Agranat‐Tamir,, L., Shomron,, N., Sperling,, J., & Sperling,, R. (2014). Interplay between pre‐mRNA splicing and microRNA biogenesis within the supraspliceosome. Nucleic Acids Research, 42(7), 4640–4651. https://doi.org/10.1093/nar/gkt1413
Ajiro,, M., Jia,, R., Yang,, Y., Zhu,, J., & Zheng,, Z. M. (2016). A genome landscape of SRSF3‐regulated splicing events and gene expression in human osteosarcoma U2OS cells. Nucleic Acids Research, 44(4), 1854–1870. https://doi.org/10.1093/nar/gkv1500
An,, H., Williams,, N. G., & Shelkovnikova,, T. A. (2018). NEAT1 and paraspeckles in neurodegenerative diseases: A missing lnc found? Noncoding RNA Research, 3(4), 243–252. https://doi.org/10.1016/j.ncrna.2018.11.003
Aspden,, J. L., Eyre‐Walker,, Y. C., Phillips,, R. J., Amin,, U., Mumtaz,, M. A., Brocard,, M., & Couso,, J. P. (2014). Extensive translation of small open Reading frames revealed by poly‐Ribo‐Seq. eLife, 3, e03528. https://doi.org/10.7554/eLife.03528
Augoff,, K., McCue,, B., Plow,, E. F., & Sossey‐Alaoui,, K. (2012). miR‐31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple‐negative breast cancer. Molecular Cancer, 11, 5. https://doi.org/10.1186/1476-4598-11-5
Auyeung,, V. C., Ulitsky,, I., McGeary,, S. E., & Bartel,, D. P. (2013). Beyond secondary structure: Primary‐sequence determinants license pri‐miRNA hairpins for processing. Cell, 152(4), 844–858. https://doi.org/10.1016/j.cell.2013.01.031
Bacolla,, A., Wang,, G., & Vasquez,, K. M. (2015). New perspectives on DNA and RNA triplexes as effectors of biological activity. PLoS Genetics, 11(12), e1005696. https://doi.org/10.1371/journal.pgen.1005696
Bartel,, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233. https://doi.org/10.1016/j.cell.2009.01.002
Baskerville,, S., & Bartel,, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA—A Publication of the RNA Society, 11(3), 241–247. https://doi.org/10.1261/rna.7240905
Baumann,, V., & Winkler,, J. (2014). miRNA‐based therapies: Strategies and delivery platforms for oligonucleotide and non‐oligonucleotide agents. Future Medicinal Chemistry, 6(17), 1967–1984. https://doi.org/10.4155/fmc.14.116
Berezikov,, E., Chung,, W. J., Willis,, J., Cuppen,, E., & Lai,, E. C. (2007). Mammalian mirtron genes. Molecular Cell, 28(2), 328–336. https://doi.org/10.1016/j.molcel.2007.09.028
Boivin,, V., Faucher‐Giguere,, L., Scott,, M., & Abou‐Elela,, S. (2019). The cellular landscape of mid‐size noncoding RNA. Wiley Interdisciplinary Reviews: RNA, 10(4), e1530. https://doi.org/10.1002/wrna.1530
Brannan,, C. I., Dees,, E. C., Ingram,, R. S., & Tilghman,, S. M. (1990). The product of the H19 gene may function as an RNA. Molecular and Cellular Biology, 10(1), 28–36. https://doi.org/10.1128/mcb.10.1.28
Budach,, S., Heinig,, M., & Marsico,, A. (2016). Principles of microRNA regulation revealed through modeling microRNA expression quantitative trait loci. Genetics, 203(4), 1629–1640. https://doi.org/10.1534/genetics.116.187153
Bushati,, N., & Cohen,, S. M. (2007). MicroRNA functions. Annual Review of Cell and Developmental Biology, 23, 175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406
Cabili,, M. N., Trapnell,, C., Goff,, L., Koziol,, M., Tazon‐Vega,, B., Regev,, A., & Rinn,, J. L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes %26 Development, 25(18), 1915–1927. https://doi.org/10.1101/gad.17446611
Cairns,, J., Ingle,, J. N., Kalari,, K. R., Shepherd,, L. E., Kubo,, M., Goetz,, M. P., … Wang,, L. (2019). The lncRNA MIR2052HG regulates ERalpha levels and aromatase inhibitor resistance through LMTK3 by recruiting EGR1. Breast Cancer Research, 21(1), 47. https://doi.org/10.1186/s13058-019-1130-3
Cheloufi,, S., Dos Santos,, C. O., Chong,, M. M., & Hannon,, G. J. (2010). A dicer‐independent miRNA biogenesis pathway that requires Ago catalysis. Nature, 465(7298), 584–589. https://doi.org/10.1038/nature09092
Chen,, J., Yu,, Y., Li,, H., Hu,, Q., Chen,, X., He,, Y., … Sun,, R. (2019). Long non‐coding RNA PVT1 promotes tumor progression by regulating the miR‐143/HK2 axis in gallbladder cancer. Molecular Cancer, 18(1), 33. https://doi.org/10.1186/s12943-019-0947-9
Chen,, Q., Cai,, J., Wang,, Q., Wang,, Y., Liu,, M., Yang,, J., … Jiang,, C. (2018). Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to Glioblastoma progression through the WNT/beta‐catenin pathway by scaffolding EZH2. Clinical Cancer Research, 24(3), 684–695. https://doi.org/10.1158/1078-0432.CCR-17-0605
Chen,, Y., Qiu,, J., Chen,, B., Lin,, Y., Chen,, Y., Xie,, G., … Jiang,, D. (2018). Long non‐coding RNA NEAT1 plays an important role in sepsis‐induced acute kidney injury by targeting miR‐204 and modulating the NF‐kappaB pathway. International Immunopharmacology, 59, 252–260. https://doi.org/10.1016/j.intimp.2018.03.023
Chen,, Y. G., Satpathy,, A. T., & Chang,, H. Y. (2017). Gene regulation in the immune system by long noncoding RNAs. Nature Immunology, 18(9), 962–972. https://doi.org/10.1038/ni.3771
Cifuentes,, D., Xue,, H., Taylor,, D. W., Patnode,, H., Mishima,, Y., Cheloufi,, S., … Giraldez,, A. J. (2010). A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science, 328(5986), 1694–1698. https://doi.org/10.1126/science.1190809
Clemson,, C. M., Hutchinson,, J. N., Sara,, S. A., Ensminger,, A. W., Fox,, A. H., Chess,, A., & Lawrence,, J. B. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 33(6), 717–726. https://doi.org/10.1016/j.molcel.2009.01.026
