Furuichi, Y, Shatkin, AJ. Viral and cellular mRNA capping: past and prospects. Adv Virus Res 2000, 55:135–184.
Sonenberg, N, Hinnebusch, AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731–745.
Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nat Rev Mol Cell Biol 2002, 3:619–625.
Gu, M, Lima, CD. Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol 2005, 15:99–106.
Lewis, JD, Izaurralde, E. The role of the cap structure in RNA processing and nuclear export. Eur J Biochem 1997, 247:461–469.
Shatkin, AJ. Capping of eucaryotic mRNAs. Cell 1976, 9(suppl 4 Pt 2):645–653.
Shatkin, AJ, Manley, JL. The ends of the affair: capping and polyadenylation. Nat Struct Biol 2000, 7:838–842.
Mao, X, Schwer, B, Shuman, S. Yeast mRNA cap methyltransferase is a 50‐kilodalton protein encoded by an essential gene. Mol Cell Biol 1995, 15:4167–4174.
Shibagaki, Y, Itoh, N, Yamada, H, Nagata, S, Mizumoto, K. mRNA capping enzyme. Isolation and characterization of the gene encoding mRNA guanylytransferase subunit from Saccharomyces cerevisiae. J Biol Chem 1992, 267:9521–9528.
Tsukamoto, T, Shibagaki, Y, Imajoh‐Ohmi, S, Murakoshi, T, Suzuki, M, Nakamura, A, Gotoh, H, Mizumoto, K. Isolation and characterization of the yeast mRNA capping enzyme beta subunit gene encoding RNA 5′‐triphosphatase, which is essential for cell viability. Biochem Biophys Res Commun 1997, 239:116–122.
Tsukamoto, T, Shibagaki, Y, Niikura, Y, Mizumoto, K. Cloning and characterization of three human cDNAs encoding mRNA (guanine‐7‐)‐methyltransferase, an mRNA cap methylase. Biochem Biophys Res Commun 1998, 251:27–34.
Yamada‐Okabe, T, Doi, R, Shimmi, O, Arisawa, M, Yamada‐Okabe, H. Isolation and characterization of a human cDNA for mRNA 5′‐capping enzyme. Nucleic Acids Res 1998, 26:1700–1706.
Yue, Z, Maldonado, E, Pillutla, R, Cho, H, Reinberg, D, Shatkin, AJ. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc Natl Acad Sci USA 1997, 94:12898–12903.
Ho, CK, Sriskanda, V, McCracken, S, Bentley, D, Schwer, B, Shuman, S. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl‐terminal domain of RNA polymerase II. J Biol Chem 1998, 273:9577–9585.
McCracken, S, Fong, N, Rosonina, E, Yankulov, K, Brothers, G, Siderovski, D, Hessel, A, Foster, S, Shuman, S, Bentley, DL. 5′‐Capping enzymes are targeted to pre‐mRNA by binding to the phosphorylated carboxy‐terminal domain of RNA polymerase II. Genes Dev 1997, 11:3306–3318.
Ho, CK, Shuman, S. Distinct roles for CTD Ser‐2 and Ser‐5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell 1999, 3:405–411.
Phatnani, HP, Greenleaf, AL. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 2006, 20:2922–2936.
Komarnitsky, P, Cho, EJ, Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 2000, 14:2452–2460.
Schroeder, SC, Schwer, B, Shuman, S, Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 2000, 14:2435–2440.
Serizawa, H, Makela, TP, Conaway, JW, Conaway, RC, Weinberg, RA, Young, RA. Association of Cdk‐activating kinase subunits with transcription factor TFIIH. Nature 1995, 374:280–282.
Wen, Y, Shatkin, AJ. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev 1999, 13:1774–1779.
Marcotrigiano, J, Gingras, AC, Sonenberg, N, Burley, SK. Cocrystal structure of the messenger RNA 5′ cap‐binding protein (eIF4E) bound to 7‐methyl‐GDP. Cell 1997, 89:951–961.
Matsuo, H, Li, H, McGuire, AM, Fletcher, CM, Gingras, AC, Sonenberg, N, Wagner, G. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E‐binding protein. Nat Struct Biol 1997, 4:717–724.
Mazza, C, Ohno, M, Segref, A, Mattaj, IW, Cusack, S. Crystal structure of the human nuclear cap binding complex. Mol Cell 2001, 8:383–396.
Mazza, C, Segref, A, Mattaj, IW, Cusack, S. Large‐scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap‐binding complex. EMBO J 2002, 21:5548–5557.
Calero, G, Wilson, KF, Ly, T, Rios‐Steiner, JL, Clardy, JC, Cerione, RA. Structural basis of m7GpppG binding to the nuclear cap‐binding protein complex. Nat Struct Biol 2002, 9:912–917.
