Lopez de Silanes, I, Quesada, MP, Esteller, M. Aberrant regulation of messenger RNA 3′‐untranslated region in human cancer. Cell Oncol 2007, 29:1–17.
Benjamin, D, Moroni, C. mRNA stability and cancer: an emerging link? Expert Opin Biol Ther 2007, 7:1515–1529.
Bakheet, T, Williams, BR, Khabar, KS. ARED 3.0: the large and diverse AU‐rich transcriptome. Nucleic Acids Res 2006, 34:D111–D114.
Varnum, BC, Lim, RW, Sukhatme, VP, Herschman, HR. Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene 1989, 4:119–120.
Varnum, BC, Ma, QF, Chi, TH, Fletcher, B, Herschman, HR. The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys–His repeat. Mol Cell Biol 1991, 11:1754–1758.
DuBois, RN, McLane, MW, Ryder, K, Lau, LF, Nathans, D. A growth factor‐inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J Biol Chem 1990, 265:19185–19191.
Lai, WS, Stumpo, DJ, Blackshear, PJ. Rapid insulin‐stimulated accumulation of an mRNA encoding a proline‐rich protein. J Biol Chem 1990, 265: 16556–16563.
Taylor, GA, Lai, WS, Oakey, RJ, Seldin, MF, Shows, TB, Eddy, RL Jr, Blackshear, PJ. The human TTP protein: sequence, alignment with related proteins, and chromosomal localization of the mouse and human genes. Nucleic Acids Res 1991, 19:3454.
Gomperts, M, Pascall, JC, Brown, KD. The nucleotide sequence of a cDNA encoding an EGF‐ inducible gene indicates the existence of a new family of mitogen‐induced genes. Oncogene 1990, 5:1081–1083.
Blackshear, PJ, Phillips, RS, Ghosh, S, Ramos, SB, Richfield, EK, Lai, WS. Zfp36l3, a rodent X chromosome gene encoding a placenta‐specific member of the Tristetraprolin family of CCCH tandem zinc finger proteins. Biol Reprod 2005, 73:297–307.
Lai, WS, Thompson, MJ, Blackshear, PJ. Characteristics of the intron involvement in the mitogen‐induced expression of Zfp‐36. J Biol Chem 1998, 273: 506–517.
Lai, WS, Thompson, MJ, Taylor, GA, Liu, Y, Blackshear, PJ. Promoter analysis of Zfp‐36, the mitogen‐inducible gene encoding the zinc finger protein tristetraprolin. J Biol Chem 1995, 270: 25266–25272.
Cao, H, Kelly, MA, Kari, F, Dawson, HD, Urban, JF Jr, Coves, S, Roussel, AM, Anderson, RA. Green tea increases anti‐inflammatory tristetraprolin and decreases pro‐inflammatory tumor necrosis factor mRNA levels in rats. J Inflamm 2007, 4:1.
Cao, H, Polansky, MM, Anderson, RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3‐L1 adipocytes. Arch Biochem Biophys 2007, 459:214–222.
Ogawa, K, Chen, F, Kim, YJ, Chen, Y. Transcriptional regulation of tristetraprolin by transforming growth factor‐beta in human T cells. J Biol Chem 2003, 278:30373–30381.
Smoak, K, Cidlowski, JA. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol Cell Biol 2006, 26:9126–9135.
Sauer, I, Schaljo, B, Vogl, C, Gattermeier, I, Kolbe, T, Muller, M, Blackshear, PJ, Kovarik, P. Interferons limit inflammatory responses by induction of tristetraprolin. Blood 2006, 107:4790–4797.
Ishmael, FT, Fang, X, Galdiero, MR, Atasoy, U, Rigby, WF, Gorospe, M, Cheadle, C, Stellato, C. Role of the RNA‐binding protein tristetraprolin in glucocorticoid‐mediated gene regulation. J Immunol 2008, 180:8342–8353.
Baou, M, Jewell, A, Murphy, JJ. TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009, 2009:634520.
Storch, KF, Lipan, O, Leykin, I, Viswanathan, N, Davis, FC, Wong, WH, Weitz, CJ. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78–83.
