Mello,, C. C., & Richter,, J. D. (2012). Specific miRNA stabilization by Gld2‐catalyzed monoadenylation. Cell Reports, 2(6), 1537–1545. https://doi.org/10.1016/j.celrep.2012.10.023
De Almeida,, C., Scheer,, H., Zuber,, H., & Gagliardi,, D. (2018). RNA uridylation: A key posttranscriptional modification shaping the coding and noncoding transcriptome. WIREs: RNA, 9(1), e1440. https://doi.org/10.1002/wrna.1440
Dez,, C., Houseley,, J., & Tollervey,, D. (2006). Surveillance of nuclear‐restricted pre‐ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO Journal, 25(7), 1534–1546. https://doi.org/10.1038/sj.emboj.7601035
Didychuk,, A. L., Butcher,, S. E., & Brow,, D. A. (2018). The life of U6 small nuclear RNA, from cradle to grave. RNA, 24(4), 437–460. https://doi.org/10.1261/rna.065136.117
Didychuk,, A. L., Montemayor,, E. J., Carrocci,, T. J., Delaitsch,, A. T., Lucarelli,, S. E., Westler,, W. M., … Butcher,, S. E. (2017). Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Nature Communications, 8(1), 497. https://doi.org/10.1038/s41467-017-00484-w
Diener,, S., Bayer,, S., Sabrautzki,, S., Wieland,, T., Mentrup,, B., Przemeck,, G. K. H., … Lorenz‐Depiereux,, B. (2016). Exome sequencing identifies a nonsense mutation in Fam46a associated with bone abnormalities in a new mouse model for skeletal dysplasia. Mammalian Genome, 27(3–4), 111–121. https://doi.org/10.1007/s00335-016-9619-x
Doyard,, M., Bacrot,, S., Huber,, C., Di Rocco,, M., Goldenberg,, A., Aglan,, M. S., … Cormier‐Daire,, V. (2018). FAM46A mutations are responsible for autosomal recessive osteogenesis imperfecta. Journal of Medical Genetics, 55(4), 278–284. https://doi.org/10.1136/jmedgenet-2017-104999
Dufourt,, J., Bontonou,, G., Chartier,, A., Jahan,, C., Meunier,, A. C., Pierson,, S., … Simonelig,, M. (2017). piRNAs and Aubergine cooperate with Wispy poly(A) polymerase to stabilize mRNAs in the germ plasm. Nature Communications, 8(1), 1–12. https://doi.org/10.1038/s41467-017-01431-5
Eckmann,, C. R., Crittenden,, S. L., Suh,, N., & Kimble,, J. (2004). GLD‐3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics, 168(1), 147–160. https://doi.org/10.1534/genetics.104.029264
Eichhorn,, S. W., Subtelny,, A. O., Kronja,, I., Kwasnieski,, J. C., Orr‐Weaver,, T. L., & Bartel,, D. P. (2016). mRNA poly(A)‐tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos. eLife, 5(July), 1–24. https://doi.org/10.7554/eLife.16955
Eisen,, T. J., Eichhorn,, S. W., Subtelny,, A. O., Lin,, K. S., McGeary,, S. E., Gupta,, S., & Bartel,, D. P. (2020). The dynamics of cytoplasmic mRNA metabolism. Molecular Cell, 77, 1–14. https://doi.org/10.1016/j.molcel.2019.12.005
Etokebe,, G. E., Bulat‐Kardum,, L., Munthe,, L. A., Balen,, S., & Dembic,, Z. (2014). Association of variable number of tandem repeats in the coding region of the FAM46A gene, FAM46A rs11040 SNP and BAG6 rs3117582 SNP with susceptibility to tuberculosis. PLoS One, 9(3), e91385. https://doi.org/10.1371/journal.pone.0091385
Etokebe,, G. E., Jotanovic,, Z., Mihelic,, R., Jericevic,, B. M., Nikolic,, T., Balen,, S., … Dembic,, Z. (2015). Susceptibility to large‐joint osteoarthritis (hip and knee) is associated with BAG6 rs3117582 SNP and the VNTR polymorphism in the second exon of the FAM46A gene on chromosome 6. Journal of Orthopaedic Research, 33(1), 56–62. https://doi.org/10.1002/jor.22738
Etokebe,, G. E., Küchler,, A. M., Haraldsen,, G., Landin,, M., Osmundsen,, H., & Dembic,, Z. (2009). Family‐with‐sequence‐similarity‐46, member A (Fam46a) gene is expressed in developing tooth buds. Archives of Oral Biology, 54(11), 1002–1007. https://doi.org/10.1016/j.archoralbio.2009.08.005
Faehnle,, C. R., Walleshauser,, J., & Joshua‐Tor,, L. (2014). Mechanism of Dis3l2 substrate recognition in the Lin28‐let‐7 pathway. Nature, 514(7521), 252–256. https://doi.org/10.1038/nature13553
Faehnle,, C. R., Walleshauser,, J., & Joshua‐Tor,, L. (2017). Multi‐domain utilization by TUT4 and TUT7 in control of let‐7 biogenesis. Nature Structural and Molecular Biology, 24(8), 658–665. https://doi.org/10.1038/nsmb.3428
Fasken,, M. B., Leung,, S. W., Banerjee,, A., Kodani,, M. O., Chavez,, R., Bowman,, E. A., … Corbett,, A. H. (2011). Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5‐Air1/2‐Mtr4 polyadenylation (TRAMP) RNA quality control complex. Journal of Biological Chemistry, 286(43), 37429–37445. https://doi.org/10.1074/jbc.M111.271494
Faulkner,, G. J., & Garcia‐Perez,, J. L. (2017, November). L1 Mosaicism in mammals: Extent, effects, and evolution. Trends in Genetics, 33, 802–816. https://doi.org/10.1016/j.tig.2017.07.004
Feng,, Y., Zhang,, Y., Ying,, C., Wang,, D., & Du,, C. (2015). Nanopore‐based fourth‐generation DNA sequencing technology. Genomics, Proteomics and Bioinformatics, 13, 4–16. https://doi.org/10.1016/j.gpb.2015.01.009
Fiedler,, M., Rossmanith,, W., Wahle,, E., & Rammelt,, C. (2015). Mitochondrial poly(A) polymerase is involved in tRNA repair. Nucleic Acids Research, 43(20), 9937–9949. https://doi.org/10.1093/nar/gkv891
Furuya,, N., Kakuta,, S., Sumiyoshi,, K., Ando,, M., Nonaka,, R., Suzuki,, A., … Hattori,, N. (2018). NDP 52 interacts with mitochondrial RNA poly(A) polymerase to promote mitophagy. EMBO Reports, 19(12), e46363. https://doi.org/10.15252/embr.201846363
Gagliardi,, D., Stepien,, P. P., Temperley,, R. J., Lightowlers,, R. N., & Chrzanowska‐Lightowlers,, Z. M. A. (2004). Messenger RNA stability in mitochondria: Different means to an end. Trends in Genetics, 20, 260–267. https://doi.org/10.1016/j.tig.2004.04.006
Grzechnik,, P., & Kufel,, J. (2008). Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Molecular Cell, 32(2), 247–258. https://doi.org/10.1016/j.molcel.2008.10.003
Gu,, W., Shirayama,, M., Conte,, D., Vasale,, J., Batista,, P. J., Claycomb,, J. M., … Mello,, C. C. (2009). Distinct Argonaute‐mediated 22G‐RNA pathways direct genome surveillance in the C. elegans germline. Molecular Cell, 36(2), 231–244. https://doi.org/10.1016/j.molcel.2009.09.020