Tomoo, K, Shen, X, Okabe, K, Nozoe, Y, Fukuhara, S, Morino, S, Sasaki, M, Taniguchi, T, Miyagawa, H, Kitamura, K, et al. Structural features of human initiation factor 4E, studied by X‐ray crystal analyses and molecular dynamics simulations. J Mol Biol 2003, 328:365–383.
Niedzwiecka, A, Marcotrigiano, J, Stepinski, J, Jankowska‐Anyszka, M, Wyslouch‐Cieszynska, A, Dadlez, M, Gingras, AC, Mak, P, Darzynkiewicz, E, Sonenberg, N, et al. Biophysical studies of eIF4E cap‐binding protein: recognition of mRNA 5′ cap structure and synthetic fragments of eIF4G and 4E‐BP1 proteins. J Mol Biol 2002, 319:615–635.
Izaurralde, E, Stepinski, J, Darzynkiewicz, E, Mattaj, IW. A cap binding protein that may mediate nuclear export of RNA polymerase II‐transcribed RNAs. J Cell Biol 1992, 118:1287–1295.
Morino, S, Tomoo, K, Nishi, N, Okabe, K, Doi, M, Ishida, T, Kitamura, K. Crystallization and preliminary X‐ray diffraction study of recombinant human eukaryotic initiation factor‐4E. J Biochem 1996, 119:224–225.
Fechter, P, Brownlee, GG. Recognition of mRNA cap structures by viral and cellular proteins. J Gen Virol 2005, 86(Pt 5):1239–1249.
Tomoo, K, Shen, X, Okabe, K, Nozoe, Y, Fukuhara, S, Morino, S, Ishida, T, Taniguchi, T, Hasegawa, H, Terashima, A, et al. Crystal structures of 7‐methylguanosine 5′‐triphosphate (m(7)GTP)‐ and P(1)‐7‐methylguanosine‐P(3)‐adenosine‐5′, 5′‐triphosphate (m(7)GpppA)‐bound human full‐length eukaryotic initiation factor 4E: biological importance of the C‐terminal flexible region. Biochem J 2002, 362(Pt 3):539–544.
Hodel, AE, Gershon, PD, Shi, X, Wang, SM, Quiocho, FA. Specific protein recognition of an mRNA cap through its alkylated base. Nat Struct Biol 1997, 4:350–354.
Hu, G, Gershon, PD, Hodel, AE, Quiocho, FA. mRNA cap recognition: dominant role of enhanced stacking interactions between methylated bases and protein aromatic side chains. Proc Natl Acad Sci USA 1999, 96:7149–7154.
Hu, G, Oguro, A, Li, C, Gershon, PD, Quiocho, FA. The “cap‐binding slot” of an mRNA cap‐binding protein: quantitative effects of aromatic side chain choice in the double‐stacking sandwich with cap. Biochemistry 2002, 41:7677–7687.
Hu, G, Tsai, AL, Quiocho, FA. Insertion of an N7‐methylguanine mRNA cap between two coplanar aromatic residues of a cap‐binding protein is fast and selective for a positively charged cap. J Biol Chem 2003, 278:51515–51520.
Quiocho, FA, Hu, G, Gershon, PD. Structural basis of mRNA cap recognition by proteins. Curr Opin Struct Biol 2000, 10:78–86.
Shuman, S, Lima, CD. The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Curr Opin Struct Biol 2004, 14:757–764.
Wilson, KF, Fortes, P, Singh, US, Ohno, M, Mattaj, IW, Cerione, RA. The nuclear cap‐binding complex is a novel target of growth factor receptor‐coupled signal transduction. J Biol Chem 1999, 274:4166–4173.
Carberry, SE, Rhoads, RE, Goss, DJ. A spectroscopic study of the binding of m7GTP and m7GpppG to human protein synthesis initiation factor 4E. Biochemistry 1989, 28:8078–8083.
Lockless, SW, Cheng, HT, Hodel, AE, Quiocho, FA, Gershon, PD. Recognition of capped RNA substrates by VP39, the vaccinia virus‐encoded mRNA cap‐specific 2′‐O‐methyltransferase. Biochemistry 1998, 37:8564–8574.
Goss, DJ, Carberry, SE, Dever, TE, Merrick, WC, Rhoads, RE. Fluorescence study of the binding of m7GpppG and rabbit globin mRNA to protein synthesis initiation factors 4A, 4E, and 4F. Biochemistry 1990, 29:5008–5012.
Blachut‐Okrasinska, E, Bojarska, E, Niedzwiecka, A, Chlebicka, L, Darzynkiewicz, E, Stolarski, R, St Pinski, J, Antosiewicz, JM. Stopped‐flow and Brownian dynamics studies of electrostatic effects in the kinetics of binding of 7‐methyl‐GpppG to the protein eIF4E. Eur Biophys J 2000, 29:487–498.