Panda, S, Antoch, MP, Miller, BH, Su, AI, Schook, AB, Straume, M, Schultz, PG, Kay, SA, Takahashi, JS, Hogenesch, JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307–320.
Lai, WS, Parker, JS, Grissom, SF, Stumpo, DJ, Blackshear, PJ. Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP‐deficient fibroblasts. Mol Cell Biol 2006, 26:9196–9208.
Tchen, CR, Brook, M, Saklatvala, J, Clark, AR. The stability of tristetraprolin mRNA is regulated by mitogen‐activated protein kinase p38 and by tristetraprolin itself. J Biol Chem 2004, 279:32393–32400.
Brooks, SA, Connolly, JE, Rigby, WF. The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal‐regulated kinase‐specific, AU‐rich element‐dependent, autoregulatory pathway. J Immunol 2004, 172:7263–7271.
Stoecklin, G, Tenenbaum, SA, Mayo, T, Chittur, SV, George, AD, Baroni, TE, Blackshear, PJ, Anderson, P. Genome‐wide analysis identifies interleukin‐10 mRNA as target of tristetraprolin. J Biol Chem 2008, 283:11689–11699.
Carrick, DM, Blackshear, PJ. Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Arch Biochem Biophys 2007, 462:278–285.
Masuda, K, Marasa, B, Martindale, JL, Halushka, MK, Gorospe, M. Tissue‐ and age‐dependent expression of RNA‐binding proteins that influence mRNA turnover and translation. Aging 2009, 1:681–698.
Taylor, GA, Thompson, MJ, Lai, WS, Blackshear, PJ. Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen‐activated protein kinase in vitro. J Biol Chem 1995, 270:13341–13347.
Cao, H, Deterding, LJ, Venable, JD, Kennington, EA, Yates, JR III, Tomer, KB, Blackshear, PJ. Identification of the anti‐inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site‐directed mutagenesis. Biochem J 2006, 394:285–297.
Cao, H, Deterding, LJ, Blackshear, PJ. Phosphorylation site analysis of the anti‐inflammatory and mRNA‐destabilizing protein tristetraprolin. Expert Rev Proteomics 2007, 4:711–726.
Chrestensen, CA, Schroeder, MJ, Shabanowitz, J, Hunt, DF, Pelo, JW, Worthington, MT, Sturgill, TW. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14‐3‐3 binding. J Biol Chem 2004, 279:10176–10184.
Mahtani, KR, Brook, M, Dean, JL, Sully, G, Saklatvala, J, Clark, AR. Mitogen‐activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 2001, 21:6461–6469.
Carballo, E, Cao, H, Lai, WS, Kennington, EA, Campbell, D, Blackshear, PJ. Decreased sensitivity of tristetraprolin‐deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway. J Biol Chem 2001, 276:42580–42587.
Cao, H. Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc‐dependent mRNA binding protein affected by posttranslational modifications. Biochemistry 2004, 43:13724–13738.
Cao, H, Dzineku, F, Blackshear, PJ. Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor‐alpha mRNA and serve as a substrate for mitogen‐activated protein kinases. Arch Biochem Biophys 2003, 412:106–120.
Clark, A, Dean, J, Tudor, C, Saklatvala, J. Post‐transcriptional gene regulation by MAP kinases via AU‐rich elements. Front Biosci 2009, 14:847–871.
Schmidlin, M, Lu, M, Leuenberger, SA, Stoecklin, G, Mallaun, M, Gross, B, Gherzi, R, Hess, D, Hemmings, BA, Moroni, C. The ARE‐dependent mRNA‐destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J 2004, 23:4760–4769.
Benjamin, D, Schmidlin, M, Min, L, Gross, B, Moroni, C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol Cell Biol 2006, 26:9497–9507.
Maitra, S, Chou, CF, Luber, CA, Lee, KY, Mann, M, Chen, CY. The AU‐rich element mRNA decay‐promoting activity of BRF1 is regulated by mitogen‐activated protein kinase‐activated protein kinase 2. RNA 2008, 14:950–959.