Gutiérrez‐Vázquez,, C., Enright,, A. J., Rodríguez‐Galán,, A., Pérez‐García,, A., Collier,, P., Jones,, M. R., … Sánchez‐Madrid,, F. (2017). 3′ Uridylation controls mature microRNA turnover during CD4 T‐cell activation. RNA, 23(6), 882–891. https://doi.org/10.1261/rna.060095.116
Hagan,, J. P., Piskounova,, E., & Gregory,, R. I. (2009). Lin28 recruits the TUTase Zcchc11 to inhibit let‐7 maturation in mouse embryonic stem cells. Nature Structural and Molecular Biology, 16(10), 1021–1025. https://doi.org/10.1038/nsmb.1676
Hamilton,, S. M., Spencer,, C. M., Harrison,, W. R., Yuva‐Paylor,, L. A., Graham,, D. F., Daza,, R. A. M., … Paylor,, R. (2011). Multiple autism‐like behaviors in a novel transgenic mouse model. Behavioural Brain Research, 218(1), 29–41. https://doi.org/10.1016/j.bbr.2010.11.026
Harnisch,, C., Cuzic‐Feltens,, S., Dohm,, J. C., Götze,, M., Himmelbauer,, H., & Wahle,, E. (2016). Oligoadenylation of 3′ decay intermediates promotes cytoplasmic mRNA degradation in Drosophila cells. RNA, 22(3), 428–442. https://doi.org/10.1261/rna.053942.115
Hart,, T., Chandrashekhar,, M., Aregger,, M., Steinhart,, Z., Brown,, K. R., MacLeod,, G., … Moffat,, J. (2015). High‐resolution CRISPR screens reveal fitness genes and genotype‐specific cancer liabilities. Cell, 163(6), 1515–1526. https://doi.org/10.1016/j.cell.2015.11.015
Heo,, I., Ha,, M., Lim,, J., Yoon,, M. J., Park,, J. E., Kwon,, S. C., … Kim,, V. N. (2012). Mono‐uridylation of pre‐microRNA as a key step in the biogenesis of group II let‐7 microRNAs. Cell, 151(3), 521–532. https://doi.org/10.1016/j.cell.2012.09.022
Heo,, I., Joo,, C., Kim,, Y. K., Ha,, M., Yoon,, M. J., Cho,, J., … Kim,, V. N. (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre‐MicroRNA uridylation. Cell, 138(4), 696–708. https://doi.org/10.1016/j.cell.2009.08.002
Herrero,, A. B., Quwaider,, D., Corchete,, L. A., Mateos,, M. V., García‐Sanz,, R., & Gutiérrez,, N. C. (2020). FAM46C controls antibody production by the polyadenylation of immunoglobulin mRNAs and inhibits cell migration in multiple myeloma. Journal of Cellular and Molecular Medicine, 00, 1–12. https://doi.org/10.1111/jcmm.15078
Hirai,, H., Lee,, D. I., Natori,, S., & Sekimizu,, K. (1988). Uridylation of U6 RNA in a nuclear extract of Ehrlich ascites tumor cells. Journal of Biochemistry, 104(6), 991–994. https://doi.org/10.1093/oxfordjournals.jbchem.a122597
Hojo,, H., Yashiro,, Y., Noda,, Y., Ogami,, K., Yamagishi,, R., Okada,, S., … Suzuki,, T. (2020). The RNA‐binding protein QKI‐7 recruits the poly(A) polymerase GLD‐2 for 3′ adenylation and selective stabilization of microRNA‐122. Journal of Biological Chemistry, 295(2), 390–402. https://doi.org/10.1074/jbc.RA119.011617
Houseley,, J., & Tollervey,, D. (2006). Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Reports, 7(2), 205–211. https://doi.org/10.1038/sj.embor.7400612
Hu,, J. L., Liang,, H., Zhang,, H., Yang,, M. Z., Sun,, W., Zhang,, P., … Gao,, S. (2020). FAM46B is a prokaryotic‐like cytoplasmic poly(A) polymerase essential in human embryonic stem cells. Nucleic Acids Research, 48(5), 2733–2748. https://doi.org/10.1093/nar/gkaa049
Hu,, Y., Chen,, W., & Wang,, J. (2019). Progress in the identification of gene mutations involved in multiple myeloma. Oncotargets and Therapy, 12, 4075–4080. https://doi.org/10.2147/OTT.S205922
Huo,, Y., Shen,, J., Wu,, H., Zhang,, C., Guo,, L., Yang,, J., & Li,, W. (2016). Widespread 3′‐end uridylation in eukaryotic RNA viruses. Scientific Reports, 6(1), 25454. https://doi.org/10.1038/srep25454
Hyrina,, A., Jones,, C., Chen,, D., Clarkson,, S., Cochran,, N., Feucht,, P., … Holdorf,, M. (2019). A genome‐wide CRISPR screen identifies ZCCHC14 as a host factor required for hepatitis B surface antigen production. Cell Reports, 29(10), 2970–2978.e6. https://doi.org/10.1016/j.celrep.2019.10.113
Ivshina,, M., Lasko,, P., & Richter,, J. D. (2014). Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annual Review of Cell and Developmental Biology, 30(1), 393–415. https://doi.org/10.1146/annurev-cellbio-101011-155831
Jae,, E. K., Drier,, E., Barbee,, S. a., Ramaswami,, M., Yin,, J. C. P., & Wickens,, M. (2008). GLD2 poly(A) polymerase is required for long‐term memory. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14644–14649. https://doi.org/10.1073/pnas.0803185105
Jae,, E. K., & Wickens,, M. (2007). A family of poly(U) polymerases. RNA, 13(6), 860–867. https://doi.org/10.1261/rna.514007
Jia,, H., Wang,, X., Liu,, F., Guenther,, U. P., Srinivasan,, S., Anderson,, J. T., & Jankowsky,, E. (2011). The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex. Cell, 145(6), 890–901. https://doi.org/10.1016/j.cell.2011.05.010
Jia Ng,, S. S., Zheng,, R. T., Osman,, I., & Pek,, J. W. (2018). Generation of Drosophila sisRNAs by independent transcription from cognate introns. IScience, 4, 68–75. https://doi.org/10.1016/j.isci.2018.05.010
Jones,, M. R., Blahna,, M. T., Kozlowski,, E., Matsuura,, K. Y., Ferrari,, J. D., Morris,, S. A., … Mizgerd,, J. P. (2012). Zcchc11 uridylates mature miRNAs to enhance neonatal IGF‐1 expression, growth, and survival. PLoS Genetics, 8(11), e1003105. https://doi.org/10.1371/journal.pgen.1003105
Kadyk,, L. C., & Kimble,, J. (1998). Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development, 125(10), 1803–1813 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9550713
Kang,, M. K., & Han,, S. J. (2011). Post‐transcriptional and post‐translational regulation during mouse oocyte maturation. BMB Reports, 44(3), 147–157. https://doi.org/10.5483/BMBRep.2011.44.3.147
Kashiwabara,, S. I., Noguchi,, J., Zhuang,, T., Ohmura,, K., Honda,, A., Sugiura,, S., … Baba,, T. (2002). Regulation of spermatogenesis by testis‐specific, cytoplasmic poly(A) polymerase TPAP. Science, 298(5600), 1999–2002. https://doi.org/10.1126/science.1074632
Katoh,, T., Sakaguchi,, Y., Miyauchi,, K., Suzuki,, T., Suzuki,, T., Kashiwabara,, S. I., & Baba,, T. (2009). Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD‐2. Genes and Development, 23(4), 433–438. https://doi.org/10.1101/gad.1761509