Sha, M, Wang, Y, Xiang, T, van Heerden, A, Browning, KS, Goss, DJ. Interaction of wheat germ protein synthesis initiation factor eIF‐(iso)4F and its subunits p28 and p86 with m7GTP and mRNA analogues. J Biol Chem 1995, 270:29904–29909.
Slepenkov, SV, Darzynkiewicz, E, Rhoads, RE. Stopped‐flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one‐step binding mechanism. J Biol Chem 2006, 281:14927–14938.
Lejeune, F, Ishigaki, Y, Li, X, Maquat, LE. The exon junction complex is detected on CBP80‐bound but not eIF4E‐bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J 2002, 21:3536–3545.
Stutz, F, Bachi, A, Doerks, T, Braun, IC, Seraphin, B, Wilm, M, Bork, P, Izaurralde, E. REF, an evolutionary conserved family of hnRNP‐like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 2000, 6:638–650.
Zhou, Z, Luo, MJ, Straesser, K, Katahira, J, Hurt, E, Reed, R. The protein Aly links pre‐messenger‐RNA splicing to nuclear export in metazoans. Nature 2000, 407:401–405.
Cheng, H, Dufu, K, Lee, CS, Hsu, JL, Dias, A, Reed, R. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 2006, 127:1389–1400.
Aguilera, A. Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr Opin Cell Biol 2005, 17:242–250.
Moore, MJ. From birth to death: the complex lives of eukaryotic mRNAs. Science 2005, 309:1514–1518.
Flaherty, SM, Fortes, P, Izaurralde, E, Mattaj, IW, Gilmartin, GM. Participation of the nuclear cap binding complex in pre‐mRNA 3′ processing. Proc Natl Acad Sci USA 1997, 94:11893–11898.
Maquat, LE. Nonsense‐mediated mRNA decay in mammals. J Cell Sci 2005, 118(Pt 9):1773–1776.
Edery, I, Sonenberg, N. Cap‐dependent RNA splicing in a HeLa nuclear extract. Proc Natl Acad Sci USA 1985, 82:7590–7594.
Konarska, MM, Padgett, RA, Sharp, PA. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 1984, 38:731–736.
Inoue, K, Ohno, M, Sakamoto, H, Shimura, Y. Effect of the cap structure on pre‐mRNA splicing in Xenopus oocyte nuclei. Genes Dev 1989, 3:1472–1479.
Lewis, JD, Izaurralde, E, Jarmolowski, A, McGuigan, C, Mattaj, IW. A nuclear cap‐binding complex facilitates association of U1 snRNP with the cap‐proximal 5′ splice site. Genes Dev 1996, 10:1683–1698.
Izaurralde, E, Lewis, J, Gamberi, C, Jarmolowski, A, McGuigan, C, Mattaj, IW. A cap‐binding protein complex mediating U snRNA export. Nature 1995, 376:709–712.
Izaurralde, E, Lewis, J, McGuigan, C, Jankowska, M, Darzynkiewicz, E, Mattaj, IW. A nuclear cap binding protein complex involved in pre‐mRNA splicing. Cell 1994, 78:657–668.
Berget, SM. Exon recognition in vertebrate splicing. J Biol Chem 1995, 270:2411–2414.
Strasser, K, Masuda, S, Mason, P, Pfannstiel, J, Oppizzi, M, Rodriguez‐Navarro, S, Rondon, AG, Aguilera, A, Struhl, K, Reed, R, et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 2002, 417:304–308.
Masuda, S, Das, R, Cheng, H, Hurt, E, Dorman, N, Reed, R. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 2005, 19:1512–1517.
Reed, R, Cheng, H. TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 2005, 17:269–273.
Chavez, S, Beilharz, T, Rondon, AG, Erdjument‐Bromage, H, Tempst, P, Svejstrup, JQ, Lithgow, T, Aguilera, A. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J 2000, 19:5824–5834.
Rehwinkel, J, Herold, A, Gari, K, Kocher, T, Rode, M, Ciccarelli, FL, Wilm, M, Izaurralde, E. Genome‐wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol 2004, 11:558–566.
Masuyama, K, Taniguchi, I, Kataoka, N, Ohno, M. RNA length defines RNA export pathway. Genes Dev 2004, 18:2074–2085.
Daneholt, B. Packing and delivery of a genetic message. Chromosoma 2001, 110:173–185.
Huang, Y, Steitz, JA. SRprises along a messenger`s journey. Mol Cell 2005, 17:613–615.
Brennan, CM, Gallouzi, IE, Steitz, JA. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol 2000, 151:1–14.
Gallouzi, IE, Steitz, JA. Delineation of mRNA export pathways by the use of cell‐permeable peptides. Science 2001, 294:1895–1901.
Topisirovic, I, Siddiqui, N, Lapointe, VL, Trost, M, Thibault, P, Bangeranye, C, Pinol‐Roma, S, Borden, KL. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export‐competent RNP. EMBO J 2009, 28:1087–1098.