Sun, L, Stoecklin, G, Van Way, S, Hinkovska‐Galcheva, V, Guo, RF, Anderson, P, Shanley, TP. Tristetraprolin (TTP)‐14‐3‐3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor‐alpha mRNA. J Biol Chem 2007, 282:3766–3777.
Hitti, E, Iakovleva, T, Brook, M, Deppenmeier, S, Gruber, AD, Radzioch, D, Clark, AR, Blackshear, PJ, Kotlyarov, A, Gaestel, M. Mitogen‐activated protein kinase‐activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine‐rich element. Mol Cell Biol 2006, 26:2399–2407.
Stoecklin, G, Stubbs, T, Kedersha, N, Wax, S, Rigby, WF, Blackwell, TK, Anderson, P. MK2‐induced tristetraprolin:14‐3‐3 complexes prevent stress granule association and ARE‐mRNA decay. EMBO J 2004, 23:1313–1324.
Mackintosh, C. Dynamic interactions between 14‐3‐3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 2004, 381:329–342.
Marderosian, M, Sharma, A, Funk, AP, Vartanian, R, Masri, J, Jo, OD, Gera, JF. Tristetraprolin regulates Cyclin D1 and c‐Myc mRNA stability in response to rapamycin in an Akt‐dependent manner via p38 MAPK signaling. Oncogene 2006, 25:6277–6290.
Johnson, BA, Stehn, JR, Yaffe, MB, Blackwell, TK. Cytoplasmic localization of tristetraprolin involves 14‐3‐3‐dependent and ‐independent mechanisms. J Biol Chem 2002, 277:18029–18036.
Brook, M, Tchen, CR, Santalucia, T, McIlrath, J, Arthur, JS, Saklatvala, J, Clark, AR. Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen‐activated protein kinase and extracellular signal‐regulated kinase pathways. Mol Cell Biol 2006, 26:2408–2418.
Sandler, H, Stoecklin, G. Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 2008, 36:491–496.
Carballo, E, Lai, WS, Blackshear, PJ. Feedback inhibition of macrophage tumor necrosis factor‐α production by tristetraprolin. Science 1998, 281:1001–1005.
Brewer, BY, Malicka, J, Blackshear, PJ, Wilson, GM. RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of AU‐rich mRNA‐destabilizing motifs. J Biol Chem 2004, 279:27870–27877.
Blackshear, PJ, Lai, WS, Kennington, EA, Brewer, G, Wilson, GM, Guan, X, Zhou, P. Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU‐rich element‐containing RNA substrates. J Biol Chem 2003, 278:19947–19955.
Worthington, MT, Pelo, JW, Sachedina, MA, Applegate, JL, Arseneau, KO, Pizarro, TT. RNA binding properties of the AU‐rich element‐binding recombinant Nup475/TIS11/tristetraprolin protein. J Biol Chem 2002, 277:48558–48564.
Hudson, BP, Martinez‐Yamout, MA, Dyson, HJ, Wright, PE. Recognition of the mRNA AU‐rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 2004, 11:257–264.
Lai, WS, Carrick, DM, Blackshear, PJ. Influence of nonameric AU‐rich tristetraprolin‐binding sites on mRNA deadenylation and turnover. J Biol Chem 2005, 280:34365–34377.
Lai, WS, Carballo, E, Thorn, JM, Kennington, EA, Blackshear, PJ. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin‐related zinc finger proteins to Au‐rich elements and destabilization of mRNA. J Biol Chem 2000, 275:17827–17837.
Stoecklin, G, Colombi, M, Raineri, I, Leuenberger, S, Mallaun, M, Schmidlin, M, Gross, B, Lu, M, Kitamura, T, Moroni, C. Functional cloning of BRF1, a regulator of ARE‐dependent mRNA turnover. EMBO J 2002, 21:4709–4718.
Lai, WS, Carballo, E, Strum, JR, Kennington, EA, Phillips, RS, Blackshear, PJ. Evidence that tristetraprolin binds to AU‐rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 1999, 19:4311–4323.
Lai, WS, Kennington, EA, Blackshear, PJ. Interactions of CCCH zinc finger proteins with mRNA: non‐binding tristetraprolin mutants exert an inhibitory effect on degradation of AU‐rich element‐containing mRNAs. J Biol Chem 2002, 277:9606–9613.