Kim,, B., Ha,, M., Loeff,, L., Chang,, H., Simanshu,, D. K., Li,, S., … Kim,, V. N. (2015). TUT 7 controls the fate of precursor micro‐RNAs by using three different uridylation mechanisms. The EMBO Journal, 34(13), 1801–1815. https://doi.org/10.15252/embj.201590931
Kim,, D., Lee,, Y. s., Jung,, S. J., Yeo,, J., Seo,, J. J., Lee,, Y. Y., … Kim,, V. N. (2020). Viral hijacking of the TENT4–ZCCHC14 complex protects viral RNAs via mixed tailing. Nature Structural and Molecular Biology, 27, 581–588. https://doi.org/10.1038/s41594-020-0427-3
Kim,, G. W., Lee,, S. H., Cho,, H., Kim,, M., Shin,, E. C., & Oh,, J. W. (2016). Hepatitis C virus Core protein promotes miR‐122 destabilization by inhibiting GLD‐2. PLoS Pathogens, 12(7), e1005714. https://doi.org/10.1371/journal.ppat.1005714
Kim,, K. W., Nykamp,, K., Suh,, N., Bachorik,, J. L., Wang,, L., & Kimble,, J. (2009). Antagonism between GLD‐2 binding partners controls gamete sex. Developmental Cell, 16(5), 723–733. https://doi.org/10.1016/j.devcel.2009.04.002
Kim,, K. W., Wilson,, T. L., & Kimble,, J. (2010). GLD‐2/RNP‐8 cytoplasmic poly(A) polymerase is a broad‐spectrum regulator of the oogenesis program. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17445–17450. https://doi.org/10.1073/pnas.1012611107
Kimble,, J., & Crittenden,, S. L. (2007). Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annual Review of Cell and Developmental Biology, 23(1), 405–433. https://doi.org/10.1146/annurev.cellbio.23.090506.123326
Kobylecki,, K., Kuchta,, K., Dziembowski,, A., Ginalski,, K., & Tomecki,, R. (2017). Biochemical and structural bioinformatics studies of fungal CutA nucleotidyltransferases explain their unusual specificity toward CTP and increased tendency for cytidine incorporation at the 3′‐terminal positions of synthesized tails. RNA, 23(12), 1902–1926. https://doi.org/10.1261/rna.061010.117
Kowalski,, M. P., & Krude,, T. (2015). Functional roles of non‐coding Y RNAs. International Journal of Biochemistry and Cell Biology, 66, 20–29. https://doi.org/10.1016/j.biocel.2015.07.003
Kroupova,, A., Ivascul,, A., Reimao‐Pinto,, M. M., Ameres,, S. L., & Jinek,, M. (2019). Structural basis for acceptor RNA substrate selectivity of the 3 terminal uridylyl transferase Tailor. Nucleic Acids Research, 47(2), 1030–1042. https://doi.org/10.1093/nar/gky1164
Kuchta,, K., Muszewska,, A., Knizewski,, L., Steczkiewicz,, K., Wyrwicz,, L. S., Pawlowski,, K., … Ginalski,, K. (2016). FAM46 proteins are novel eukaryotic non‐canonical poly(A) polymerases. Nucleic Acids Research, 44(8), 3534–3548. https://doi.org/10.1093/nar/gkw222
Kurosaki,, T., Miyoshi,, K., Myers,, J. R., & Maquat,, L. E. (2018). NMD‐degradome sequencing reveals ribosome‐bound intermediates with 3′‐end non‐templated nucleotides. Nature Structural and Molecular Biology, 25(10), 940–950. https://doi.org/10.1038/s41594-018-0132-7
Kwak,, J. E., Wang,, L., Ballantyne,, S., Kimble,, J., & Wickens,, M. (2004). Mammalian GLD‐2 homologs are poly(A) polymerases. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4407–4412. https://doi.org/10.1073/pnas.0400779101
Łabno,, A., Warkocki,, Z., Kulínski,, T., Krawczyk,, P. S., Bijata,, K., Tomecki,, R., & Dziembowski,, A. (2016). Perlman syndrome nuclease DIS3L2 controls cytoplasmic non‐coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Research, 44(21), 10437–10453. https://doi.org/10.1093/nar/gkw649
LaCava,, J., Houseley,, J., Saveanu,, C., Petfalski,, E., Thompson,, E., Jacquier,, A., & Tollervey,, D. (2005). RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell, 121(5), 713–724. https://doi.org/10.1016/j.cell.2005.04.029
Lackey,, P. E., Welch,, J. D., & Marzluff,, W. F. (2016). TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA. RNA, 22(11), 1673–1688. https://doi.org/10.1261/rna.058107.116
Lagali,, P. S., Kakuk,, L. E., Griesinger,, I. B., Wong,, P. W., & Ayyagari,, R. (2002). Identification and characterization of C6orf37 a novel candidate human retinal disease gene on chromosome 6q14. Biochemical and Biophysical Research Communications, 293(1), 356–365. https://doi.org/10.1016/S0006-291X(02)00228-0
Laishram,, R. S., & Anderson,, R. a. (2010). The poly A polymerase Star‐PAP controls 3‐2‐end cleavage by promoting CPSF interaction and specificity toward the pre‐mRNA. EMBO Journal, 29(24), 4132–4145. https://doi.org/10.1038/emboj.2010.287
Lapkouski,, M., & Hällberg,, B. M. (2015). Structure of mitochondrial poly(A) RNA polymerase reveals the structural basis for dimerization, ATP selectivity and the SPAX4 disease phenotype. Nucleic Acids Research, 43(18), 9065–9075. https://doi.org/10.1093/nar/gkv861
Le Pen,, J., Jiang,, H., Di Domenico,, T., Kneuss,, E., Kosałka,, J., Leung,, C., … Miska,, E. A. (2018). Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nature Structural and Molecular Biology, 25(9), 778–786. https://doi.org/10.1038/s41594-018-0106-9
Lee,, H., Han,, S., Kwon,, C. S., & Lee,, D. (2016). Biogenesis and regulation of the let‐7 miRNAs and their functional implications. Protein and Cell, 7, 100–113. https://doi.org/10.1007/s13238-015-0212-y
Lee,, M., Choi,, Y., Kim,, K., Jin,, H., Lim,, J., Nguyen,, T. A., … Kim,, V. N. (2014). Adenylation of maternally inherited microRNAs by Wispy. Molecular Cell, 56(5), 696–707. https://doi.org/10.1016/j.molcel.2014.10.011
Legnini,, I., Alles,, J., Karaiskos,, N., Ayoub,, S., & Rajewsky,, N. (2019). FLAM‐seq: Full‐length mRNA sequencing reveals principles of poly(A) tail length control. Nature Methods, 16(9), 879–886. https://doi.org/10.1038/s41592-019-0503-y
Lehrbach,, N. J., Armisen,, J., Lightfoot,, H. L., Murfitt,, K. J., Bugaut,, A., Balasubramanian,, S., & Miska,, E. A. (2009). LIN‐28 and the poly(U) polymerase PUP‐2 regulate let‐7 microRNA processing in Caenorhabditis elegans. Nature Structural and Molecular Biology, 16(10), 1016–1020. https://doi.org/10.1038/nsmb.1675