Colombo,, T., Farina,, L., Macino,, G., & Paci,, P. (2015). PVT1: A rising star among oncogenic long noncoding RNAs. BioMed Research International, 2015, 304208–304210. https://doi.org/10.1155/2015/304208
Cui,, Z., An,, X., Li,, J., Liu,, Q., & Liu,, W. (2018). LncRNA MIR22HG negatively regulates miR‐141‐3p to enhance DAPK1 expression and inhibits endometrial carcinoma cells proliferation. Biomedicine %26 Pharmacotherapy, 104, 223–228. https://doi.org/10.1016/j.biopha.2018.05.046
Czubak,, K., Lewandowska,, M. A., Klonowska,, K., Roszkowski,, K., Kowalewski,, J., Figlerowicz,, M., & Kozlowski,, P. (2015). High copy number variation of cancer‐related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget, 6(27), 23399–23416. https://doi.org/10.18632/oncotarget.4351
Daniunaite,, K., Dubikaityte,, M., Gibas,, P., Bakavicius,, A., Rimantas Lazutka,, J., Ulys,, A., … Jarmalaite,, S. (2017). Clinical significance of miRNA host gene promoter methylation in prostate cancer. Human Molecular Genetics, 26(13), 2451–2461. https://doi.org/10.1093/hmg/ddx138
Derderian,, C., Orunmuyi,, A. T., Olapade‐Olaopa,, E. O., & Ogunwobi,, O. O. (2019). PVT1 signaling is a mediator of Cancer progression. Frontiers in Oncology, 9, 502. https://doi.org/10.3389/fonc.2019.00502
Dhir,, A., Dhir,, S., Proudfoot,, N. J., & Jopling,, C. L. (2015). Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nature Structural %26 Molecular Biology, 22(4), 319–327. https://doi.org/10.1038/nsmb.2982
Di Agostino,, S., Valenti,, F., Sacconi,, A., Fontemaggi,, G., Pallocca,, M., Pulito,, C., … Blandino,, G. (2018). Long non‐coding MIR205HG depletes Hsa‐miR‐590‐3p leading to unrestrained proliferation in head and neck squamous cell carcinoma. Theranostics, 8(7), 1850–1868. https://doi.org/10.7150/thno.22167
Dong,, P., Xiong,, Y., Yue,, J., Hanley,, S. J. B., Kobayashi,, N., Todo,, Y., & Watari,, H. (2018). Long non‐coding RNA NEAT1: A novel target for diagnosis and therapy in human tumors. Frontiers in Genetics, 9, 471. https://doi.org/10.3389/fgene.2018.00471
Du,, P., Wang,, L., Sliz,, P., & Gregory,, R. I. (2015). A biogenesis step upstream of microprocessor controls miR‐17 approximately 92 expression. Cell, 162(4), 885–899. https://doi.org/10.1016/j.cell.2015.07.008
Du,, Q., Hoover,, A. R., Dozmorov,, I., Raj,, P., Khan,, S., Molina,, E., … van Oers,, N. S. C. (2019). MIR205HG is a long noncoding RNA that regulates growth hormone and prolactin production in the anterior pituitary. Developmental Cell, 49(4), 618–631 e615. https://doi.org/10.1016/j.devcel.2019.03.012
Emmrich,, S., Streltsov,, A., Schmidt,, F., Thangapandi,, V. R., Reinhardt,, D., & Klusmann,, J. H. (2014). LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Molecular Cancer, 13, 171. https://doi.org/10.1186/1476-4598-13-171
Fang,, S., Zhang,, L., Guo,, J., Niu,, Y., Wu,, Y., Li,, H., … Zhao,, Y. (2018). NONCODEV5: A comprehensive annotation database for long non‐coding RNAs. Nucleic Acids Research, 46(D1), D308–D314. https://doi.org/10.1093/nar/gkx1107
Fang,, Y., & Fullwood,, M. J. (2016). Roles, functions, and mechanisms of Long non‐coding RNAs in cancer. Genomics, Proteomics %26 Bioinformatics, 14(1), 42–54. https://doi.org/10.1016/j.gpb.2015.09.006
Farazi,, T. A., Spitzer,, J. I., Morozov,, P., & Tuschl,, T. (2011). miRNAs in human cancer. The Journal of Pathology, 223(2), 102–115. https://doi.org/10.1002/path.2806
Filipowicz,, W., Jaskiewicz,, L., Kolb,, F. A., & Pillai,, R. S. (2005). Post‐transcriptional gene silencing by siRNAs and miRNAs. Current Opinion in Structural Biology, 15(3), 331–341. https://doi.org/10.1016/j.sbi.2005.05.006
Flynn,, R. A., & Chang,, H. Y. (2014). Long noncoding RNAs in cell‐fate programming and reprogramming. Cell Stem Cell, 14(6), 752–761. https://doi.org/10.1016/j.stem.2014.05.014
Flynt,, A. S., Greimann,, J. C., Chung,, W. J., Lima,, C. D., & Lai,, E. C. (2010). MicroRNA biogenesis via splicing and exosome‐mediated trimming in Drosophila. Molecular Cell, 38(6), 900–907. https://doi.org/10.1016/j.molcel.2010.06.014
Fox,, A. H., & Lamond,, A. I. (2010). Paraspeckles. Cold Spring Harbor Perspectives in Biology, 2(7), a000687. https://doi.org/10.1101/cshperspect.a000687
Franca,, G. S., Vibranovski,, M. D., & Galante,, P. A. (2016). Host gene constraints and genomic context impact the expression and evolution of human microRNAs. Nature Communications, 7, 11438. https://doi.org/10.1038/ncomms11438
Frankish,, A., Diekhans,, M., Ferreira,, A. M., Johnson,, R., Jungreis,, I., Loveland,, J., … Flicek,, P. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research, 47(D1), D766–D773. https://doi.org/10.1093/nar/gky955
Friedman,, R. C., Farh,, K. K., Burge,, C. B., & Bartel,, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105. https://doi.org/10.1101/gr.082701.108
Fu,, J., Dong,, G., Shi,, H., Zhang,, J., Ning,, Z., Bao,, X., … Xiong,, B. (2019). LncRNA MIR503HG inhibits cell migration and invasion via miR‐103/OLFM4 axis in triple negative breast cancer. Journal of Cellular and Molecular Medicine, 23(7), 4738–4745. https://doi.org/10.1111/jcmm.14344
Gebert,, L. F. R., & MacRae,, I. J. (2019). Regulation of microRNA function in animals. Nature Reviews. Molecular Cell Biology, 20(1), 21–37. https://doi.org/10.1038/s41580-018-0045-7