Emmons, J, Townley‐Tilson, WH, Deleault, KM, Skinner, SJ, Gross, RH, Whitfield, ML, Brooks, SA. Identification of TTP mRNA targets in human dendritic cells reveals TTP as a critical regulator of dendritic cell maturation. RNA 2008, 14:888–902.
Sawaoka, H, Dixon, DA, Oates, JA, Boutaud, O. Tristetrapolin binds to the 3′ untranslated region of cyclooxygenase‐2 mRNA: A polyadenylation variant in a cancer cell line lacks the binding site. J Biol Chem 2003, 278:13928–13935.
Frasca, D, Landin, AM, Alvarez, JP, Blackshear, PJ, Riley, RL, Blomberg, BB. Tristetraprolin, a negative regulator of mRNA stability, is increased in old B cells and is involved in the degradation of E47 mRNA. J Immunol 2007, 179:918–927.
Carballo, E, Lai, WS, Blackshear, PJ. Evidence that tristetraprolin is a physiological regulator of granulocyte‐macrophage colony‐stimulating factor messenger RNA deadenylation and stability. Blood 2000, 95:1891–1899.
Lai, WS, Blackshear, PJ. Interactions of CCCH zinc finger proteins with mRNA: tristetraprolin‐mediated AU‐rich element‐dependent mRNA degradation can occur in the absence of a poly(A) tail. J Biol Chem 2001, 276:23144–23154.
Suswam, E, Li, Y, Zhang, X, Gillespie, GY, Li, X, Shacka, JJ, Lu, L, Zheng, L, King, PH. T ristetraprolin down‐regulates interleukin‐8 and vascular endothelial growth factor in malignant glioma cells. Cancer Res 2008, 68:674–682.
Ogilvie, RL, Abelson, M, Hau, HH, Vlasova, I, Blackshear, PJ, Bohjanen, PR. Tristetraprolin down‐regulates IL‐2 gene expression through AU‐rich element‐mediated mRNA decay. J Immunol 2005, 174:953–961.
Stoecklin, G, Ming, XF, Looser, R, Moroni, C. Somatic mRNA turnover mutants implicate tristetraprolin in the interleukin‐3 mRNA degradation pathway. Mol Cell Biol 2000, 20:3753–3763.
Stoecklin, G, Stoeckle, P, Lu, M, Muehlemann, O, Moroni, C. Cellular mutants define a common mRNA degradation pathway targeting cytokine AU‐rich elements. RNA 2001, 7:1578–1588.
Jalonen, U, Nieminen, R, Vuolteenaho, K, Kankaanranta, H, Moilanen, E. Down‐regulation of tristetraprolin expression results in enhanced IL‐12 and MIP‐2 production and reduced MIP‐3alpha synthesis in activated macrophages. Mediators Inflamm 2006, 2006:40691.
Ogilvie, RL, Sternjohn, JR, Rattenbacher, B, Vlasova, IA, Williams, DA, Hau, HH, Blackshear, PJ, Bohjanen, PR. Tristetraprolin mediates interferon‐gamma mRNA decay. J Biol Chem 2009, 284: 11216–11223.
Yu, H, Stasinopoulos, S, Leedman, P, Medcalf, RL. Inherent instability of plasminogen activator inhibitor type 2 mRNA is regulated by tristetraprolin. J Biol Chem 2003, 278:13912–13918.
Patino, WD, Kang, JG, Matoba, S, Mian, OY, Gochuico, BR, Hwang, PM. Atherosclerotic plaque macrophage transcriptional regulators are expressed in blood and modulated by tristetraprolin. Circ Res 2006, 98:1282–1289.
Horner, TJ, Lai, WS, Stumpo, DJ, Blackshear, PJ. Stimulation of polo‐like kinase 3 mRNA decay by tristetraprolin. Mol Cell Biol 2009, 29:1999–2010.
Sanduja, S, Kaza, V, Dixon, DA. The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus‐transformed cervical cancer cells by targeting E6‐AP ubiquitin ligase. Aging 2009, 1:803–817.
