Bai,, Y., Zhang,, Y., Han,, B., Yang,, L., Chen,, X., Huang,, R., … Yao,, H. (2018). Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR‐143 to regulate endothelial–mesenchymal transition associated with blood–brain barrier integrity. The Journal of Neuroscience, 38(1), 32–50. https://doi.org/10.1523/JNEUROSCI.1348-17.2017
Barrett,, S. P., & Salzman,, J. (2016). Circular RNAs: Analysis, expression and potential functions. Development, 143(11), 1838–1847. https://doi.org/10.1242/dev.128074
Chaudhary,, R., Muys,, B. R., Grammatikakis,, I., De,, S., Abdelmohsen,, K., Li,, X. L., … Lal,, A. (2020). A circular RNA from the MDM2 locus controls cell cycle progression by suppressing p53 levels. Molecular and Cellular Biology, 40(9), e00473–19. https://doi.org/10.1128/MCB.00473-19
Chen,, L. L. (2020). The expanding regulatory mechanisms and cellular functions of circular RNAs. Nature Reviews. Molecular Cell Biology, 21(8), 475–490. https://doi.org/10.1038/s41580-020-0243-y
Chery,, J. (2016). RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc Journal, 4(7), 35–50. https://doi.org/10.14304/surya.jpr.v4n7.5
Dong,, R., Ma,, X. K., Chen,, L. L., & Yang,, L. (2019). Genome‐wide annotation of circRNAs and their alternative back‐splicing/splicing with CIRCexplorer pipeline. Methods in Molecular Biology, 1870, 137–149. https://doi.org/10.1007/978-1-4939-8808-2_10
Dong,, R., Ma,, X. K., Li,, G. W., & Yang,, L. (2018). CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison. Genomics, Proteomics %26 Bioinformatics, 16(4), 226–233. https://doi.org/10.1016/j.gpb.2018.08.001
Du,, W. W., Zhang,, C., Yang,, W., Yong,, T., Awan,, F. M., & Yang,, B. B. (2017). Identifying and characterizing circRNA–protein interaction. Theranostics, 7(17), 4183–4191. https://doi.org/10.7150/thno.21299
Dudekula,, D. B., Panda,, A. C., Grammatikakis,, I., De,, S., Abdelmohsen,, K., & Gorospe,, M. (2016). CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biology, 13(1), 34–42. https://doi.org/10.1080/15476286.2015.1128065
Engreitz,, J. M., Sirokman,, K., McDonel,, P., Shishkin,, A. A., Surka,, C., Russell,, P., … Lander,, E. S. (2014). RNA‐RNA interactions enable specific targeting of noncoding RNAs to nascent pre‐mRNAs and chromatin sites. Cell, 159(1), 188–199. https://doi.org/10.1016/j.cell.2014.08.018
Fan,, X., Yang,, Y., & Wang,, Z. (2019). Pervasive translation of circular RNAs driven by short IRES‐like elements. https://doi.org/10.1101/473207
Gao,, Y., Wang,, J., & Zhao,, F. (2015). CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biology, 16, 4. https://doi.org/10.1186/s13059-014-0571-3
Glazar,, P., Papavasileiou,, P., & Rajewsky,, N. (2014). circBase: a database for circular RNAs. RNA, 20(11), 1666–1670. https://doi.org/10.1261/rna.043687.113
Guo,, J. U., Agarwal,, V., Guo,, H., & Bartel,, D. P. (2014). Expanded identification and characterization of mammalian circular RNAs. Genome Biology, 15(7), 409. https://doi.org/10.1186/s13059-014-0409-z
Guo,, R., Abdelmohsen,, K., Morin,, P. J., & Gorospe,, M. (2013). Novel microRNA reporter uncovers repression of Let‐7 by GSK‐3beta. PLoS One, 8(6), e66330. https://doi.org/10.1371/journal.pone.0066330
Hanniford,, D., Ulloa‐Morales,, A., Karz,, A., Berzoti‐Coelho,, M. G., Moubarak,, R. S., Sanchez‐Sendra,, B., … Hernando,, E. (2020). Epigenetic silencing of CDR1as drives IGF2BP3‐mediated melanoma invasion and metastasis. Cancer Cell, 37(1), 55–70 e15. https://doi.org/10.1016/j.ccell.2019.12.007