Ghafouri‐Fard,, S., & Taheri,, M. (2019). Nuclear enriched abundant transcript 1 (NEAT1): A long non‐coding RNA with diverse functions in tumorigenesis. Biomedicine %26 Pharmacotherapy, 111, 51–59. https://doi.org/10.1016/j.biopha.2018.12.070
Gimpel,, M., Heidrich,, N., Mader,, U., Krugel,, H., & Brantl,, S. (2010). A dual‐function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon. Molecular Microbiology, 76(4), 990–1009. https://doi.org/10.1111/j.1365-2958.2010.07158.x
Giovarelli,, M., Bucci,, G., Ramos,, A., Bordo,, D., Wilusz,, C. J., Chen,, C. Y., … Gherzi,, R. (2014). H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proceedings of the National Academy of Sciences of the United States of America, 111(47), E5023–E5028. https://doi.org/10.1073/pnas.1415098111
Grady,, W. M., Parkin,, R. K., Mitchell,, P. S., Lee,, J. H., Kim,, Y. H., Tsuchiya,, K. D., … Tewari,, M. (2008). Epigenetic silencing of the intronic microRNA hsa‐miR‐342 and its host gene EVL in colorectal cancer. Oncogene, 27(27), 3880–3888. https://doi.org/10.1038/onc.2008.10
Gregory,, R. I., Yan,, K. P., Amuthan,, G., Chendrimada,, T., Doratotaj,, B., Cooch,, N., & Shiekhattar,, R. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235–240. https://doi.org/10.1038/nature03120
Guil,, S., & Caceres,, J. F. (2007). The multifunctional RNA‐binding protein hnRNP A1 is required for processing of miR‐18a. Nature Structural %26 Molecular Biology, 14(7), 591–596. https://doi.org/10.1038/nsmb1250
Ha,, M., & Kim,, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews. Molecular Cell Biology, 15(8), 509–524. https://doi.org/10.1038/nrm3838
Han,, J., Lee,, Y., Yeom,, K. H., Nam,, J. W., Heo,, I., Rhee,, J. K., … Kim,, V. N. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha‐DGCR8 complex. Cell, 125(5), 887–901. https://doi.org/10.1016/j.cell.2006.03.043
Hinske,, L. C., Galante,, P. A., Kuo,, W. P., & Ohno‐Machado,, L. (2010). A potential role for intragenic miRNAs on their hosts` interactome. BMC Genomics, 11, 533. https://doi.org/10.1186/1471-2164-11-533
Hirano,, T., Yoshikawa,, R., Harada,, H., Harada,, Y., Ishida,, A., & Yamazaki,, T. (2015). Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression. Molecular Cancer, 14, 90. https://doi.org/10.1186/s12943-015-0364-7
Hirose,, T., Virnicchi,, G., Tanigawa,, A., Naganuma,, T., Li,, R., Kimura,, H., … Pierron,, G. (2014). NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Molecular Biology of the Cell, 25(1), 169–183. https://doi.org/10.1091/mbc.E13-09-0558
Huang,, P. S., Chung,, I. H., Lin,, Y. H., Lin,, T. K., Chen,, W. J., & Lin,, K. H. (2018). The Long non‐coding RNA MIR503HG enhances proliferation of human ALK‐negative anaplastic large‐cell lymphoma. International Journal of Molecular Sciences, 19(5). https://doi.org/10.3390/ijms19051463
Huarte,, M. (2015). The emerging role of lncRNAs in cancer. Nature Medicine, 21(11), 1253–1261. https://doi.org/10.1038/nm.3981
Hube,, F., & Francastel,, C. (2018). Coding and non‐coding RNAs, the frontier has never been so blurred. Frontiers in Genetics, 9, 140. https://doi.org/10.3389/fgene.2018.00140
Imig,, J., Brunschweiger,, A., Brummer,, A., Guennewig,, B., Mittal,, N., Kishore,, S., … Hall,, J. (2015). miR‐CLIP capture of a miRNA targetome uncovers a lincRNA H19‐miR‐106a interaction. Nature Chemical Biology, 11(2), 107–114. https://doi.org/10.1038/nchembio.1713
Ingle,, J. N., Xie,, F., Ellis,, M. J., Goss,, P. E., Shepherd,, L. E., Chapman,, J. W., … Wang,, L. (2016). Genetic polymorphisms in the long noncoding RNA MIR2052HG offer a pharmacogenomic basis for the response of breast cancer patients to aromatase inhibitor therapy. Cancer Research, 76(23), 7012–7023. https://doi.org/10.1158/0008-5472.CAN-16-1371
Jadaliha,, M., Gholamalamdari,, O., Tang,, W., Zhang,, Y., Petracovici,, A., Hao,, Q., … Prasanth,, K. V. (2018). A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genetics, 14(11), e1007802. https://doi.org/10.1371/journal.pgen.1007802
Janas,, M. M., Khaled,, M., Schubert,, S., Bernstein,, J. G., Golan,, D., Veguilla,, R. A., … Novina,, C. D. (2011). Feed‐forward microprocessing and splicing activities at a microRNA‐containing intron. PLoS Genetics, 7(10), e1002330. https://doi.org/10.1371/journal.pgen.1002330
Ji,, Z., Song,, R., Regev,, A., & Struhl,, K. (2015). Many lncRNAs, 5`UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife, 4, e08890. https://doi.org/10.7554/eLife.08890
Jiang,, L., Shao,, C., Wu,, Q. J., Chen,, G., Zhou,, J., Yang,, B., … Fu,, X. D. (2017). NEAT1 scaffolds RNA‐binding proteins and the microprocessor to globally enhance pri‐miRNA processing. Nature Structural %26 Molecular Biology, 24(10), 816–824. https://doi.org/10.1038/nsmb.3455
Jiang,, N., Wang,, X., Xie,, X., Liao,, Y., Liu,, N., Liu,, J., … Peng,, T. (2017). lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR‐33a‐5p inhibition. Cancer Letters, 405, 46–55. https://doi.org/10.1016/j.canlet.2017.06.009
Jin,, Y., Chen,, Z., Liu,, X., & Zhou,, X. (2013). Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods in Molecular Biology, 936, 117–127. https://doi.org/10.1007/978-1-62703-083-0_10
Kahl,, G. (2009). The dictionary of genomics, transcriptomics and proteomics (5th ed.). Hoboken, NJ: Wiley‐Blackwell.