Bell, SE, Sanchez, MJ, Spasic‐Boskovic, O, Santalucia, T, Gambardella, L, Burton, GJ, Murphy, JJ, Norton, JD, Clark, AR, Turner, M. The RNA binding protein Zfp36l1 is required for normal vascularisation and post‐transcriptionally regulates VEGF expression. Dev Dyn 2006, 235:3144–3155.
Brennan, SE, Kuwano, Y, Alkharouf, N, Blackshear, PJ, Gorospe, M, Wilson, GM. The mRNA‐ destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 2009, 69:5168–5176.
Ciais, D, Cherradi, N, Bailly, S, Grenier, E, Berra, E, Pouyssegur, J, Lamarre, J, Feige, JJ. Destabilization of vascular endothelial growth factor mRNA by the zinc‐finger protein TIS11b. Oncogene 2004, 23:8673–8680.
Briata, P, Ilengo, C, Corte, G, Moroni, C, Rosenfeld, MG, Chen, CY, Gherzi, R. The Wnt/beta‐catenin–%3E Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell 2003, 12: 1201–1211.
Gringhuis, SI, Garcia‐Vallejo, JJ, van Het Hof, B, van Dijk, W. Convergent actions of I kappa B kinase beta and protein kinase C delta modulate mRNA stability through phosphorylation of 14‐3‐3 beta complexed with tristetraprolin. Mol Cell Biol 2005, 25:6454–6463.
Schwede, A, Ellis, L, Luther, J, Carrington, M, Stoecklin, G, Clayton, C. A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 2008, 36:3374–3388.
Yamashita, A, Chang, TC, Yamashita, Y, Zhu, W, Zhong, Z, Chen, CY, Shyu, AB. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005, 12:1054–1063.
Parker, R, Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 2004, 11:121–127.
Lykke‐Andersen, J, Wagner, E. Recruitment and activation of mRNA decay enzymes by two ARE‐mediated decay activation domains in the proteins TTP and BRF‐1. Genes Dev 2005, 19:351–361.
Lai, WS, Kennington, EA, Blackshear, PJ. Tristetraprolin and its family members can promote the cell‐free deadenylation of AU‐rich element‐containing mRNAs by poly(A) ribonuclease. Mol Cell Biol 2003, 23:3798–3812.
Eulalio, A, Behm‐Ansmant, I, Izaurralde, E. P bodies: at the crossroads of post‐transcriptional pathways. Nat Rev Mol Cell Biol 2007, 8:9–22.
Garneau, NL, Wilusz, J, Wilusz, CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 2007, 8:113–126.
Anderson, P, Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem Sci 2008, 33:141–150.
Murata, T, Morita, N, Hikita, K, Kiuchi, K, Kaneda, N. Recruitment of mRNA‐destabilizing protein TIS11 to stress granules is mediated by its zinc finger domain. Exp Cell Res 2005, 303:287–299.
Kedersha, N, Stoecklin, G, Ayodele, M, Yacono, P, Lykke‐Andersen, J, Fritzler, MJ, Scheuner, D, Kaufman, RJ, Golan, DE, Anderson, P. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005, 169:871–884.
Franks, TM, Lykke‐Andersen, J. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU‐rich elements. Genes Dev 2007, 21:719–735.
Fenger‐Gron, M, Fillman, C, Norrild, B, Lykke‐Andersen, J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 2005, 20:905–915.
Hau, HH, Walsh, RJ, Ogilvie, RL, Williams, DA, Reilly, CS, Bohjanen, PR. Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. J Cell Biochem 2007, 100:1477–1492.
Liu, J, Valencia‐Sanchez, MA, Hannon, GJ, Parker, R. MicroRNA‐dependent localization of targeted mRNAs to mammalian P‐bodies. Nat Cell Biol 2005, 7:719–723.
Jing, Q, Huang, S, Guth, S, Zarubin, T, Motoyama, A, Chen, J, Di Padova, F, Lin, SC, Gram, H, Han, J. Involvement of microRNA in AU‐rich element‐mediated mRNA instability. Cell 2005, 120:623–634.
Houseley, J, LaCava, J. Tollervey D RNA‐quality control by the exosome. Nat Rev Mol Cell Biol 2006, 7:529–539.