Hamm, J, Mattaj, IW. Monomethylated cap structures facilitate RNA export from the nucleus. Cell 1990, 63:109–118.
Yong, J, Wan, L, Dreyfuss, G. Why do cells need an assembly machine for RNA‐protein complexes? Trends Cell Biol 2004, 14:226–232.
Huber, J, Cronshagen, U, Kadokura, M, Marshallsay, C, Wada, T, Sekine, M, Luhrmann, R. Snurportin1, an m3G‐cap‐specific nuclear import receptor with a novel domain structure. EMBO J 1998, 17:4114–4126.
Ohno, M, Segref, A, Bachi, A, Wilm, M, Mattaj, IW. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 2000, 101:187–198.
Gorlich, D, Kraft, R, Kostka, S, Vogel, F, Hartmann, E, Laskey, RA, Mattaj, IW, Izaurralde, E. Importin provides a link between nuclear protein import and U snRNA export. Cell 1996, 87:21–32.
Jackobson, A. EI: Nonsense‐mediated mRNA decay: from yeast to metazoan. In: Sonenberg, N, Mathews, M, Hershey, J, eds. Nonsense‐mediated mRNA Decay: From Yeast to Metazoan. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2007.
McGlincy, NJ, Smith, CW. Alternative splicing resulting in nonsense‐mediated mRNA decay: what is the meaning of nonsense? Trends Biochem Sci 2008, 33:385–393.
Giorgi, C, Yeo, GW, Stone, ME, Katz, DB, Burge, C, Turrigiano, G, Moore, MJ. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 2007, 130:179–191.
Stalder, L, Muhlemann, O. The meaning of nonsense. Trends Cell Biol 2008, 18:315–321.
Nagy, E, Maquat, LE. A rule for termination‐codon position within intron‐containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 1998, 23:198–199.
Reichert, VL, Le Hir, H, Jurica, MS, Moore, MJ. 5′ exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev 2002, 16:2778–2791.
Shibuya, T, Tange, TO, Sonenberg, N, Moore, MJ. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense‐mediated decay. Nat Struct Mol Biol 2004, 11:346–351.
Jankowsky, E, Fairman, ME. RNA helicases—one fold for many functions. Curr Opin Struct Biol 2007, 17:316–324.
Ballut, L, Marchadier, B, Baguet, A, Tomasetto, C, Seraphin, B, Le Hir, H. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struct Mol Biol 2005, 12:861–869.
Kashima, I, Yamashita, A, Izumi, N, Kataoka, N, Morishita, R, Hoshino, S, Ohno, M, Dreyfuss, G, Ohno, S. Binding of a novel SMG‐1‐Upf1‐eRF1‐eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense‐mediated mRNA decay. Genes Dev 2006, 20:355–367.
Isken, O, Kim, YK, Hosoda, N, Mayeur, GL, Hershey, JW, Maquat, LE. Upf1 phosphorylation triggers translational repression during nonsense‐mediated mRNA decay. Cell 2008, 133:314–327.
Eberle, AB, Lykke‐Andersen, S, Muhlemann, O, Jensen, TH. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol 2009, 16:49–55.
Huntzinger, E, Kashima, I, Fauser, M, Sauliere, J, Izaurralde, E. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 2008, 14:2609–2617.
Kim, YK, Furic, L, Desgroseillers, L, Maquat, LE. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 2005, 120:195–208.
Jackson, RJ, Hellen, CU, Pestova, TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010, 11:113–127.
Grifo, JA, Tahara, SM, Morgan, MA, Shatkin, AJ, Merrick, WC. New initiation factor activity required for globin mRNA translation. J Biol Chem 1983, 258:5804–5810.
Browning, KS, Lax, SR, Humphreys, J, Ravel, JM, Jobling, SA, Gehrke, L. Evidence that the 5′‐untranslated leader of mRNA affects the requirement for wheat germ initiation factors 4A, 4F, and 4G. J Biol Chem 1988, 263:9630–9634.
Pestova, TV, Lorsch, JR, Hellen, CUT, eds. The mechanism of translation initiation in eukaryotes. Translational Control in Biology and Medicine. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2007.
Kahvejian, A, Svitkin, YV, Sukarieh, R, M’Boutchou, MN, Sonenberg, N. Mammalian poly(A)‐binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005, 19:104–113.
Svitkin, YV, Evdokimova, VM, Brasey, A, Pestova, TV, Fantus, D, Yanagiya, A, Imataka, H, Skabkin, MA, Ovchinnikov, LP, Merrick, WC, et al. General RNA‐binding proteins have a function in poly(A)‐binding protein‐dependent translation. EMBO J 2009, 28:58–68.
Kozak, M, Shatkin, AJ. Migration of 40 S ribosomal subunits on messenger RNA in the presence of edeine. J Biol Chem 1978, 253:6568–6577.