Hansen,, T. B., Jensen,, T. I., Clausen,, B. H., Bramsen,, J. B., Finsen,, B., Damgaard,, C. K., & Kjems,, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388. https://doi.org/10.1038/nature11993
Haque,, S., & Harries,, L. W. (2017). Circular RNAs (circRNAs) in health and disease. Genes (Basel), 8(12), 353. https://doi.org/10.3390/genes8120353
Hon,, K. W., Ab‐Mutalib,, N. S., Abdullah,, N. M. A., Jamal,, R., & Abu,, N. (2019). Extracellular vesicle‐derived circular RNAs confers chemoresistance in colorectal cancer. Scientific Reports, 9(1), 16497. https://doi.org/10.1038/s41598-019-53063-y
Horwich,, M. D., & Zamore,, P. D. (2008). Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nature Protocols, 3(10), 1537–1549. https://doi.org/10.1038/nprot.2008.145
Hsu,, M. T., & Coca‐Prados,, M. (1979). Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature, 280(5720), 339–340. https://doi.org/10.1038/280339a0
Huang,, A., Zheng,, H., Wu,, Z., Chen,, M., & Huang,, Y. (2020). Circular RNA‐protein interactions: Functions, mechanisms, and identification. Theranostics, 10(8), 3503–3517. https://doi.org/10.7150/thno.42174
Huang,, C., Liang,, D., Tatomer,, D. C., & Wilusz,, J. E. (2018). A length‐dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes %26 Development, 32(9–10), 639–644. https://doi.org/10.1101/gad.314856.118
Jeck,, W. R., & Sharpless,, N. E. (2014). Detecting and characterizing circular RNAs. Nature Biotechnology, 32(5), 453–461. https://doi.org/10.1038/nbt.2890
Jeck,, W. R., Sorrentino,, J. A., Wang,, K., Slevin,, M. K., Burd,, C. E., Liu,, J., … Sharpless,, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141–157. https://doi.org/10.1261/rna.035667.112
Kanno,, J., Aisaki,, K., Igarashi,, K., Nakatsu,, N., Ono,, A., Kodama,, Y., & Nagao,, T. (2006). “Per cell” normalization method for mRNA measurement by quantitative PCR and microarrays. BMC Genomics, 7, 64. https://doi.org/10.1186/1471-2164-7-64
Lasda,, E., & Parker,, R. (2016). Circular RNAs co‐precipitate with extracellular vesicles: A possible mechanism for circRNA clearance. PLoS One, 11(2), e0148407. https://doi.org/10.1371/journal.pone.0148407
Legnini,, I., Di Timoteo,, G., Rossi,, F., Morlando,, M., Briganti,, F., Sthandier,, O., … Bozzoni,, I. (2017). Circ‐ZNF609 is a circular RNA that can be translated and functions in myogenesis. Molecular Cell, 66(1), 22–37 e29. https://doi.org/10.1016/j.molcel.2017.02.017
Li,, Q., Geng,, S., Yuan,, H., Li,, Y., Zhang,, S., Pu,, L., … Jiang,, H. (2019). Circular RNA expression profiles in extracellular vesicles from the plasma of patients with pancreatic ductal adenocarcinoma. FEBS Open Bio, 9(12), 2052–2062. https://doi.org/10.1002/2211-5463.12741
Li,, X., Liu,, C. X., Xue,, W., Zhang,, Y., Jiang,, S., Yin,, Q. F., … Chen,, L. L. (2017). Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Molecular Cell, 67(2), 214–227 e217. https://doi.org/10.1016/j.molcel.2017.05.023
Li,, Y., Zhao,, J., Yu,, S., Wang,, Z., He,, X., Su,, Y., … Huang,, S. (2019). Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clinical Chemistry, 65(6), 798–808. https://doi.org/10.1373/clinchem.2018.301291
Liang,, D., & Wilusz,, J. E. (2014). Short intronic repeat sequences facilitate circular RNA production. Genes %26 Development, 28(20), 2233–2247. https://doi.org/10.1101/gad.251926.114