Li,, W., Laishram,, R. S., & Anderson,, R. A. (2013). The novel poly(A) polymerase Star‐PAP is a signal‐regulated switch at the 3′‐end of mRNAs. Advances in Biological Regulation, 53(1), 64–76. https://doi.org/10.1016/j.jbior.2012.10.004
Li,, W., Laishram,, R. S., Ji,, Z., Barlow,, C. A., Tian,, B., & Anderson,, R. A. (2012). Star‐PAP control of BIK expression and apoptosis is regulated by nuclear PIPKIα and PKCδ signaling. Molecular Cell, 45(1), 25–37. https://doi.org/10.1016/j.molcel.2011.11.017
Li,, Y., & Maine,, E. M. (2018). The balance of poly(U) polymerase activity ensures germline identity, survival and development in Caenorhabditis elegans. Development (Cambridge), 145(19), dev165944. https://doi.org/10.1242/dev.165944
Liang,, T., Ye,, X., Liu,, Y., Qiu,, X., Li,, Z., Tian,, B., & Yan,, D. (2018). FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of β‐catenin. Experimental and Molecular Medicine, 50(12), 1–12. https://doi.org/10.1038/s12276-018-0184-0
Lim,, J., Ha,, M., Chang,, H., Kwon,, S. C., Simanshu,, D. K., Patel,, D. J., & Kim,, V. N. (2014). Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell, 159(6), 1365–1376. https://doi.org/10.1016/j.cell.2014.10.055
Lim,, J., Kim,, D., Lee,, Y. S., Ha,, M., Lee,, M., Yeo,, J., … Kim,, V. N. (2018). Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science, 361(6403), 701–704. https://doi.org/10.1126/science.aam5794
Lim,, J., Lee,, M., Son,, A., Chang,, H., & Kim,, V. N. (2016). mTAIL‐seq reveals dynamic poly(A) tail regulation in oocyte‐to‐embryo development. Genes and Development, 30(14), 1671–1682. https://doi.org/10.1101/gad.284802.116
Liu,, Y., Nie,, H., Liu,, H., & Lu,, F. (2019). Poly(A) inclusive RNA isoform sequencing (PAIso‐seq) reveals wide‐spread non‐adenosine residues within RNA poly(A) tails. Nature Communications, 10(1), 5292. https://doi.org/10.1038/s41467-019-13228-9
Lohr,, J. G., Stojanov,, P., Carter,, S. L., Cruz‐Gordillo,, P., Lawrence,, M. S., Auclair,, D., … Golub,, T. R. (2014). Widespread genetic heterogeneity in multiple myeloma: Implications for targeted therapy. Cancer Cell, 25(1), 91–101. https://doi.org/10.1016/j.ccr.2013.12.015
Lubas,, M., Christensen,, M. S., Kristiansen,, M. S., Domanski,, M., Falkenby,, L. G., Lykke‐Andersen,, S., … Jensen,, T. H. (2011). Interaction profiling identifies the human nuclear exosome targeting complex. Molecular Cell, 43(4), 624–637. https://doi.org/10.1016/j.molcel.2011.06.028
Lund,, E., & Dahlberg,, J. E. (1992). Cyclic 2′,3′‐phosphates and nontemplated nucleotides at the 3′ end of spliceosomal U6 small nuclear RNA`s. Science, 255(5042), 327–330. https://doi.org/10.1126/science.1549778
Maillo,, C., Martín,, J., Sebastián,, D., Hernández‐Alvarez,, M., García‐Rocha,, M., Reina,, O., … Méndez,, R. (2017). Circadian‐ and UPR‐dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nature Cell Biology, 19(2), 94–105. https://doi.org/10.1038/ncb3461
Malecki,, M., Viegas,, S. C., Carneiro,, T., Golik,, P., Dressaire,, C., Ferreira,, M. G., & Arraiano,, C. M. (2013). The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO Journal, 32(13), 1842–1854. https://doi.org/10.1038/emboj.2013.63
Mansur,, F., Ivshina,, M., Gu,, W., Schaevitz,, L., Stackpole,, E., Gujja,, S., … Richter,, J. D. (2016). Gld2‐catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. RNA, 22(10), 1492–1499. https://doi.org/10.1261/rna.056937.116
Martin,, G., Doublié,, S., & Keller,, W. (2008). Determinants of substrate specificity in RNA‐dependent nucleotidyl transferases. Biochimica et Biophysica Acta – Gene Regulatory Mechanisms, 1779(4), 206–216. https://doi.org/10.1016/j.bbagrm.2007.12.003
Martin,, G., & Keller,, W. (2007). RNA‐specific ribonucleotidyl transferases. RNA, 13(11), 1834–1849. https://doi.org/10.1261/rna.652807
Martin,, G., Keller,, W., & Doublié,, S. (2000). Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP. The EMBO Journal, 19(16), 4193–4203. https://doi.org/10.1093/emboj/19.16.4193
Martin,, N. T., Nakamura,, K., Paila,, U., Woo,, J., Brown,, C., Wright,, J. A., … Concannon,, P. (2014). Homozygous mutation of MTPAP causes cellular radiosensitivity and persistent DNA double‐strand breaks. Cell Death and Disease, 5(3), e1130. https://doi.org/10.1038/cddis.2014.99
Marzluff,, W. F., & Koreski,, K. P. (2017). Birth and death of histone mRNAs. Trends in Genetics, 33(10), 745–759. https://doi.org/10.1016/j.tig.2017.07.014
Mellman,, D. L., Gonzales,, M. L., Song,, C., Barlow,, C. A., Wang,, P., Kendziorski,, C., & Anderson,, R. A. (2008). A PtdIns4,5P2‐regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature, 451(7181), 1013–1017. https://doi.org/10.1038/nature06666
Menezes,, M. R., Balzeau,, J., & Hagan,, J. P. (2018). 3′ RNA uridylation in epitranscriptomics, gene regulation, and disease. Frontiers in Molecular Biosciences, 5, 1–20. https://doi.org/10.3389/fmolb.2018.00061
Minasaki,, R., Rudel,, D., & Eckmann,, C. R. (2014). Increased sensitivity and accuracy of a single‐stranded DNA splint‐mediated ligation assay (sPAT) reveals poly(A) tail length dynamics of developmentally regulated mRNAs. RNA Biology, 11(2), 111–123. https://doi.org/10.4161/rna.27992
Minshall,, N., Reiter,, M. H., Weil,, D., & Standart,, N. (2007). CPEB interacts with an ovary‐specific eIF4E and 4E‐T in early Xenopus oocytes. Journal of Biological Chemistry, 282(52), 37389–37401. https://doi.org/10.1074/jbc.M704629200
Morgan,, M., Kabayama,, Y., Much,, C., Ivanova,, I., Di Giacomo,, M., Auchynnikava,, T., … O`Carroll,, D. (2019). A programmed wave of uridylation‐primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Research, 29(3), 221–232. https://doi.org/10.1038/s41422-018-0128-1
Morgan,, M., Much,, C., DiGiacomo,, M., Azzi,, C., Ivanova,, I., Vitsios,, D. M., … O`Carroll,, D. (2017). mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature, 548(7667), 347–351. https://doi.org/10.1038/nature23318