Chen, CY, Gherzi, R, Ong, SE, Chan, EL, Raijmakers, R, Pruijn, GJ, Stoecklin, G, Moroni, C, Mann, M, Karin, M. AU binding proteins recruit the exosome to degrade ARE‐containing mRNAs. Cell 2001, 107:451–464.
Liang, J, Lei, T, Song, Y, Yanes, N, Qi, Y, Fu, M. RNA‐destabilizing factor tristetraprolin negatively regulates NF‐kappaB signaling. J Biol Chem 2009, 284:29383–29390.
Schichl, YM, Resch, U, Hofer‐Warbinek, R, de Martin, R. Tristetraprolin impairs NF‐kappaB/p65 nuclear translocation. J Biol Chem 2009, 284:29571–29581.
Ashburner, BP, Westerheide, SD, Baldwin, AS Jr. The p65 (RelA) subunit of NF‐kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 2001, 21:7065–7077.
Carman, JA, Nadler, SG. Direct association of tristetraprolin with the nucleoporin CAN/Nup214. Biochem Biophys Res Commun 2004, 315:445–449.
Twizere, JC, Kruys, V, Lefebvre, L, Vanderplasschen, A, Collete, D, Debacq, C, Lai, WS, Jauniaux, JC, Bernstein, LR, Semmes, OJ, et al. Interaction of retroviral Tax oncoproteins with tristetraprolin and regulation of tumor necrosis factor‐alpha expression. J Natl Cancer Inst 2003, 95:1846–1859.
Kedar, VP, Darby, MK, Williams, JG, Blackshear, PJ. Phosphorylation of human tristetraprolin in response to its interaction with the Cbl interacting protein CIN85. PLoS One 2010, 5:e9588.
Taylor, GA, Carballo, E, Lee, DM, Lai, WS, Thompson, MJ, Patel, DD, Schenkman, DI, Gilkeson, GS, Broxmeyer, HE, Haynes, BF, et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 1996, 4:445–454.
Ghosh, S, Hoenerhoff, MJ, Clayton, N, Myers, P, Stumpo, DJ, Maronpot, RR, Blackshear, PJ. Left‐sided cardiac valvulitis in tristetraprolin‐deficient mice: the role of tumor necrosis factor alpha. Am J Pathol 2010, 176:1484–1493.
Carrick, DM, Lai, WS, Blackshear, PJ. The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis Res Ther 2004, 6:248–264.
Carballo, E, Gilkeson, GS, Blackshear, PJ. Bone marrow transplantation reproduces the tristetraprolin‐deficiency syndrome in recombination activating gene‐2 (−/−) mice. Evidence that monocyte/macrophage progenitors may be responsible for TNFalpha overproduction. J Clin Invest 1997, 100:986–995.
Douni, E, Akassoglou, K, Alexopoulou, L, Georgopoulos, S, Haralambous, S, Hill, S, Kassiotis, G, Kontoyiannis, D, Pasparakis, M, Plows, D, et al. Transgenic and knockout analyses of the role of TNF in immune regulation and disease pathogenesis. J Inflamm 1995, 47:27–38.
Stumpo, DJ, Byrd, NA, Phillips, RS, Ghosh, S, Maronpot, RR, Castranio, T, Meyers, EN, Mishina, Y, Blackshear, PJ. Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol 2004, 24:6445–6455.
Ramos, SB, Stumpo, DJ, Kennington, EA, Phillips, RS, Bock, CB, Ribeiro‐Neto, F, Blackshear, PJ. The CCCH tandem zinc‐finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 2004, 131:4883–4893.
Stumpo, DJ, Broxmeyer, HE, Ward, T, Cooper, S, Hangoc, G, Chung, YJ, Shelley, WC, Richfield, EK, Ray, MK, Yoder, MC, et al. Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA‐binding protein, results in defective hematopoiesis. Blood 2009, 114:2401–2410.
Brooks, SA, Connolly, JE, Diegel, RJ, Fava, RA, Rigby, WF. Analysis of the function, expression, and subcellular distribution of human tristetraprolin. Arthritis Rheum 2002, 46:1362–1370.