Grifo, JA, Abramson, RD, Satler, CA, Merrick, WC. RNA‐stimulated ATPase activity of eukaryotic initiation factors. J Biol Chem 1984, 259:8648–8654.
Pause, A, Methot, N, Svitkin, Y, Merrick, WC, Sonenberg, N. Dominant negative mutants of mammalian translation initiation factor eIF‐4A define a critical role for eIF‐4F in cap‐dependent and cap‐independent initiation of translation. EMBO J 1994, 13:1205–1215.
Richter‐Cook, NJ, Dever, TE, Hensold, JO, Merrick, WC. Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J Biol Chem 1998, 273:7579–7587.
Rogers, GW Jr, Richter, NJ, Lima, WF, Merrick, WC. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem 2001, 276:30914–30922.
Rozen, F, Edery, I, Meerovitch, K, Dever, TE, Merrick, WC, Sonenberg, N. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 1990, 10:1134–1144.
Schutz, P, Bumann, M, Oberholzer, AE, Bieniossek, C, Trachsel, H, Altmann, M, Baumann, U. Crystal structure of the yeast eIF4A‐eIF4G complex: an RNA‐helicase controlled by protein‐protein interactions. Proc Natl Acad Sci USA 2008, 105:9564–9569.
Marintchev, A, Edmonds, KA, Marintcheva, B, Hendrickson, E, Oberer, M, Suzuki, C, Herdy, B, Sonenberg, N, Wagner, G. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 2009, 136:447–460.
Shin, BS, Kim, JR, Acker, MG, Maher, KN, Lorsch, JR, Dever, TE. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit. Mol Cell Biol 2009, 29:808–821.
Fringer, JM, Acker, MG, Fekete, CA, Lorsch, JR, Dever, TE. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol Cell Biol 2007, 27:2384–2397.
Jennings, MD, Pavitt, GD. eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature 2010, 465:378–381.
Unbehaun, A, Borukhov, SI, Hellen, CU, Pestova, TV. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon‐anticodon base‐pairing and hydrolysis of eIF2‐bound GTP. Genes Dev 2004, 18:3078–3093.
Pestova, TV, Lomakin, IB, Lee, JH, Choi, SK, Dever, TE, Hellen, CU. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 2000, 403:332–335.
Lomakin, IB, Kolupaeva, VG, Marintchev, A, Wagner, G, Pestova, TV. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev 2003, 17:2786–2797.
Maag, D, Algire, MA, Lorsch, JR. Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre‐initiation complex plays a role in start site selection. J Mol Biol 2006, 356:724–737.
Maag, D, Fekete, CA, Gryczynski, Z, Lorsch, JR. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol Cell 2005, 17:265–275.
De Benedetti, A, Graff, JR. eIF‐4E expression and its role in malignancies and metastases. Oncogene 2004, 23:3189–3199.
Sonenberg, N, Gingras, AC. The mRNA 5′ cap‐binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 1998, 10:268–275.
Graff, JR, Konicek, BW, Carter, JH, Marcusson, EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008, 68:631–634.
Silvera, D, Formenti, SC, Schneider, RJ. Translational control in cancer. Nat Rev Cancer 2010, 10:254–266.
Svitkin, YV, Pause, A, Haghighat, A, Pyronnet, S, Witherell, G, Belsham, GJ, Sonenberg, N. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 2001, 7:382–394.
Koromilas, AE, Lazaris‐Karatzas, A, Sonenberg, N. mRNAs containing extensive secondary structure in their 5′ non‐coding region translate efficiently in cells overexpressing initiation factor eIF‐4E. EMBO J 1992, 11:4153–4158.
Lazaris‐Karatzas, A, Montine, KS, Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 1990, 345:544–547.
Ruggero, D, Montanaro, L, Ma, L, Xu, W, Londei, P, Cordon‐Cardo, C, Pandolfi, PP. The translation factor eIF‐4E promotes tumor formation and cooperates with c‐Myc in lymphomagenesis. Nat Med 2004, 10:484–486.
Cohen, N, Sharma, M, Kentsis, A, Perez, JM, Strudwick, S, Borden, KL. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J 2001, 20:4547–4559.
Wendel, HG, Silva, RL, Malina, A, Mills, JR, Zhu, H, Ueda, T, Watanabe‐Fukunaga, R, Fukunaga, R, Teruya‐Feldstein, J, Pelletier, J, et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007, 21:3232–3237.
Mamane, Y, Petroulakis, E, Rong, L, Yoshida, K, Ler, LW, Sonenberg, N. eIF4E—from translation to transformation. Oncogene 2004, 23:3172–3179.
De Benedetti, A, Harris, AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 1999, 31:59–72.