Mroczek,, S., Chlebowska,, J., Kuliński,, T. M., Gewartowska,, O., Gruchota,, J., Cysewski,, D., … Dziembowski,, A. (2017). The non‐canonical poly(A) polymerase FAM46C acts as an onco‐suppressor in multiple myeloma. Nature Communications, 8(1), 619. https://doi.org/10.1038/s41467-017-00578-5
Mroczek,, S., Krwawicz,, J., Kutner,, J., Lazniewski,, M., Kuciński,, I., Ginalski,, K., & Dziembowski,, A. (2012). C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3′ end modification. Genes and Development, 26(17), 1911–1925. https://doi.org/10.1101/gad.193169.112
Mueller,, H., Lopez,, A., Tropberger,, P., Wildum,, S., Schmaler,, J., Pedersen,, L., … Javanbakht,, H. (2019). PAPD5/7 are host factors that are required for hepatitis B virus RNA stabilization. Hepatology, 69(4), 1398–1411. https://doi.org/10.1002/hep.30329
Mullen,, T. E., & Marzluff,, W. F. (2008). Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes and Development, 22(1), 50–65. https://doi.org/10.1101/gad.1622708
Munoz‐Tello,, P., Gabus,, C., & Thore,, S. (2012). Functional implications from the Cid1 poly(U) polymerase crystal structure. Structure, 20(6), 977–986. https://doi.org/10.1016/j.str.2012.04.006
Munoz‐Tello,, P., Gabus,, C., & Thore,, S. (2014). A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product‐bound crystal structure. Nucleic Acids Research, 42(5), 3372–3380. https://doi.org/10.1093/nar/gkt1278
Nagaike,, T., Suzuki,, T., Katoh,, T., & Ueda,, T. (2005). Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria‐specific poly(A) polymerase and polynucleotide phosphorylase. Journal of Biological Chemistry, 280(20), 19721–19727. https://doi.org/10.1074/jbc.M500804200
Nagaike,, T., Suzuki,, T., & Ueda,, T. (2008). Polyadenylation in mammalian mitochondria: Insights from recent studies. Biochimica et Biophysica Acta – Gene Regulatory Mechanisms, 1779(4), 266–269. https://doi.org/10.1016/j.bbagrm.2008.02.001
Nakamura,, R., Takeuchi,, R., Takata,, K. ‐i., Shimanouchi,, K., Abe,, Y., Kanai,, Y., … Sakaguchi,, K. (2008). TRF4 is involved in polyadenylation of snRNAs in Drosophila melanogaster. Molecular and Cellular Biology, 28(21), 6620–6631. https://doi.org/10.1128/mcb.00448-08
Nakanishi,, T., Kumagai,, S., Kimura,, M., Watanabe,, H., Sakurai,, T., Kimura,, M., … Baba,, T. (2007). Disruption of mouse poly(A) polymerase mGLD‐2 does not alter polyadenylation status in oocytes and somatic cells. Biochemical and Biophysical Research Communications, 364(1), 14–19. https://doi.org/10.1016/j.bbrc.2007.09.096
Nakel,, K., Bonneau,, F., Basquin,, C., Habermann,, B., Eckmann,, C. R., & Conti,, E. (2016). Structural basis for the antagonistic roles of RNP‐8 and GLD‐3 in GLD‐2 poly(A)‐polymerase activity. RNA, 22(8), 1139–1145. https://doi.org/10.1261/rna.056598.116
Nakel,, K., Bonneau,, F., Eckmann,, C. R., & Conti,, E. (2015). Structural basis for the activation of the C. elegans noncanonical cytoplasmic poly(A)‐polymerase GLD‐2 by GLD‐3. Proceedings of the National Academy of Sciences of the United States of America, 112(28), 8614–8619. https://doi.org/10.1073/pnas.1504648112
Nousch,, M., Minasaki,, R., & Eckmann,, C. R. (2017). Polyadenylation is the key aspect of GLD‐2 function in C. elegans. RNA, 23(8), 1180–1187. https://doi.org/10.1261/rna.061473.117
Nousch,, M., Yeroslaviz,, A., Habermann,, B., & Eckmann,, C. R. (2014). The cytoplasmic poly(A) polymerases GLD‐2 and GLD‐4 promote general gene expression via distinct mechanisms. Nucleic Acids Research, 42(18), 11622–11633. https://doi.org/10.1093/nar/gku838
O`Brien,, L. L., Albee,, A. J., Liu,, L., Tao,, W., Dobrzyn,, P., Lizarraga,, S. B., & Wiese,, C. (2005). The Xenopus TACC homologue, maskin, functions in mitotic spindle assembly. Molecular Biology of the Cell, 16(6), 2836–2847. https://doi.org/10.1091/mbc.E04-10-0926
Ogami,, K., Cho,, R., & Hoshino,, S. i. (2013). Molecular cloning and characterization of a novel isoform of the non‐canonical poly(A) polymerase PAPD7. Biochemical and Biophysical Research Communications, 432(1), 135–140. https://doi.org/10.1016/j.bbrc.2013.01.072
Pajak,, A., Laine,, I., Clemente,, P., El‐Fissi,, N., Schober,, F. A., Maffezzini,, C., … Wredenberg,, A. (2019). Defects of mitochondrial RNA turnover lead to the accumulation of double‐stranded RNA in vivo. PLoS Genetics, 15(7), e1008240. https://doi.org/10.1371/journal.pgen.1008240
Pannone,, B. K., Xue,, D., & Wolin,, S. L. (1998). A role for the yeast La protein in U6 snRNP assembly: Evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO Journal, 17(24), 7442–7453. https://doi.org/10.1093/emboj/17.24.7442
Pasquinelli,, A. E., Reinhart,, B. J., Slack,, F., Martindale,, M. Q., Kuroda,, M. I., Maller,, B., … Ruvkun,, G. (2000). Conservation of the sequence and temporal expression of let‐7 heterochronic regulatory RNA. Nature, 408(6808), 86–89. https://doi.org/10.1038/35040556
Pearce,, S. F., Rorbach,, J., Van Haute,, L., D`Souza,, A. R., Rebelo‐Guiomar,, P., Powell,, C. A., … Minczuk,, M. (2017). Maturation of selected human mitochondrial tRNAs requires deadenylation. eLife, 6, e27596. https://doi.org/10.7554/eLife.27596
Pirouz,, M., Du,, P., Munafò,, M., & Gregory,, R. I. (2016). Dis3L2‐mediated decay is a quality control pathway for noncoding RNAs. Cell Reports, 16(7), 1861–1873. https://doi.org/10.1016/j.celrep.2016.07.025
Pirouz,, M., Munafò,, M., Ebrahimi,, A. G., Choe,, J., & Gregory,, R. I. (2019). Exonuclease requirements for mammalian ribosomal RNA biogenesis and surveillance. Nature Structural and Molecular Biology, 26(6), 490–500. https://doi.org/10.1038/s41594-019-0234-x
Pisacane,, P., & Halic,, M. (2017). Tailing and degradation of Argonaute‐bound small RNAs protect the genome from uncontrolled RNAi. Nature Communications, 8, 15332. https://doi.org/10.1038/ncomms15332
Piskounova,, E., Polytarchou,, C., Thornton,, J. E., Lapierre,, R. J., Pothoulakis,, C., Hagan,, J. P., … Gregory,, R. I. (2011). Lin28A and Lin28B inhibit let‐7 microRNA biogenesis by distinct mechanisms. Cell, 147(5), 1066–1079. https://doi.org/10.1016/j.cell.2011.10.039