Tsutsumi, A, Suzuki, E, Adachi, Y, Murata, H, Goto, D, Kojo, S, Matsumoto, I, Zhong, L, Nakamura, H, Sumida, T. Expression of tristetraprolin (G0S24) mRNA, a regulator of tumor necrosis factor‐alpha production, in synovial tissues of patients with rheumatoid arthritis. J Rheumatol 2004, 31:1044–1049.
Patil, CS, Liu, M, Zhao, W, Coatney, DD, Li, F, VanTubergen, EA, D`Silva, NJ, Kirkwood, KL. Targeting mRNA stability arrests inflammatory bone loss. Mol Ther 2008, 16:1657–1664.
Blackshear, PJ, Phillips, RS, Vazquez‐Matias, J, Mohrenweiser, H. Polymorphisms in the genes encoding members of the tristetraprolin family of human tandem CCCH zinc finger proteins. Prog Nucleic Acid Res Mol Biol 2003, 75:43–68.
Carrick, DM, Chulada, P, Donn, R, Fabris, M, McNicholl, J, Whitworth, W, Blackshear, PJ. Genetic variations in ZFP36 and their possible relationship to autoimmune diseases. J Autoimmun 2006, 26:182–196.
Suzuki, T, Tsutsumi, A, Suzuki, H, Suzuki, E, Sugihara, M, Muraki, Y, Hayashi, T, Chino, Y, Goto, D, Matsumoto, I, et al. Tristetraprolin (TTP) gene polymorphisms in patients with rheumatoid arthritis and healthy individuals. Mod Rheumatol 2008, 18:472–479.
Kanies, CL, Smith, JJ, Kis, C, Schmidt, C, Levy, S, Khabar, KS, Morrow, J, Deane, N, Dixon, DA, Beauchamp, RD. Oncogenic Ras and transforming growth factor‐beta synergistically regulate AU‐rich element‐containing mRNAs during epithelial to mesenchymal transition. Mol Cancer Res 2008, 6: 1124–1136.
Mendell, JT, Dietz, HC. When the message goes awry: disease‐producing mutations that influence mRNA content and performance. Cell 2001, 107:411–414.
Amit, I, Citri, A, Shay, T, Lu, Y, Katz, M, Zhang, F, Tarcic, G, Siwak, D, Lahad, J, Jacob‐Hirsch, J, et al. A module of negative feedback regulators defines growth factor signaling. Nat Genet 2007, 39:503–512.
Young, LE, Sanduja, S, Bemis‐Standoli, K, Pena, EA, Price, RL, Dixon, DA. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase‐2 expression during colon carcinogenesis. Gastroenterology 2009, 136:1669–1679.
Stoecklin, G, Gross, B, Ming, XF, Moroni, C. A novel mechanism of tumor suppression by destabilizing AU‐rich growth factor mRNA. Oncogene 2003, 22:3554–3561.
Lee, HH, Son, YJ, Lee, WH, Park, YW, Chae, SW, Cho, WJ, Kim, YM, Choi, HJ, Choi, DH, Jung, SW, et al. Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer 2010, 126:1817–1827.
Johnson, BA, Blackwell, TK. Multiple tristetraprolin sequence domains required to induce apoptosis and modulate responses to TNFalpha through distinct pathways. Oncogene 2002, 21:4237–4246.
Lee, SK, Kim, SB, Kim, JS, Moon, CH, Han, MS, Lee, BJ, Chung, DK, Min, YJ, Park, JH, Choi, DH, et al. Butyrate response factor 1 enhances cisplatin sensitivity in human head and neck squamous cell carcinoma cell lines. Int J Cancer 2005, 117:32–40.
Gebeshuber, CA, Zatloukal, K, Martinez, J. miR‐29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 2009, 10:400–405.
Sohn, BH, Park, IY, Lee, JJ, Yang, SJ, Jang, YJ, Park, KC, Kim, DJ, Lee, DC, Sohn, HA, Kim, TW, et al. Functional switching of transforming growth factor‐beta1 signaling in liver cancer via epigenetic modulation of a single CpG site in tristetraprolin promoter. Gastroenterology 2010, 138:1898–1908.