Kallen,, A. N., Zhou,, X. B., Xu,, J., Qiao,, C., Ma,, J., Yan,, L., … Huang,, Y. (2013). The imprinted H19 lncRNA antagonizes let‐7 microRNAs. Molecular Cell, 52(1), 101–112. https://doi.org/10.1016/j.molcel.2013.08.027
Kang,, X., Kong,, F., Huang,, K., Li,, L., Li,, Z., Wang,, X., … Wu,, X. (2019). LncRNA MIR210HG promotes proliferation and invasion of non‐small cell lung cancer by upregulating methylation of CACNA2D2 promoter via binding to DNMT1. Oncotargets and Therapy, 12, 3779–3790. https://doi.org/10.2147/OTT.S189468
Kataoka,, N., Fujita,, M., & Ohno,, M. (2009). Functional association of the microprocessor complex with the spliceosome. Molecular and Cellular Biology, 29(12), 3243–3254. https://doi.org/10.1128/MCB.00360-09
Keniry,, A., Oxley,, D., Monnier,, P., Kyba,, M., Dandolo,, L., Smits,, G., & Reik,, W. (2012). The H19 lincRNA is a developmental reservoir of miR‐675 that suppresses growth and Igf1r. Nature Cell Biology, 14(7), 659–665. https://doi.org/10.1038/ncb2521
Kim,, K., Nguyen,, T. D., Li,, S., & Nguyen,, T. A. (2018). SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA, 24(7), 892–898. https://doi.org/10.1261/rna.065862.118
Kim,, T. K., Hemberg,, M., & Gray,, J. M. (2015). Enhancer RNAs: A class of long noncoding RNAs synthesized at enhancers. Cold Spring Harbor Perspectives in Biology, 7(1), a018622. https://doi.org/10.1101/cshperspect.a018622
Kim,, Y. K., & Kim,, V. N. (2007). Processing of intronic microRNAs. The EMBO Journal, 26(3), 775–783. https://doi.org/10.1038/sj.emboj.7601512
Kitagawa,, M., Kitagawa,, K., Kotake,, Y., Niida,, H., & Ohhata,, T. (2013). Cell cycle regulation by long non‐coding RNAs. Cellular and Molecular Life Sciences, 70(24), 4785–4794. https://doi.org/10.1007/s00018-013-1423-0
Kong,, R., Zhang,, E. B., Yin,, D. D., You,, L. H., Xu,, T. P., Chen,, W. M., … Zhang,, Z. H. (2015). Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Molecular Cancer, 14, 82. https://doi.org/10.1186/s12943-015-0355-8
Kopp,, F., & Mendell,, J. T. (2018). Functional classification and experimental dissection of long noncoding RNAs. Cell, 172(3), 393–407. https://doi.org/10.1016/j.cell.2018.01.011
Kozomara,, A., Birgaoanu,, M., & Griffiths‐Jones,, S. (2019). miRBase: From microRNA sequences to function. Nucleic Acids Research, 47(D1), D155–D162. https://doi.org/10.1093/nar/gky1141
Kwon,, S. C., Baek,, S. C., Choi,, Y. G., Yang,, J., Lee,, Y. S., Woo,, J. S., & Kim,, V. N. (2019). Molecular basis for the single‐nucleotide precision of primary microRNA processing. Molecular Cell, 73(3), 505, e505–518. https://doi.org/10.1016/j.molcel.2018.11.005
Lagarde,, J., Uszczynska‐Ratajczak,, B., Carbonell,, S., Perez‐Lluch,, S., Abad,, A., Davis,, C., … Johnson,, R. (2017). High‐throughput annotation of full‐length long noncoding RNAs with capture long‐read sequencing. Nature Genetics, 49(12), 1731–1740. https://doi.org/10.1038/ng.3988
Latge,, G., Poulet,, C., Bours,, V., Josse,, C., & Jerusalem,, G. (2018). Natural antisense transcripts: Molecular mechanisms and implications in breast cancers. International Journal of Molecular Sciences, 19(1). https://doi.org/10.3390/ijms19010123
Lauressergues,, D., Couzigou,, J. M., Clemente,, H. S., Martinez,, Y., Dunand,, C., Becard,, G., & Combier,, J. P. (2015). Primary transcripts of microRNAs encode regulatory peptides. Nature, 520(7545), 90–93. https://doi.org/10.1038/nature14346
Lee,, R. C., Feinbaum,, R. L., & Ambros,, V. (1993). The C. elegans heterochronic gene lin‐4 encodes small RNAs with antisense complementarity to lin‐14. Cell, 75(5), 843–854. https://doi.org/10.1016/0092-8674(93)90529-y
Li,, J., Tian,, H., Yang,, J., & Gong,, Z. (2016). Long noncoding RNAs regulate cell growth, proliferation, and apoptosis. DNA Cell Biology, 35(9), 459–470. https://doi.org/10.1089/dna.2015.3187
Li,, J., Wu,, Q. M., Wang,, X. Q., & Zhang,, C. Q. (2017). Long noncoding RNA miR210HG sponges miR‐503 to facilitate osteosarcoma cell invasion and metastasis. DNA and Cell Biology, 36(12), 1117–1125. https://doi.org/10.1089/dna.2017.3888
Li,, N., Long,, B., Han,, W., Yuan,, S., & Wang,, K. (2017). microRNAs: Important regulators of stem cells. Stem Cell Research %26 Therapy, 8(1), 110. https://doi.org/10.1186/s13287-017-0551-0
Li,, X. Y., Zhou,, L. Y., Luo,, H., Zhu,, Q., Zuo,, L., Liu,, G. Y., … Li,, X. (2019). The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR‐1226‐3p to regulate mucin‐1c expression in invasive breast cancer. Aging (Albany NY), 11(15), 5646–5665. https://doi.org/10.18632/aging.102149
Li,, Y., Syed,, J., & Sugiyama,, H. (2016). RNA‐DNA triplex formation by long noncoding RNAs. Cell Chemical Biology, 23(11), 1325–1333. https://doi.org/10.1016/j.chembiol.2016.09.011
Li,, Y., Wang,, H., & Huang,, H. (2019). Long non‐coding RNA MIR205HG function as a ceRNA to accelerate tumor growth and progression via sponging miR‐122‐5p in cervical cancer. Biochemical and Biophysical Research Communications, 514(1), 78–85. https://doi.org/10.1016/j.bbrc.2019.04.102
Li,, Z., Zhang,, J., Liu,, X., Li,, S., Wang,, Q., Di,, C., … He,, X. (2018). The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nature Communications, 9(1), 1572. https://doi.org/10.1038/s41467-018-04006-0
Liu,, B., Shyr,, Y., Cai,, J., & Liu,, Q. (2018). Interplay between miRNAs and host genes and their role in cancer. Briefings in Functional Genomics, 18(4), 255–266. https://doi.org/10.1093/bfgp/elz002
Liu,, Y., Zhang,, M., Liang,, L., Li,, J., & Chen,, Y. X. (2015). Over‐expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. International Journal of Clinical and Experimental Pathology, 8(9), 11480–11484.