Preker,, P., Almvig,, K., Christensen,, M. S., Valen,, E., Mapendano,, C. K., Sandelin,, A., & Jensen,, T. H. (2011). PROMoter uPstream transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Research, 39(16), 7179–7193. https://doi.org/10.1093/nar/gkr370
Preston,, M. A., Porter,, D. F., Chen,, F., Buter,, N., Lapointe,, C. P., Keles,, S., … Wickens,, M. (2019). Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase. Nature Methods, 16(5), 437–445. https://doi.org/10.1038/s41592-019-0370-6
Radford,, H. E., Meijer,, H. A., & de Moor,, C. H. (2008). Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochimica et Biophysica Acta – Gene Regulatory Mechanisms, 1779(4), 217–229. https://doi.org/10.1016/j.bbagrm.2008.02.002
Rammelt,, C., Bilen,, B., Zavolan,, M., & Keller,, W. (2011). PAPD5, a noncanonical poly(A) polymerase with an unusual RNA‐binding motif. RNA, 17(9), 1737–1746. https://doi.org/10.1261/rna.2787011
Reimão‐Pinto,, M. M., Ignatova,, V., Burkard,, T. R., Hung,, J. H., Manzenreither,, R. A., Sowemimo,, I., … Ameres,, S. L. (2015). Uridylation of RNA hairpins by Tailor confines the emergence of MicroRNAs in Drosophila. Molecular Cell, 59(2), 203–216. https://doi.org/10.1016/j.molcel.2015.05.033
Reimão‐Pinto,, M. M., Manzenreither,, R. A., Burkard,, T. R., Sledz,, P., Jinek,, M., Mechtler,, K., & Ameres,, S. L. (2016). Molecular basis for cytoplasmic RNA surveillance by uridylation‐triggered decay in Drosophila. The EMBO Journal, 35(22), 2417–2434. https://doi.org/10.15252/embj.201695164
Reinhart,, B. J., Slack,, F. J., Basson,, M., Pasquienelll,, A. E., Bettlnger,, J. C., Rougvle,, A. E., … Ruvkun,, G. (2000). The 21‐nucleotide let‐7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906. https://doi.org/10.1038/35002607
Reyes,, J. M., & Ross,, P. J. (2016). Cytoplasmic polyadenylation in mammalian oocyte maturation. WIREs: RNA, 7(1), 71–89. https://doi.org/10.1002/wrna.1316
Rissland,, O. S., & Norbury,, C. J. (2008). The Cid1 poly(U) polymerase. Biochimica et Biophysica Acta – Gene Regulatory Mechanisms, 1779(4), 286–294. https://doi.org/10.1016/j.bbagrm.2008.03.003
Roake,, C. M., Chen,, L., Chakravarthy,, A. L., Ferrell,, J. E., Raffa,, G. D., & Artandi,, S. E. (2019). Disruption of telomerase RNA maturation kinetics precipitates disease. Molecular Cell, 74(4), 688–700.e3. https://doi.org/10.1016/j.molcel.2019.02.033
Rorbach,, J., Nicholls,, T. J. J., & Minczuk,, M. (2011). PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Research, 39(17), 7750–7763. https://doi.org/10.1093/nar/gkr470
Rouhana,, L., Wang,, L., Buter,, N., Jae,, E. K., Schiltz,, C. A., Gonzalez,, T., … Wickens,, M. (2005). Vertebrate GLD2 poly(A) polymerases in the germline and the brain. RNA, 11(7), 1117–1130. https://doi.org/10.1261/rna.2630205
Rüegger,, S., Miki,, T. S., Hess,, D., & Großhans,, H. (2015). The ribonucleotidyl transferase USIP‐1 acts with SART3 to promote U6 snRNA recycling. Nucleic Acids Research, 43(6), 3344–3357. https://doi.org/10.1093/nar/gkv196
San Paolo,, S., Vanacova,, S., Schenk,, L., Scherrer,, T., Blank,, D., Keller,, W., & Gerber,, A. P. (2009). Distinct roles of non‐canonical poly(A) polymerases in RNA metabolism. PLoS Genetics, 5(7), e1000555. https://doi.org/10.1371/journal.pgen.1000555
Sartain,, C. V., Cui,, J., Meisel,, R. P., & Wolfner,, M. F. (2011). The poly(A) polymerase GLD2 is required for spermatogenesis in Drosophila melanogaster. Development, 138(8), 1619–1629. https://doi.org/10.1242/dev.059618
Schmid,, M., Küchler,, B., & Eckmann,, C. R. (2009). Two conserved regulatory cytoplasmic poly(A) polymerases, GLD‐4 and GLD‐2, regulate meiotic progression in C. elegans. Genes and Development, 23(7), 824–836. https://doi.org/10.1101/gad.494009
Schulz,, H. L., Goetz,, T., Kaschkoetoe,, J., & Weber,, B. H. F. (2004). The retinome – Defining a reference transcriptome of the adult mammalian retina/retinal pigment epithelium. BMC Genomics, 5(1), 50. https://doi.org/10.1186/1471-2164-5-50
Scott,, E. C., Gardner,, E. J., Masood,, A., Chuang,, N. T., Vertino,, P. M., & Devine,, S. E. (2016). A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Research, 26(6), 745–755. https://doi.org/10.1101/gr.201814.115
Shchepachev,, V., Wischnewski,, H., Missiaglia,, E., Soneson,, C., & Azzalin,, C. M. (2012). Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3′‐to‐5′ RNA exonuclease processing U6 small nuclear RNA. Cell Reports, 2(4), 855–865. https://doi.org/10.1016/j.celrep.2012.08.031
Shchepachev,, V., Wischnewski,, H., Soneson,, C., Arnold,, A. W., & Azzalin,, C. M. (2015). Human Mpn1 promotes post‐transcriptional processing and stability of U6atac. FEBS Letters, 589(18), 2417–2423. https://doi.org/10.1016/j.febslet.2015.06.046
Shcherbik,, N., Wang,, M., Lapik,, Y. R., Srivastava,, L., & Pestov,, D. G. (2010). Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Reports, 11(2), 106–111. https://doi.org/10.1038/embor.2009.271
Shin,, J., Paek,, K. Y., Ivshina,, M., Stackpole,, E., & Richter,, J. D. (2017). Essential role for non‐canonical poly(A) polymerase GLD4 in cytoplasmic polyadenylation and carbohydrate metabolism. Nucleic Acids Research, 45(11), 6793–6804. https://doi.org/10.1093/nar/gkx239
Shukla,, A., Yan,, J., Pagano,, D. J., Dodson,, A. E., Fei,, Y., Gorham,, J., … Kennedy,, S. (2020). Poly(UG)‐tailed RNAs in genome protection and epigenetic inheritance. Nature, 582, 1–6. https://doi.org/10.1038/s41586-020-2323-8
Shukla,, S., Bjerke,, G. A., Muhlrad,, D., Yi,, R., & Parker,, R. (2019). The RNase PARN controls the levels of specific miRNAs that contribute to p53 regulation. Molecular Cell, 73(6), 1204–1216.e4. https://doi.org/10.1016/j.molcel.2019.01.010
Shukla,, S., & Parker,, R. (2017). PARN modulates Y RNA stability and its 3′‐end formation. Molecular and Cellular Biology, 37(20), e00264–e00217. https://doi.org/10.1128/mcb.00264-17
Shukla,, S., Schmidt,, J. C., Goldfarb,, K. C., Cech,, T. R., & Parker,, R. (2016). Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nature Structural and Molecular Biology, 23(4), 286–292. https://doi.org/10.1038/nsmb.3184