Long,, Y., Wang,, X., Youmans,, D. T., & Cech,, T. R. (2017). How do lncRNAs regulate transcription? Science Advances, 3(9), eaao2110. https://doi.org/10.1126/sciadv.aao2110
Lukiw,, W. J. (2013). Circular RNA (circRNA) in Alzheimer`s disease (AD). Frontiers in Genetics, 4, 307. https://doi.org/10.3389/fgene.2013.00307
Ma,, X. K., Wang,, M. R., Liu,, C. X., Dong,, R., Carmichael,, G. G., Chen,, L. L., & Yang,, L. (2019). CIRCexplorer3: A CLEAR pipeline for direct comparison of circular and linear RNA expression. Genomics, Proteomics %26 Bioinformatics, 17(5), 511–521. https://doi.org/10.1016/j.gpb.2019.11.004
Mann,, M., Wright,, P. R., & Backofen,, R. (2017). IntaRNA 2.0: Enhanced and customizable prediction of RNA‐RNA interactions. Nucleic Acids Research, 45(W1), W435–W439. https://doi.org/10.1093/nar/gkx279
Mattiroli,, F., Gu,, Y., & Luger,, K. (2018). FRET‐based stoichiometry measurements of protein complexes in vitro. Bio‐Protocol, 7(3), e2713. https://doi.org/10.21769/bioprotoc.2713
Memczak,, S., Jens,, M., Elefsinioti,, A., Torti,, F., Krueger,, J., Rybak,, A., … Rajewsky,, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338. https://doi.org/10.1038/nature11928
Metge,, F., Czaja‐Hasse,, L. F., Reinhardt,, R., & Dieterich,, C. (2017). FUCHS‐towards full circular RNA characterization using RNAseq. PeerJ, 5, e2934. https://doi.org/10.7717/peerj.2934
Noh,, J. H., Kim,, K. M., McClusky,, W. G., Abdelmohsen,, K., & Gorospe,, M. (2018). Cytoplasmic functions of long noncoding RNAs. WIREs RNA, 9(3), e1471. https://doi.org/10.1002/wrna.1471
Pamudurti,, N. R., Bartok,, O., Jens,, M., Ashwal‐Fluss,, R., Stottmeister,, C., Ruhe,, L., … Kadener,, S. (2017). Translation of CircRNAs. Molecular Cell, 66(1), 9–21 e27. https://doi.org/10.1016/j.molcel.2017.02.021
Pamudurti,, N. R., Patop,, I. L., Krishnamoorthy,, A., Ashwal‐Fluss,, R., Bartok,, O., & Kadener,, S. (2020). An in vivo strategy for knockdown of circular RNAs. Cell Discov, 6, 52. https://doi.org/10.1038/s41421-020-0182-y
Panda,, A. C. (2018). Circular RNAs act as miRNA sponges. Advances in Experimental Medicine and Biology, 1087, 67–79. https://doi.org/10.1007/978-981-13-1426-1_6
Panda,, A. C., De,, S., Grammatikakis,, I., Munk,, R., Yang,, X., Piao,, Y., … Gorospe,, M. (2017). High‐purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Research, 45(12), e116. https://doi.org/10.1093/nar/gkx297
Panda,, A. C., & Gorospe,, M. (2018). Detection and analysis of circular RNAs by RT‐PCR. Bio‐Protocol, 8(6), e2775. https://doi.org/10.21769/BioProtoc.2775
Panda,, A. C., Grammatikakis,, I., Kim,, K. M., De,, S., Martindale,, J. L., Munk,, R., … Gorospe,, M. (2017). Identification of senescence‐associated circular RNAs (SAC‐RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Research, 45(7), 4021–4035. https://doi.org/10.1093/nar/gkw1201
Panda,, A. C., Grammatikakis,, I., Munk,, R., Gorospe,, M., & Abdelmohsen,, K. (2017). Emerging roles and context of circular RNAs. WIREs RNA, 8(2), e1386. https://doi.org/10.1002/wrna.1386
Panda,, A. C., Martindale,, J. L., & Gorospe,, M. (2016). Affinity pulldown of biotinylated RNA for detection of protein–RNA complexes. Bio‐Protocol, 6(24), e2062. https://doi.org/10.21769/BioProtoc.2062
Pandey,, P. R., Munk,, R., Kundu,, G., De,, S., Abdelmohsen,, K., & Gorospe,, M. (2020). Methods for analysis of circular RNAs. WIREs RNA, 11(1), e1566. https://doi.org/10.1002/wrna.1566