Liu,, Z., Dou,, C., Yao,, B., Xu,, M., Ding,, L., Wang,, Y., … Liu,, Q. (2016). Ftx non coding RNA‐derived miR‐545 promotes cell proliferation by targeting RIG‐I in hepatocellular carcinoma. Oncotarget, 7(18), 25350–25365. https://doi.org/10.18632/oncotarget.8129
Lu,, K. H., Li,, W., Liu,, X. H., Sun,, M., Zhang,, M. L., Wu,, W. Q., … Hou,, Y. Y. (2013). Long non‐coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer, 13, 461. https://doi.org/10.1186/1471-2407-13-461
Lu,, Y., Zhao,, X., Liu,, Q., Li,, C., Graves‐Deal,, R., Cao,, Z., … Coffey,, R. J. (2017). lncRNA MIR100HG‐derived miR‐100 and miR‐125b mediate cetuximab resistance via Wnt/beta‐catenin signaling. Nature Medicine, 23(11), 1331–1341. https://doi.org/10.1038/nm.4424
Lutter,, D., Marr,, C., Krumsiek,, J., Lang,, E. W., & Theis,, F. J. (2010). Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics, 11, 224. https://doi.org/10.1186/1471-2164-11-224
Ma,, H., Wu,, Y., Choi,, J. G., & Wu,, H. (2013). Lower and upper stem‐single‐stranded RNA junctions together determine the Drosha cleavage site. Proceedings of the National Academy of Sciences of the United States of America, 110(51), 20687–20692. https://doi.org/10.1073/pnas.1311639110
MacRae,, I. J., Zhou,, K., & Doudna,, J. A. (2007). Structural determinants of RNA recognition and cleavage by Dicer. Nature Structural %26 Molecular Biology, 14(10), 934–940. https://doi.org/10.1038/nsmb1293
Marchese,, F. P., Raimondi,, I., & Huarte,, M. (2017). The multidimensional mechanisms of long noncoding RNA function. Genome Biology, 18(1), 206. https://doi.org/10.1186/s13059-017-1348-2
Marin‐Bejar,, O., Marchese,, F. P., Athie,, A., Sanchez,, Y., Gonzalez,, J., Segura,, V., … Huarte,, M. (2013). Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biology, 14(9), R104. https://doi.org/10.1186/gb-2013-14-9-r104
Marin‐Bejar,, O., Mas,, A. M., Gonzalez,, J., Martinez,, D., Athie,, A., Morales,, X., … Huarte,, M. (2017). The human lncRNA LINC‐PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biology, 18(1), 202. https://doi.org/10.1186/s13059-017-1331-y
Mattioli,, C., Pianigiani,, G., & Pagani,, F. (2013). A competitive regulatory mechanism discriminates between juxtaposed splice sites and pri‐miRNA structures. Nucleic Acids Research, 41(18), 8680–8691. https://doi.org/10.1093/nar/gkt614
Mattioli,, C., Pianigiani,, G., & Pagani,, F. (2014). Cross talk between spliceosome and microprocessor defines the fate of pre‐mRNA. Wiley Interdisciplinary Reviews: RNA, 5(5), 647–658. https://doi.org/10.1002/wrna.1236
Mehta,, A., & Baltimore,, D. (2016). MicroRNAs as regulatory elements in immune system logic. Nature Reviews. Immunology, 16(5), 279–294. https://doi.org/10.1038/nri.2016.40
Melamed,, Z., Levy,, A., Ashwal‐Fluss,, R., Lev‐Maor,, G., Mekahel,, K., Atias,, N., … Ast,, G. (2013). Alternative splicing regulates biogenesis of miRNAs located across exon‐intron junctions. Molecular Cell, 50(6), 869–881. https://doi.org/10.1016/j.molcel.2013.05.007
Michlewski,, G., & Caceres,, J. F. (2010). Antagonistic role of hnRNP A1 and KSRP in the regulation of let‐7a biogenesis. Nature Structural %26 Molecular Biology, 17(8), 1011–1018. https://doi.org/10.1038/nsmb.1874
Milligan,, M. J., & Lipovich,, L. (2014). Pseudogene‐derived lncRNAs: Emerging regulators of gene expression. Frontiers in Genetics, 5, 476. https://doi.org/10.3389/fgene.2014.00476
Monnier,, P., Martinet,, C., Pontis,, J., Stancheva,, I., Ait‐Si‐Ali,, S., & Dandolo,, L. (2013). H19 lncRNA controls gene expression of the imprinted gene network by recruiting MBD1. Proceedings of the National Academy of Sciences of the United States of America, 110(51), 20693–20698. https://doi.org/10.1073/pnas.1310201110
Morenos,, L., Chatterton,, Z., Ng,, J. L., Halemba,, M. S., Parkinson‐Bates,, M., Mechinaud,, F., … Wong,, N. C. (2014). Hypermethylation and down‐regulation of DLEU2 in paediatric acute myeloid leukaemia independent of embedded tumour suppressor miR‐15a/16‐1. Molecular Cancer, 13, 123. https://doi.org/10.1186/1476-4598-13-123
Morlando,, M., Ballarino,, M., Gromak,, N., Pagano,, F., Bozzoni,, I., & Proudfoot,, N. J. (2008). Primary microRNA transcripts are processed co‐transcriptionally. Nature Structural %26 Molecular Biology, 15(9), 902–909.