Pause, A, Belsham, GJ, Gingras, AC, Donze, O, Lin, TA, Lawrence, JC Jr, Sonenberg, N. Insulin‐dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′‐cap function. Nature 1994, 371:762–767.
Mader, S, Lee, H, Pause, A, Sonenberg, N. The translation initiation factor eIF‐4E binds to a common motif shared by the translation factor eIF‐4 gamma and the translational repressors 4E‐binding proteins. Mol Cell Biol 1995, 15:4990–4997.
Marcotrigiano, J, Gingras, AC, Sonenberg, N, Burley, SK. Cap‐dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 1999, 3:707–716.
Gross, JD, Moerke, NJ, von der Haar, T, Lugovskoy, AA, Sachs, AB, McCarthy, JE, Wagner, G. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 2003, 115:739–750.
Volpon, L, Osborne, MJ, Topisirovic, I, Siddiqui, N, Borden, KL. Cap‐free structure of eIF4E suggests a basis for conformational regulation by its ligands. EMBO J 2006, 25:5138–5149.
Brown, CJ, Verma, CS, Walkinshaw, MD, Lane, DP. Crystallization of eIF4E complexed with eIF4GI peptide and glycerol reveals distinct structural differences around the cap‐binding site. Cell Cycle 2009, 8:1905–1911.
Yanagiya, A, Svitkin, YV, Shibata, S, Mikami, S, Imataka, H, Sonenberg, N. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol Cell Biol 2009, 29:1661–1669.
Hay, N, Sonenberg, N. Upstream and downstream of mTOR. Genes Dev 2004, 18:1926–1945.
Guertin, DA, Sabatini, DM. Defining the role of mTOR in cancer. Cancer Cells 2007, 12:9–22.
Guertin, DA, Sabatini, DM. The pharmacology of mTOR inhibition. Sci Signal 2009, 2:pe24.
Wullschleger, S, Loewith, R, Hall, MN. TOR signaling in growth and metabolism. Cell 2006, 124:471–484.
Gingras, AC, Gygi, SP, Raught, B, Polakiewicz, RD, Abraham, RT, Hoekstra, MF, Aebersold, R, Sonenberg, N. Regulation of 4E‐BP1 phosphorylation: a novel two‐step mechanism. Genes Dev 1999, 13:1422–1437.
Gingras, AC, Raught, B, Gygi, SP, Niedzwiecka, A, Miron, M, Burley, SK, Polakiewicz, RD, Wyslouch‐Cieszynska, A, Aebersold, R, Sonenberg, N. Hierarchical phosphorylation of the translation inhibitor 4E‐BP1. Genes Dev 2001, 15:2852–2864.
Lynch, M, Fitzgerald, C, Johnston, KA, Wang, S, Schmidt, EV. Activated eIF4E‐binding protein slows G1 progression and blocks transformation by c‐myc without inhibiting cell growth. J Biol Chem 2004, 279:3327–3339.
Colina, R, Costa‐Mattioli, M, Dowling, RJ, Jaramillo, M, Tai, LH, Breitbach, CJ, Martineau, Y, Larsson, O, Rong, L, Svitkin, YV, et al. Translational control of the innate immune response through IRF‐7. Nature 2008, 452:323–328.
Petroulakis, E, Parsyan, A, Dowling, RJ, LeBacquer, O, Martineau, Y, Bidinosti, M, Larsson, O, Alain, T, Rong, L, Mamane, Y, et al. p53‐dependent translational control of senescence and transformation via 4E‐BPs. Cancer Cells 2009, 16:439–446.
Mamane, Y, Petroulakis, E, LeBacquer, O, Sonenberg, N. mTOR, translation initiation and cancer. Oncogene 2006, 25:6416–6422.
Rojo, F, Najera, L, Lirola, J, Jimenez, J, Guzman, M, Sabadell, MD, Baselga, J, Ramon y Cajal, S. 4E‐binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 2007, 13:81–89.
Petricoin, EF 3rd, Espina, V, Araujo, RP, Midura, B, Yeung, C, Wan, X, Eichler, GS, Johann, DJ Jr, Qualman, S, Tsokos, M, et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 2007, 67:3431–3440.
Waskiewicz, AJ, Flynn, A, Proud, CG, Cooper, JA. Mitogen‐activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 1997, 16:1909–1920.
Fukunaga, R, Hunter, T. MNK1, a new MAP kinase‐activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 1997, 16:1921–1933.
Wang, X, Flynn, A, Waskiewicz, AJ, Webb, BL, Vries, RG, Baines, IA, Cooper, JA, Proud, CG. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem 1998, 273:9373–9377.
Scheper, GC, Morrice, NA, Kleijn, M, Proud, CG. The mitogen‐activated protein kinase signal‐integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol Cell Biol 2001, 21:743–754.
Pyronnet, S, Imataka, H, Gingras, AC, Fukunaga, R, Hunter, T, Sonenberg, N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 1999, 18:270–279.