Pandey,, P. R., Yang,, J. H., Tsitsipatis,, D., Panda,, A. C., Noh,, J. H., Kim,, K. M., … Gorospe,, M. (2020). circSamd4 represses myogenic transcriptional activity of PUR proteins. Nucleic Acids Research, 48(7), 3789–3805. https://doi.org/10.1093/nar/gkaa035
Piwecka,, M., Glazar,, P., Hernandez‐Miranda,, L. R., Memczak,, S., Wolf,, S. A., Rybak‐Wolf,, A., … Rajewsky,, N. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 357(6357), eaam8526. https://doi.org/10.1126/science.aam8526
Raj,, A., van den Bogaard,, P., Rifkin,, S. A., van Oudenaarden,, A., & Tyagi,, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods, 5(10), 877–879. https://doi.org/10.1038/nmeth.1253
Rao,, D. D., Vorhies,, J. S., Senzer,, N., & Nemunaitis,, J. (2009). siRNA vs. shRNA: Similarities and differences. Advanced Drug Delivery Reviews, 61(9), 746–759. https://doi.org/10.1016/j.addr.2009.04.004
Salzman,, J., Chen,, R. E., Olsen,, M. N., Wang,, P. L., & Brown,, P. O. (2013). Cell‐type specific features of circular RNA expression. PLoS Genetics, 9(9), e1003777. https://doi.org/10.1371/journal.pgen.1003777
Shi,, X., Wang,, B., Feng,, X., Xu,, Y., Lu,, K., & Sun,, M. (2020). circRNAs and exosomes: A mysterious frontier for human cancer. Molecular Therapy: Nucleic Acids, 19, 384–392. https://doi.org/10.1016/j.omtn.2019.11.023
Singer,, R. H., & Ward,, D. C. (1982). Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proceedings of the National Academy of Sciences of the United States of America, 79(23), 7331–7335. https://doi.org/10.1073/pnas.79.23.7331
Taylor,, S. C., Carbonneau,, J., Shelton,, D. N., & Boivin,, G. (2015). Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT‐qPCR: Clinical implications for quantification of Oseltamivir‐resistant subpopulations. Journal of Virological Methods, 224, 58–66. https://doi.org/10.1016/j.jviromet.2015.08.014
Taylor,, S. C., Laperriere,, G., & Germain,, H. (2017). Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Scientific Reports, 7(1), 2409. https://doi.org/10.1038/s41598-017-02217-x
Tripathi,, V., Fei,, J., Ha,, T., & Prasanth,, K. V. (2015). RNA fluorescence in situ hybridization in cultured mammalian cells. Methods in Molecular Biology, 1206, 123–136. https://doi.org/10.1007/978-1-4939-1369-5_11
Verduci,, L., Strano,, S., Yarden,, Y., & Blandino,, G. (2019). The circRNA‐microRNA code: Emerging implications for cancer diagnosis and treatment. Molecular Oncology, 13(4), 669–680. https://doi.org/10.1002/1878-0261.12468
Vo,, J. N., Cieslik,, M., Zhang,, Y., Shukla,, S., Xiao,, L., Zhang,, Y., … Chinnaiyan,, A. M. (2019). The landscape of circular RNA in cancer. Cell, 176(4), 869–881 e813. https://doi.org/10.1016/j.cell.2018.12.021
Wang,, K., Long,, B., Liu,, F., Wang,, J. X., Liu,, C. Y., Zhao,, B., … Li,, P. F. (2016). A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR‐223. European Heart Journal, 37(33), 2602–2611. https://doi.org/10.1093/eurheartj/ehv713
Watts,, J. K., & Corey,, D. R. (2012). Silencing disease genes in the laboratory and the clinic. The Journal of Pathology, 226(2), 365–379. https://doi.org/10.1002/path.2993
Wisniewski,, J. R., Hein,, M. Y., Cox,, J., & Mann,, M. (2014). A “proteomic ruler” for protein copy number and concentration estimation without spike‐in standards. Molecular %26 Cellular Proteomics, 13(12), 3497–3506. https://doi.org/10.1074/mcp.M113.037309