Naganuma,, T., & Hirose,, T. (2013). Paraspeckle formation during the biogenesis of long non‐coding RNAs. RNA Biology, 10(3), 456–461. https://doi.org/10.4161/rna.23547
Ng,, S. Y., Bogu,, G. K., Soh,, B. S., & Stanton,, L. W. (2013). The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Molecular Cell, 51(3), 349–359. https://doi.org/10.1016/j.molcel.2013.07.017
Nguyen,, T. A., Jo,, M. H., Choi,, Y. G., Park,, J., Kwon,, S. C., Hohng,, S., … Woo,, J. S. (2015). Functional anatomy of the human microprocessor. Cell, 161(6), 1374–1387. https://doi.org/10.1016/j.cell.2015.05.010
Nie,, F. Q., Ma,, S., Xie,, M., Liu,, Y. W., De,, W., & Liu,, X. H. (2016). Decreased long noncoding RNA MIR31HG is correlated with poor prognosis and contributes to cell proliferation in gastric cancer. Tumour Biology, 37(6), 7693–7701. https://doi.org/10.1007/s13277-015-4644-z
Noh,, J. H., Kim,, K. M., McClusky,, W. G., Abdelmohsen,, K., & Gorospe,, M. (2018). Cytoplasmic functions of long noncoding RNAs. Wiley Interdisciplinary Reviews: RNA, 9(3), e1471. https://doi.org/10.1002/wrna.1471
Okamura,, K., Hagen,, J. W., Duan,, H., Tyler,, D. M., & Lai,, E. C. (2007). The mirtron pathway generates microRNA‐class regulatory RNAs in Drosophila. Cell, 130(1), 89–100. https://doi.org/10.1016/j.cell.2007.06.028
O`Leary,, N. A., Wright,, M. W., Brister,, J. R., Ciufo,, S., Haddad,, D., McVeigh,, R., … Pruitt,, K. D. (2016). Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Research, 44(D1), D733–D745. https://doi.org/10.1093/nar/gkv1189
Olivero,, C. E., Martinez‐Terroba,, E., Zimmer,, J., Liao,, C., Tesfaye,, E., Hooshdaran,, N., … Dimitrova,, N. (2020). p53 Activates the Long noncoding RNA Pvt1b to inhibit Myc and suppress tumorigenesis. Molecular Cell, 77(4), 761–774 e768. https://doi.org/10.1016/j.molcel.2019.12.014
Park,, J. E., Heo,, I., Tian,, Y., Simanshu,, D. K., Chang,, H., Jee,, D., … Kim,, V. N. (2011). Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature, 475(7355), 201–205. https://doi.org/10.1038/nature10198
Peng,, W., & Jiang,, A. (2016). Long noncoding RNA CCDC26 as a potential predictor biomarker contributes to tumorigenesis in pancreatic cancer. Biomedicine %26 Pharmacotherapy, 83, 712–717. https://doi.org/10.1016/j.biopha.2016.06.059
Peng,, W., Si,, S., Zhang,, Q., Li,, C., Zhao,, F., Wang,, F., … Ma,, R. (2015). Long non‐coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. Journal of Experimental %26 Clinical Cancer Research, 34, 79. https://doi.org/10.1186/s13046-015-0197-7
Pianigiani,, G., Licastro,, D., Fortugno,, P., Castiglia,, D., Petrovic,, I., & Pagani,, F. (2018). Microprocessor‐dependent processing of splice site overlapping microRNA exons does not result in changes in alternative splicing. RNA, 24(9), 1158–1171. https://doi.org/10.1261/rna.063438.117
Profumo,, V., Forte,, B., Percio,, S., Rotundo,, F., Doldi,, V., Ferrari,, E., … Gandellini,, P. (2019). LEADeR role of miR‐205 host gene as long noncoding RNA in prostate basal cell differentiation. Nature Communications, 10(1), 307. https://doi.org/10.1038/s41467-018-08153-2
Qian,, H., Chen,, L., Huang,, J., Wang,, X., Ma,, S., Cui,, F., … Zheng,, G. (2018). The lncRNA MIR4435‐2HG promotes lung cancer progression by activating beta‐catenin signalling. Journal of Molecular Medicine (Berlin, Germany), 96(8), 753–764. https://doi.org/10.1007/s00109-018-1654-5
Qin,, J., Ning,, H., Zhou,, Y., Hu,, Y., Yang,, L., & Huang,, R. (2018). LncRNA MIR31HG overexpression serves as poor prognostic biomarker and promotes cells proliferation in lung adenocarcinoma. Biomedicine %26 Pharmacotherapy, 99, 363–368. https://doi.org/10.1016/j.biopha.2018.01.037
Ratnadiwakara,, M., Mohenska,, M., & Anko,, M. L. (2018). Splicing factors as regulators of miRNA biogenesis ‐ links to human disease. Seminars in Cell %26 Developmental Biology, 79, 113–122. https://doi.org/10.1016/j.semcdb.2017.10.008
Raveh,, E., Matouk,, I. J., Gilon,, M., & Hochberg,, A. (2015). The H19 Long non‐coding RNA in cancer initiation, progression and metastasis—A proposed unifying theory. Molecular Cancer, 14, 184. https://doi.org/10.1186/s12943-015-0458-2
Reddy,, K. B. (2015). MicroRNA (miRNA) in cancer. Cancer Cell International, 15, 38. https://doi.org/10.1186/s12935-015-0185-1
Riva,, P., Ratti,, A., & Venturin,, M. (2016). The long non‐coding RNAs in neurodegenerative diseases: Novel mechanisms of pathogenesis. Current Alzheimer Research, 13(11), 1219–1231. https://doi.org/10.2174/1567205013666160622112234
Ruby,, J. G., Jan,, C. H., & Bartel,, D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature, 448(7149), 83–86. https://doi.org/10.1038/nature05983
Saliminejad,, K., Khorram Khorshid,, H. R., Soleymani Fard,, S., & Ghaffari,, S. H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. Journal of Cellular Physiology, 234(5), 5451–5465. https://doi.org/10.1002/jcp.27486
Schmitt,, A. M., & Chang,, H. Y. (2016). Long noncoding RNAs in cancer pathways. Cancer Cell, 29(4), 452–463. https://doi.org/10.1016/j.ccell.2016.03.010
Schwarz,, D. S., Hutvagner,, G., Du,, T., Xu,, Z., Aronin,, N., & Zamore,, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2), 199–208. https://doi.org/10.1016/s0092-8674(03)00759-1
Shen,, Y., Katsaros,, D., Loo,, L. W., Hernandez,, B. Y., Chong,, C., Canuto,, E. M., … Yu,, H. (2015). Prognostic and predictive values of long non‐coding RNA LINC00472 in breast cancer. Oncotarget, 6(11), 8579–8592. https://doi.org/10.18632/oncotarget.3287
Shih,, J. W., Chiang,, W. F., Wu,, A. T. H., Wu,, M. H., Wang,, L. Y., Yu,, Y. L., … Kung,, H. J. (2017). Long noncoding RNA LncHIFCAR/MIR31HG is a HIF‐1alpha co‐activator driving oral cancer progression. Nature Communications, 8, 15874. https://doi.org/10.1038/ncomms15874
Song,, M. S., & Rossi,, J. J. (2017). Molecular mechanisms of dicer: Endonuclease and enzymatic activity. The Biochemical Journal, 474(10), 1603–1618. https://doi.org/10.1042/BCJ20160759