Van Der Kelen, K, Beyaert, R, Inze, D, De Veylder, L. Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 2009, 44:143–168.
Ueda, T, Watanabe‐Fukunaga, R, Fukuyama, H, Nagata, S, Fukunaga, R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 2004, 24:6539–6549.
Topisirovic, I, Ruiz‐Gutierrez, M, Borden, KL. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 2004, 64:8639–8642.
Lachance, PE, Miron, M, Raught, B, Sonenberg, N, Lasko, P. Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth. Mol Cell Biol 2002, 22:1656–1663.
Scheper, GC, van Kollenburg, B, Hu, J, Luo, Y, Goss, DJ, Proud, CG. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J Biol Chem 2002, 277:3303–3309.
Walsh, D, Mohr, I. Phosphorylation of eIF4E by Mnk‐1 enhances HSV‐1 translation and replication in quiescent cells. Genes Dev 2004, 18:660–672.
Worch, J, Tickenbrock, L, Schwable, J, Steffen, B, Cauvet, T, Mlody, B, Buerger, H, Koeffler, HP, Berdel, WE, Serve, H, et al. The serine‐threonine kinase MNK1 is post‐translationally stabilized by PML‐RARalpha and regulates differentiation of hematopoietic cells. Oncogene 2004, 23:9162–9172.
Kaspar, RL, Rychlik, W, White, MW, Rhoads, RE, Morris, DR. Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J Biol Chem 1990, 265:3619–3622.
Manzella, JM, Rychlik, W, Rhoads, RE, Hershey, JW, Blackshear, PJ. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF‐4B and eIF‐4E. J Biol Chem 1991, 266:2383–2389.
Morley, SJ, Naegele, S. Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J Biol Chem 2002, 277:32855–32859.
Naegele, S, Morley, SJ. Molecular cross‐talk between MEK1/2 and mTOR signaling during recovery of 293 cells from hypertonic stress. J Biol Chem 2004, 279:46023–46034.
Knauf, U, Tschopp, C, Gram, H. Negative regulation of protein translation by mitogen‐activated protein kinase‐interacting kinases 1 and 2. Mol Cell Biol 2001, 21:5500–5511.
Eilers, M, Eisenman, RN. Myc`s broad reach. Genes Dev 2008, 22:2755–2766.
Grandori, C, Cowley, SM, James, LP, Eisenman, RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000, 16:653–699.
Askew, DS, Ashmun, RA, Simmons, BC, Cleveland, JL. Constitutive c‐myc expression in an IL‐3‐dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 1991, 6:1915–1922.
Evan, GI, Wyllie, AH, Gilbert, CS, Littlewood, TD, Land, H, Brooks, M, Waters, CM, Penn, LZ, Hancock, DC. Induction of apoptosis in fibroblasts by c‐myc protein. Cell 1992, 69:119–128.
Shi, Y, Glynn, JM, Guilbert, LJ, Cotter, TG, Bissonnette, RP, Green, DR. Role for c‐myc in activation‐induced apoptotic cell death in T cell hybridomas. Science 1992, 257:212–214.
Polunovsky, VA, Rosenwald, IB, Tan, AT, White, J, Chiang, L, Sonenberg, N, Bitterman, PB. Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth‐factor‐restricted fibroblasts with physiologically expressed or deregulated Myc. Mol Cell Biol 1996, 16:6573–6581.
Jones, RM, Branda, J, Johnston, KA, Polymenis, M, Gadd, M, Rustgi, A, Callanan, L, Schmidt, EV. An essential E box in the promoter of the gene encoding the mRNA cap‐binding protein (eukaryotic initiation factor 4E) is a target for activation by c‐myc. Mol Cell Biol 1996, 16:4754–4764.
Lin, CJ, Cencic, R, Mills, JR, Robert, F, Pelletier, J. c‐Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res 2008, 68:5326–5334.
De Benedetti, AJB, Graff, JR, Zimmer, SG. CHO cells transformed by the translation factor eIF‐4E display increased c‐myc expression, but require overexpression of Max for tumorigenicity. Mol Cell Differ 1994, 2:347–371.
Yang, HS, Jansen, AP, Komar, AA, Zheng, X, Merrick, WC, Costes, S, Lockett, SJ, Sonenberg, N, Colburn, NH. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 2003, 23:26–37.
Ma, XM, Blenis, J. Molecular mechanisms of mTOR‐mediated translational control. Nat Rev Mol Cell Biol 2009, 10:307–318.
Lin, CJ, Malina, A, Pelletier, J. c‐Myc and eIF4F constitute a feedforward loop that regulates cell growth: implications for anticancer therapy. Cancer Res 2009, 69:7491–7494.
Stebbins‐Boaz, B, Cao, Q, de Moor, CH, Mendez, R, Richter, JD. Maskin is a CPEB‐associated factor that transiently interacts with elF‐4E. Mol Cell 1999, 4:1017–1027.