Sinturel,, F., Gerber,, A., Mauvoisin,, D., Wang,, J., Gatfield,, D., Stubblefield,, J. J., … Schibler,, U. (2017). Diurnal oscillations in liver mass and cell size accompany ribosome assembly cycles. Cell, 169(4), 651–663.e14. https://doi.org/10.1016/j.cell.2017.04.015
Son,, A., Park,, J. E., & Kim,, V. N. (2018). PARN and TOE1 constitute a 3′ end maturation module for nuclear non‐coding RNAs. Cell Reports, 23(3), 888–898. https://doi.org/10.1016/j.celrep.2018.03.089
Spracklin,, G., Fields,, B., Wan,, G., Becker,, D., Wallig,, A., Shukla,, A., & Kennedy,, S. (2017). The RNAi inheritance machinery of Caenorhabditis elegans. Genetics, 206(3), 1403–1416. https://doi.org/10.1534/genetics.116.198812
Subtelny,, A. O., Eichhorn,, S. W., Chen,, G. R., Sive,, H., & Bartel,, D. P. (2014). Poly(A)‐tail profiling reveals an embryonic switch in translational control. Nature, 508(7494), 66–71. https://doi.org/10.1038/nature13007
Sudo,, H., Nozaki,, A., Uno,, H., Ishida,, Y. i., & Nagahama,, M. (2016). Interaction properties of human TRAMP‐like proteins and their role in pre‐rRNA 5′ETS turnover. FEBS Letters, 590(17), 2963–2972. https://doi.org/10.1002/1873-3468.12314
Suh,, N., Jedamzik,, B., Eckmann,, C. R., Wickens,, M., & Kimble,, J. (2006). The GLD‐2 poly(A) polymerase activates gld‐1 mRNA in the Caenorhabditis elegans germ line. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15108–15112. https://doi.org/10.1073/pnas.0607050103
Swanger,, S. A., He,, Y. A., Richter,, J. D., & Bassell,, G. J. (2013). Dendritic GluN2A synthesis mediates activity‐induced NMDA receptor insertion. Journal of Neuroscience, 33(20), 8898–8908. https://doi.org/10.1523/JNEUROSCI.0289-13.2013
Tanaka,, H., Kanda,, M., Shimizu,, D., Tanaka,, C., Kobayashi,, D., Hayashi,, M., … Kodera,, Y. (2017). FAM46C serves as a predictor of hepatic recurrence in patients with resectable gastric Cancer. Annals of Surgical Oncology, 24(11), 3438–3445. https://doi.org/10.1245/s10434-016-5636-y
Thornton,, J. E., Chang,, H. M., Piskounova,, E., & Gregory,, R. I. (2012). Lin28‐mediated control of let‐7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA, 18(10), 1875–1885. https://doi.org/10.1261/rna.034538.112
Thornton,, J. E., Du,, P., Jing,, L., Sjekloca,, L., Lin,, S., Grossi,, E., … Gregory,, R. I. (2014). Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Research, 42(18), 11777–11791. https://doi.org/10.1093/nar/gku805
Tomecki,, R., Dmochowska,, A., Gewartowski,, K., Dziembowski,, A., & Stepien,, P. P. (2004). Identification of a novel human nuclear‐encoded mitochondrial poly(A) polymerase. Nucleic Acids Research, 32(20), 6001–6014. https://doi.org/10.1093/nar/gkh923
Trippe,, R., Guschina,, E., Hossbach,, M., Urlaub,, H., Lührmann,, R., & Benecke,, B. J. (2006). Identification, cloning, and functional analysis of the human U6 snRNA‐specific terminal uridylyl transferase. RNA, 12(8), 1494–1504. https://doi.org/10.1261/rna.87706
Trippe,, R., Richly,, H., & Benecke,, B. J. (2003). Biochemical characterization of a U6 small nuclear RNA‐specific terminal uridylyltransferase. European Journal of Biochemistry, 270(5), 971–980. https://doi.org/10.1046/j.1432-1033.2003.03466.x
Tsai,, H. Y., Chen,, C. C. G., Conte,, D., Moresco,, J. J., Chaves,, D. A., Mitani,, S., … Mello,, C. C. (2015). A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi. Cell, 160(3), 407–419. https://doi.org/10.1016/j.cell.2015.01.010
Udagawa,, T., Swanger,, S. A., Takeuchi,, K., Kim,, J. H., Nalavadi,, V., Shin,, J., … Richter,, J. D. (2012). Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Molecular Cell, 47(2), 253–266. https://doi.org/10.1016/j.molcel.2012.05.016
Ustianenko,, D., Chiu,, H. S., Treiber,, T., Weyn‐Vanhentenryck,, S. M., Treiber,, N., Meister,, G., … Zhang,, C. (2018). LIN28 selectively modulates a subclass of Let‐7 microRNAs. Molecular Cell, 71(2), 271–283.e5. https://doi.org/10.1016/j.molcel.2018.06.029
Ustianenko,, D., Hrossova,, D., Potesil,, D., Chalupnikova,, K., Hrazdilova,, K., Pachernik,, J., … Vanacova,, A. (2013). Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let‐7 miRNAs. RNA, 19(12), 1632–1638. https://doi.org/10.1261/rna.040055.113
Ustianenko,, D., Pasulka,, J., Feketova,, Z., Bednarik,, L., Zigackova,, D., Fortova,, A., … Vanacova,, S. (2016). TUT‐DIS3L2 is a mammalian surveillance pathway for aberrant structured non‐coding RNAs. The EMBO Journal, 35(20), 2179–2191. https://doi.org/10.15252/embj.201694857
Van Eyck,, L., Bruni,, F., Ronan,, A., Briggs,, T. A., Roscioli,, T., Rice,, G. I., … Crow,, Y. J. (2019). Biallelic mutations in MTPAP associated with a lethal encephalopathy. Neuropediatrics, 51, 178–184. https://doi.org/10.1055/s-0039-3400979
van Wolfswinkel,, J. C., Claycomb,, J. M., Batista,, P. J., Mello,, C. C., Berezikov,, E., & Ketting,, R. F. (2009). CDE‐1 affects chromosome segregation through uridylation of CSR‐1‐bound siRNAs. Cell, 139(1), 135–148. https://doi.org/10.1016/j.cell.2009.09.012
Vaňáčová,, Š., Wolf,, J., Martin,, G., Blank,, D., Dettwiler,, S., Friedlein,, A., … Keller,, W. (2005). A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biology, 3(6), 986–997. https://doi.org/10.1371/journal.pbio.0030189
Vikova,, V., Jourdan,, M., Robert,, N., Requirand,, G., Boireau,, S., Bruyer,, A., … Moreaux,, J. (2019). Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance. Theranostics, 9(2), 540–553. https://doi.org/10.7150/thno.28374
Walker,, B. A., Mavrommatis,, K., Wardell,, C. P., Cody Ashby,, T., Bauer,, M., Davies,, F. E., … Morgan,, G. J. (2018). Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood, 132(6), 587–597. https://doi.org/10.1182/blood-2018-03-840132
Wan,, X. Y., Zhai,, X. F., Jiang,, Y. P., Han,, T., Zhang,, Q. Y., & Xin,, H. L. (2017). Antimetastatic effects of norcantharidin on hepatocellular carcinoma cells by up‐regulating FAM46C expression. American Journal of Translational Research, 9(1), 155–166 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28123642