Souquere,, S., Beauclair,, G., Harper,, F., Fox,, A., & Pierron,, G. (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Molecular Biology of the Cell, 21(22), 4020–4027. https://doi.org/10.1091/mbc.E10-08-0690
St Laurent,, G., Wahlestedt,, C., & Kapranov,, P. (2015). The landscape of long noncoding RNA classification. Trends in Genetics: TIG, 31(5), 239–251. https://doi.org/10.1016/j.tig.2015.03.007
Steiman‐Shimony,, A., Shtrikman,, O., & Margalit,, H. (2018). Assessing the functional association of intronic miRNAs with their host genes. RNA—A Publication of the RNA Society, 24(8), 991–1004. https://doi.org/10.1261/rna.064386.117
Su,, W., Feng,, S., Chen,, X., Yang,, X., Mao,, R., Guo,, C., … Chen,, G. (2018). Silencing of Long noncoding RNA MIR22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung Cancer. Cancer Research, 78(12), 3207–3219. https://doi.org/10.1158/0008-5472.CAN-18-0222
Sun,, Q., Hao,, Q., Lin,, Y. C., Song,, Y. J., Bangru,, S., Arif,, W., … Prasanth,, K. V. (2020). Antagonism between splicing and microprocessor complex dictates the serum‐induced processing of Lnc‐MIRHG for efficient cell cycle re‐entry. RNA—A Publication of the RNA Society., rna.075309.120. https://doi.org/10.1261/rna.075309.120
Sun,, Q., Hao,, Q., & Prasanth,, K. V. (2018). Nuclear long noncoding RNAs: Key regulators of gene expression. Trends in Genetics, 34(2), 142–157. https://doi.org/10.1016/j.tig.2017.11.005
Sun,, T., Du,, S. Y., Armenia,, J., Qu,, F., Fan,, J., Wang,, X., … Kantoff,, P. W. (2018). Expression of lncRNA MIR222HG co‐transcribed from the miR‐221/222 gene promoter facilitates the development of castration‐resistant prostate cancer. Oncogene, 7(3), 30. https://doi.org/10.1038/s41389-018-0039-5
Terashima,, M., Ishimura,, A., Wanna‐Udom,, S., & Suzuki,, T. (2018). MEG8 long noncoding RNA contributes to epigenetic progression of the epithelial‐mesenchymal transition of lung and pancreatic cancer cells. The Journal of Biological Chemistry, 293(47), 18016–18030. https://doi.org/10.1074/jbc.RA118.004006
Terashima,, M., Tange,, S., Ishimura,, A., & Suzuki,, T. (2017). MEG3 Long noncoding RNA contributes to the epigenetic regulation of epithelial‐mesenchymal transition in lung Cancer cell lines. The Journal of Biological Chemistry, 292(1), 82–99. https://doi.org/10.1074/jbc.M116.750950
Trabucchi,, M., Briata,, P., Garcia‐Mayoral,, M., Haase,, A. D., Filipowicz,, W., Ramos,, A., … Rosenfeld,, M. G. (2009). The RNA‐binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 459(7249), 1010–1014. https://doi.org/10.1038/nature08025
Treiber,, T., Treiber,, N., & Meister,, G. (2019). Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature Reviews. Molecular Cell Biology, 20(1), 5–20. https://doi.org/10.1038/s41580-018-0059-1
Tseng,, Y. Y., Moriarity,, B. S., Gong,, W., Akiyama,, R., Tiwari,, A., Kawakami,, H., … Bagchi,, A. (2014). PVT1 dependence in cancer with MYC copy‐number increase. Nature, 512(7512), 82–86. https://doi.org/10.1038/nature13311
Ulitsky,, I. (2016). Evolution to the rescue: Using comparative genomics to understand long non‐coding RNAs. Nature Reviews. Genetics, 17(10), 601–614. https://doi.org/10.1038/nrg.2016.85
Volders,, P. J., Anckaert,, J., Verheggen,, K., Nuytens,, J., Martens,, L., Mestdagh,, P., & Vandesompele,, J. (2019). LNCipedia 5: Towards a reference set of human long non‐coding RNAs. Nucleic Acids Research, 47(D1), D135–D139. https://doi.org/10.1093/nar/gky1031
Wan,, L., Sun,, M., Liu,, G. J., Wei,, C. C., Zhang,, E. B., Kong,, R., … Wang,, Z. X. (2016). Long noncoding RNA PVT1 promotes non‐small cell lung Cancer cell proliferation through epigenetically regulating LATS2 expression. Molecular Cancer Therapeutics, 15(5), 1082–1094. https://doi.org/10.1158/1535-7163.MCT-15-0707
Wang,, A. H., Jin,, C. H., Cui,, G. Y., Li,, H. Y., Wang,, Y., Yu,, J. J., … Tian,, X. Y. (2020). MIR210HG promotes cell proliferation and invasion by regulating miR‐503‐5p/TRAF4 axis in cervical cancer. Aging (Albany NY), 12(4), 3205–3217. https://doi.org/10.18632/aging.102799
Wang,, F., Yuan,, J. H., Wang,, S. B., Yang,, F., Yuan,, S. X., Ye,, C., … Sun,, S. H. (2014). Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell‐like property of hepatocellular carcinoma cells by stabilizing NOP2. Hepatology, 60(4), 1278–1290. https://doi.org/10.1002/hep.27239
Wang,, H., Liang,, L., Dong,, Q., Huan,, L., He,, J., Li,, B., … He,, X. (2018). Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF‐kappaB pathway in hepatocellular carcinoma. Theranostics, 8(10), 2814–2829. https://doi.org/10.7150/thno.23012
Wang,, H., Wu,, M., Lu,, Y., He,, K., Cai,, X., Yu,, X., … Teng,, L. (2019). LncRNA MIR4435‐2HG targets desmoplakin and promotes growth and metastasis of gastric cancer by activating Wnt/beta‐catenin signaling. Aging (Albany NY), 11(17), 6657–6673. https://doi.org/10.18632/aging.102164
Wang,, K. C., & Chang,, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43(6), 904–914. https://doi.org/10.1016/j.molcel.2011.08.018
Wang,, L., Liu,, D., Wu,, X., Zeng,, Y., Li,, L., Hou,, Y., … Liu,, Z. (2018). Long non‐coding RNA (LncRNA) RMST in triple‐negative breast cancer (TNBC): Expression analysis and biological roles research. Journal of Cellular Physiology, 233(10), 6603–6612. https://doi.org/10.1002/jcp.26311
Wang,, S., Ke,, H., Zhang,, H., Ma,, Y., Ao,, L., Zou,, L., … Jiao,, B. (2018). LncRNA MIR100HG promotes cell proliferation in triple‐negative breast cancer through triplex formation with p27 loci. Cell Death %26 Disease, 9(8), 805. https://doi.org/10.1038/s41419-018-0869-2
Wang,, S., Zuo,, H., Jin,, J., Lv,, W., Xu,, Z., Fan,, Y., … Zuo,, B. (2019). Long noncoding RNA Neat1 modulates myogenesis by recruiting Ezh2. Cell Death %26 Disease, 10(7), 505. https://doi.org/10.1038/s41419-019-1742-7
Wang,, W., Zhou,, R., Wu,, Y., Liu,, Y., Su,, W., Xiong,, W., & Zeng,, Z. (2019). PVT1 promotes cancer progression via MicroRNAs. Frontiers in Oncology, 9, 609. https://doi.org/10.3389/fonc.2019.00609