Wojciechowska,, M., Sobczak,, K., Kozlowski,, P., Sedehizadeh,, S., Wojtkowiak‐Szlachcic,, A., Czubak,, K., … Brook,, J. D. (2018). Quantitative methods to monitor RNA biomarkers in myotonic dystrophy. Scientific Reports, 8(1), 5885. https://doi.org/10.1038/s41598-018-24156-x
Wynendaele,, J., Bohnke,, A., Leucci,, E., Nielsen,, S. J., Lambertz,, I., Hammer,, S., … Bartel,, F. (2010). An illegitimate microRNA target site within the 3` UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Research, 70(23), 9641–9649. https://doi.org/10.1158/0008-5472.CAN-10-0527
Xia,, P., Wang,, S., Ye,, B., Du,, Y., Li,, C., Xiong,, Z., … Fan,, Z. (2018). A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS‐mediated exhaustion. Immunity, 48(4), 688–701 e687. https://doi.org/10.1016/j.immuni.2018.03.016
Xiao,, M. S., & Wilusz,, J. E. (2019). An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G‐quadruplexes or structured 3′ ends. Nucleic Acids Research, 47(16), 8755–8769. https://doi.org/10.1093/nar/gkz576
Yang,, C., Yuan,, W., Yang,, X., Li,, P., Wang,, J., Han,, J., … Zhang,, W. (2018). Circular RNA circ‐ITCH inhibits bladder cancer progression by sponging miR‐17/miR‐224 and regulating p21, PTEN expression. Molecular Cancer, 17(1), 19. https://doi.org/10.1186/s12943-018-0771-7
Yang,, Y., Fan,, X., Mao,, M., Song,, X., Wu,, P., Zhang,, Y., … Wang,, Z. (2017). Extensive translation of circular RNAs driven by N(6)‐methyladenosine. Cell Research, 27(5), 626–641. https://doi.org/10.1038/cr.2017.31
Zeiler,, M., Straube,, W. L., Lundberg,, E., Uhlen,, M., & Mann,, M. (2012). A protein epitope signature tag (PrEST) library allows SILAC‐based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Molecular %26 Cellular Proteomics, 11(3), O111.009613. https://doi.org/10.1074/mcp.O111.009613
Zhang,, J., Chen,, S., Yang,, J., & Zhao,, F. (2020). Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nature Communications, 11(1), 90. https://doi.org/10.1038/s41467-019-13840-9
Zhang,, X. O., Dong,, R., Zhang,, Y., Zhang,, J. L., Luo,, Z., Zhang,, J., … Yang,, L. (2016). Diverse alternative back‐splicing and alternative splicing landscape of circular RNAs. Genome Research, 26(9), 1277–1287. https://doi.org/10.1101/gr.202895.115
Zhang,, Y., Nguyen,, T. M., Zhang,, X.‐O., Phan,, T., Clohessy,, J. G., & Pandolfi,, P. P. (2020). Optimized RNA‐targeting CRISPR/Cas13d technology outperforms shRNA in identifying essential circRNAs. https://doi.org/10.1101/2020.03.23.002238
Zhang,, Y., Xue,, W., Li,, X., Zhang,, J., Chen,, S., Zhang,, J. L., … Chen,, L. L. (2016). The biogenesis of nascent circular RNAs. Cell Reports, 15(3), 611–624. https://doi.org/10.1016/j.celrep.2016.03.058
Zhang,, Y., Zhang,, X. O., Chen,, T., Xiang,, J. F., Yin,, Q. F., Xing,, Y. H., … Chen,, L. L. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806. https://doi.org/10.1016/j.molcel.2013.08.017
Zheng,, Q., Bao,, C., Guo,, W., Li,, S., Chen,, J., Chen,, B., … Huang,, S. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications, 7, 11215. https://doi.org/10.1038/ncomms11215
Zheng,, Y., Ji,, P., Chen,, S., Hou,, L., & Zhao,, F. (2019). Reconstruction of full‐length circular RNAs enables isoform‐level quantification. Genome Medicine, 11(1), 2. https://doi.org/10.1186/s13073-019-0614-1
Zhou,, Z., Sun,, B., Huang,, S., & Zhao,, L. (2019). Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death %26 Disease, 10(7), 503. https://doi.org/10.1038/s41419-019-1744-5