Wang,, D. D. H., Guo,, X. E., Modrek,, A. S., Chen,, C. F., Chen,, P. L., & Lee,, W. H. (2014). Helicase SUV3, polynucleotide phosphorylase, and mitochondrial polyadenylation polymerase form a transient complex to modulate mitochondrial mRNA polyadenylated tail lengths in response to energetic changes. Journal of Biological Chemistry, 289(24), 16727–16735. https://doi.org/10.1074/jbc.M113.536540
Wang,, L., Eckmann,, C. R., Kadyk,, L. C., Wickens,, M., & Kimble,, J. (2002). A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature, 419(6904), 312–316. https://doi.org/10.1038/nature01039
Wang,, X., & Voronina,, E. (2020). Diverse roles of PUF proteins in germline stem and progenitor cell development in C. elegans. Frontiers in Cell and Developmental Biology, 8(29), 1–12. https://doi.org/10.3389/fcell.2020.00029
Warkocki,, Z., Krawczyk,, P. S., Adamska,, D., Bijata,, K., Garcia‐Perez,, J. L., & Dziembowski,, A. (2018). Uridylation by TUT4/7 restricts retrotransposition of human LINE‐1s. Cell, 175, 1537–1548. https://doi.org/10.1016/j.cell.2018.07.022
Warkocki,, Z., Liudkovska,, V., Gewartowska,, O., Mroczek,, S., & Dziembowski,, A. (2018). Terminal nucleotidyl transferases ( TENTs ) in mammalian RNA metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1762), 20180162. https://doi.org/10.1098/rstb.2018.0162
Watanabe,, T., Yamamoto,, T., Tsukano,, K., Hirano,, S., Horikawa,, A., & Michiue,, T. (2018). Fam46a regulates bmp‐dependent pre‐placodal ectoderm differentiation in xenopus. Development (Cambridge), 145(20), dev166710. https://doi.org/10.1242/dev.166710
Weick,, E.‐M., Puno,, M. R., Januszyk,, K., Zinder,, J. C., Dimattia,, M. A., & Lima,, C. D. (2018). Helicase‐dependent RNA decay illuminated by a cryo‐EM structure of a human nuclear RNA exosome‐MTR4 complex. Cell, 173(7), 1–15. https://doi.org/10.1016/j.cell.2018.05.041
Westholm,, J. O., & Lai,, E. C. (2011). Mirtrons: MicroRNA biogenesis via splicing. Biochimie, 93(11), 1897–1904. https://doi.org/10.1016/j.biochi.2011.06.017
Wilson,, W. C., Hornig‐Do,, H. T., Bruni,, F., Chang,, J. H. o., Jourdain,, A. A., Martinou,, J. C., … Lightowlers,, R. N. (2014). A human mitochondrial poly(A) polymerase mutation reveals the complexities of post‐transcriptional mitochondrial gene expression. Human Molecular Genetics, 23(23), 6345–6355. https://doi.org/10.1093/hmg/ddu352
Wyman,, S. K., Knouf,, E. C., Parkin,, R. K., Fritz,, B. R., Lin,, D. W., Dennis,, L. M., … Tewari,, M. (2011). Post‐transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Research, 21(9), 1450–1461. https://doi.org/10.1101/gr.118059.110
Xia,, E., Kanematsu,, S., Suenaga,, Y., Elzawahry,, A., Kondo,, H., Otsuka,, N., … Yokoi,, S. (2018). MicroRNA induction by copy number gain is associated with poor outcome in squamous cell carcinoma of the lung. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-33696-1
Xu,, F., Feng,, X., Chen,, X., Weng,, C., Yan,, Q., Xu,, T., … Guang,, S. (2018). A cytoplasmic Argonaute protein promotes the inheritance of RNAi. Cell Reports, 23(8), 2482–2494. https://doi.org/10.1016/j.celrep.2018.04.072
Yamagishi,, R., Tsusaka,, T., Mitsunaga,, H., Maehata,, T., & Hoshino,, S. I. (2016). The STAR protein QKI‐7 recruits PAPD4 to regulate post‐transcriptional polyadenylation of target mRNAs. Nucleic Acids Research, 44(6), 2475–2490. https://doi.org/10.1093/nar/gkw118
Yamashita,, S., Takagi,, Y., Nagaike,, T., & Tomita,, K. (2017). Crystal structures of U6 snRNA‐specific terminal uridylyltransferase. Nature Communications, 8, 15788. https://doi.org/10.1038/ncomms15788
Yang,, A., Bofill‐De Ros,, X., Shao,, T. J., Jiang,, M., Li,, K., Villanueva,, P., … Gu,, S. (2019). 3′ Uridylation confers miRNAs with non‐canonical target repertoires. Molecular Cell, 75(3), 511–522.e4. https://doi.org/10.1016/j.molcel.2019.05.014
Yang,, Q., Nausch,, L. W. M., Martin,, G., Keller,, W., & Doublié,, S. (2014). Crystal structure of human poly(A) polymerase gamma reveals a conserved catalytic core for canonical poly(A) polymerases. Journal of Molecular Biology, 426(1), 43–50. https://doi.org/10.1016/j.jmb.2013.09.025
Yao,, R., Natsume,, Y., & Noda,, T. (2007). TACC3 is required for the proper mitosis of sclerotome mesenchymal cells during formation of the axial skeleton. Cancer Science, 98(4), 555–562. https://doi.org/10.1111/j.1349-7006.2007.00433.x
Yates,, L. A., Fleurdépine,, S., Rissland,, O. S., De Colibus,, L., Harlos,, K., Norbury,, C. J., & Gilbert,, R. J. C. (2012). Structural basis for the activity of a cytoplasmic RNA terminal uridylyl transferase. Nature Structural and Molecular Biology, 19(8), 782–787. https://doi.org/10.1038/nsmb.2329
Yeo,, J., & Kim,, V. N. (2018). U‐tail as a guardian against invading RNAs. Nature Structural and Molecular Biology, 25(10), 903–905. https://doi.org/10.1038/s41594-018-0139-0
Yu,, S., & Kim,, V. N. (2020). A tale of non‐canonical tails: Gene regulation by post‐transcriptional RNA tailing. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/s41580-020-0246-8. [Epub ahead of print]
Zhang,, Q. Y., Yue,, X. Q., Jiang,, Y. P., Han,, T., & Xin,, H. L. (2017). FAM46C is critical for the anti‐proliferation and pro‐apoptotic effects of norcantharidin in hepatocellular carcinoma cells. Scientific Reports, 7(1), 396. https://doi.org/10.1038/s41598-017-00313-6
Zheng,, C., Ouyang,, Y. C., Jiang,, B., Lin,, X., Chen,, J., Dong,, M. Z., … Han,, C. (2019). Non‐canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in mice†. Biology of Reproduction, 100(6), 1673–1685. https://doi.org/10.1093/biolre/ioz083
Zhu,, Y. X., Shi,, C. X., Bruins,, L. A., Jedlowski,, P., Wang,, X., Kortüm,, K. M., … Stewart,, A. K. (2017). Loss of FAM46C promotes cell survival in myeloma. Cancer Research, 77(16), 4317–4327. https://doi.org/10.1158/0008-5472.CAN-16-3011
Zhuang,, X., & Lu,, M. (2018). The potential functions of FAM46C in oral squamous cell carcinoma. Oncotargets and Therapy, 11, 8915–8923. https://doi.org/10.2147/OTT.S185244