Wang,, X., Yu,, H., Sun,, W., Kong,, J., Zhang,, L., Tang,, J., … Zhang,, H. (2018). The long non‐coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Molecular Cancer, 17(1), 110. https://doi.org/10.1186/s12943-018-0860-7
Wang,, Y., Hu,, S. B., Wang,, M. R., Yao,, R. W., Wu,, D., Yang,, L., & Chen,, L. L. (2018). Genome‐wide screening of NEAT1 regulators reveals cross‐regulation between paraspeckles and mitochondria. Nature Cell Biology, 20(10), 1145–1158. https://doi.org/10.1038/s41556-018-0204-2
Westholm,, J. O., & Lai,, E. C. (2011). Mirtrons: microRNA biogenesis via splicing. Biochimie, 93(11), 1897–1904. https://doi.org/10.1016/j.biochi.2011.06.017
Wightman,, B., Ha,, I., & Ruvkun,, G. (1993). Posttranscriptional regulation of the heterochronic gene lin‐14 by lin‐4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862. https://doi.org/10.1016/0092-8674(93)90530-4
Wu,, H., Sun,, S., Tu,, K., Gao,, Y., Xie,, B., Krainer,, A. R., & Zhu,, J. (2010). A splicing‐independent function of SF2/ASF in microRNA processing. Molecular Cell, 38(1), 67–77. https://doi.org/10.1016/j.molcel.2010.02.021
Xie,, M., Li,, M., Vilborg,, A., Lee,, N., Shu,, M. D., Yartseva,, V., … Steitz,, J. A. (2013). Mammalian 5′‐capped microRNA precursors that generate a single microRNA. Cell, 155(7), 1568–1580. https://doi.org/10.1016/j.cell.2013.11.027
Xu,, J., Meng,, Q., Li,, X., Yang,, H., Xu,, J., Gao,, N., … Chen,, R. (2019). Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR‐17‐5p. Cancer Research, 79(19), 4882–4895. https://doi.org/10.1158/0008-5472.CAN-18-3880
Xu,, J., Shao,, T., Song,, M., Xie,, Y., Zhou,, J., Yin,, J., … Zhang,, J. (2020). MIR22HG acts as a tumor suppressor via TGFbeta/SMAD signaling and facilitates immunotherapy in colorectal cancer. Molecular Cancer, 19(1), 51. https://doi.org/10.1186/s12943-020-01174-w
Yamazaki,, T., Souquere,, S., Chujo,, T., Kobelke,, S., Chong,, Y. S., Fox,, A. H., … Hirose,, T. (2018). Functional domains of NEAT1 architectural lncRNA induce Paraspeckle assembly through phase separation. Molecular Cell, 70(6), 1038–1053 e1037. https://doi.org/10.1016/j.molcel.2018.05.019
Yang,, C., Li,, Z., Li,, Y., Xu,, R., Wang,, Y., Tian,, Y., & Chen,, W. (2017). Long non‐coding RNA NEAT1 overexpression is associated with poor prognosis in cancer patients: A systematic review and meta‐analysis. Oncotarget, 8(2), 2672–2680. https://doi.org/10.18632/oncotarget.13737
Yang,, H., Liu,, P., Zhang,, J., Peng,, X., Lu,, Z., Yu,, S., … Chen,, J. (2016). Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR‐193b. Oncogene, 35(28), 3647–3657. https://doi.org/10.1038/onc.2015.430
Yang,, X., Qu,, S., Wang,, L., Zhang,, H., Yang,, Z., Wang,, J., … Dou,, K. (2018). PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre‐miR‐612. Oncogene, 37(50), 6399–6413. https://doi.org/10.1038/s41388-018-0416-8
Ye,, Y., Yang,, S., Han,, Y., Sun,, J., Xv,, L., Wu,, L., … Ming,, L. (2018). Linc00472 suppresses proliferation and promotes apoptosis through elevating PDCD4 expression by sponging miR‐196a in colorectal cancer. Aging (Albany NY), 10(6), 1523–1533. https://doi.org/10.18632/aging.101488
Yeung,, C. L., Tsang,, T. Y., Yau,, P. L., & Kwok,, T. T. (2017). Human papillomavirus type 16 E6 suppresses microRNA‐23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget, 8(7), 12158–12173. https://doi.org/10.18632/oncotarget.14555
Yoshimura,, H., Matsuda,, Y., Yamamoto,, M., Kamiya,, S., & Ishiwata,, T. (2018). Expression and role of long non‐coding RNA H19 in carcinogenesis. Frontiers in Bioscience (Landmark Edition), 23, 614–625. https://doi.org/10.2741/4608
Yu,, X., Li,, Z., Zheng,, H., Chan,, M. T., & Wu,, W. K. (2017). NEAT1: A novel cancer‐related long non‐coding RNA. Cell Proliferation, 50(2), e12329. https://doi.org/10.1111/cpr.12329
Yue,, B., Liu,, C., Sun,, H., Liu,, M., Song,, C., Cui,, R., … Zhong,, M. (2018). A positive feed‐forward loop between LncRNA‐CYTOR and Wnt/beta‐catenin signaling promotes metastasis of colon cancer. Molecular Therapy, 26(5), 1287–1298. https://doi.org/10.1016/j.ymthe.2018.02.024
Zeng,, Y., Yi,, R., & Cullen,, B. R. (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. The EMBO Journal, 24(1), 138–148. https://doi.org/10.1038/sj.emboj.7600491
Zhang,, D. Y., Zou,, X. J., Cao,, C. H., Zhang,, T., Lei,, L., Qi,, X. L., … Wu,, D. H. (2018). Identification and functional characterization of long non‐coding RNA MIR22HG as a tumor suppressor for hepatocellular carcinoma. Theranostics, 8(14), 3751–3765. https://doi.org/10.7150/thno.22493
Zhang,, L., Zhou,, Y., Huang,, T., Cheng,, A. S., Yu,, J., Kang,, W., & To,, K. F. (2017). The interplay of LncRNA‐H19 and its binding partners in physiological process and gastric carcinogenesis. International Journal of Molecular Sciences, 18(2). https://doi.org/10.3390/ijms18020450
Zhang,, M., Zhao,, K., Xu,, X., Yang,, Y., Yan,, S., Wei,, P., … Zhang,, N. (2018). A peptide encoded by circular form of LINC‐PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nature Communications, 9(1), 4475. https://doi.org/10.1038/s41467-018-06862-2
Zhang,, P., Cao,, L., Zhou,, R., Yang,, X., & Wu,, M. (2019). The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nature Communications, 10(1), 1495. https://doi.org/10.1038/s41467-019-09482-6
Zhang,, S., Zhang,, G., & Liu,, J. (2016). Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR‐200b. APMIS, 124(8), 649–658. https://doi.org/10.1111/apm.12555
Zhao,, Q., Li,, T., Qi,, J., Liu,, J., & Qin,, C. (2014). The miR‐545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV‐related hepatocellular carcinoma and promotes tumorigenesis and tumor progression. PLoS One, 9(10), e109782. https://doi.org/10.1371/journal.pone.0109782
Zhao,, W., Ma,, X., Liu,, L., Chen,, Q., Liu,, Z., Zhang,, Z., … Wu,, J. (2019). SNHG20: A vital lncRNA in multiple human cancers. Journal of Cellular Physiology, 234, 14519–14525. https://doi.org/10.1002/jcp.28143