Nakamura, A, Sato, K, Hanyu‐Nakamura, K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 2004, 6:69–78.
Topisirovic, I, Culjkovic, B, Cohen, N, Perez, JM, Skrabanek, L, Borden, KL. The proline‐rich homeodomain protein, PRH, is a tissue‐specific inhibitor of eIF4E‐dependent cyclin D1 mRNA transport and growth. EMBO J 2003, 22:689–703.
Topisirovic, I, Kentsis, A, Perez, JM, Guzman, ML, Jordan, CT, Borden, KL. Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol Cell Biol 2005, 25:1100–1112.
Nedelec, S, Foucher, I, Brunet, I, Bouillot, C, Prochiantz, A, Trembleau, A. Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. Proc Natl Acad Sci USA 2004, 101:10815–10820.
Richter, JD, Sonenberg, N. Regulation of cap‐dependent translation by eIF4E inhibitory proteins. Nature 2005, 433:477–480.
Chekulaeva, M, Hentze, MW, Ephrussi, A. Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell 2006, 124:521–533.
Cho, PF, Poulin, F, Cho‐Park, YA, Cho‐Park, IB, Chicoine, JD, Lasko, P, Sonenberg, N. A new paradigm for translational control: inhibition via 5′–3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 2005, 121:411–423.
Rom, E, Kim, HC, Gingras, AC, Marcotrigiano, J, Favre, D, Olsen, H, Burley, SK, Sonenberg, N. Cloning and characterization of 4EHP, a novel mammalian eIF4E‐related cap‐binding protein. J Biol Chem 1998, 273:13104–13109.
Joshi, B, Cameron, A, Jagus, R. Characterization of mammalian eIF4E‐family members. Eur J Biochem 2004, 271:2189–2203.
Rivera‐Pomar, R, Niessing, D, Schmidt‐Ott, U, Gehring, WJ, Jackle, H. RNA binding and translational suppression by bicoid. Nature 1996, 379:746–749.
Villaescusa, JC, Buratti, C, Penkov, D, Mathiasen, L, Planaguma, J, Ferretti, E, Blasi, F. Cytoplasmic Prep1 interacts with 4EHP inhibiting Hoxb4 translation. PLoS One 2009, 4:e5213.
Zhu, N, Gu, L, Findley, HW, Zhou, M. Transcriptional repression of the eukaryotic initiation factor 4E gene by wild type p53. Biochem Biophys Res Commun 2005, 335:1272–1279.
Lynch, M, Chen, L, Ravitz, MJ, Mehtani, S, Korenblat, K, Pazin, MJ, Schmidt, EV. hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 2005, 25:6436–6453.
Murata, T, Shimotohno, K. Ubiquitination and proteasome‐dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem 2006, 281:20788–20800.
Xu, X, Vatsyayan, J, Gao, C, Bakkenist, CJ, Hu, J. Sumoylation of eIF4E activates mRNA translation. EMBO Rep 2010, 11:299–304.
Cullen, BR. Viral RNAs: lessons from the enemy. Cell 2009, 136:592–597.
Hellen, CU, Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 2001, 15:1593–1612.
Oruetxebarria, I, Guo, D, Merits, A, Makinen, K, Saarma, M, Valkonen, JP. Identification of the genome‐linked protein in virions of Potato virus A, with comparison to other members in genus Potyvirus. Virus Res 2001, 73:103–112.
Goodfellow, I, Chaudhry, Y, Gioldasi, I, Gerondopoulos, A, Natoni, A, Labrie, L, Laliberte, JF, Roberts, L. Calicivirus translation initiation requires an interaction between VPg and eIF 4 E. EMBO Rep 2005, 6:968–972.
Goff, SP. Host factors exploited by retroviruses. Nat Rev Microbiol 2007, 5:253–263.
Ahola, T, Kaariainen, L. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7‐methyl‐GMP. Proc Natl Acad Sci U S A 1995, 92:507–511.
Condit, RC, Niles, EG. Regulation of viral transcription elongation and termination during vaccinia virus infection. Biochim Biophys Acta 2002, 1577:325–336.
Ogino, T, Banerjee, AK. Unconventional mechanism of mRNA capping by the RNA‐dependent RNA polymerase of vesicular stomatitis virus. Mol Cell 2007, 25:85–97.
Ogino, T, Banerjee, AK. Formation of guanosine(5′) tetraphospho(5′)adenosine cap structure by an unconventional mRNA capping enzyme of vesicular stomatitis virus. J Virol 2008, 82:7729–7734.
Ogino, T, Yadav, SP, Banerjee, AK. Histidine‐mediated RNA transfer to GDP for unique mRNA capping by vesicular stomatitis virus RNA polymerase. Proc Natl Acad Sci USA 2010, 107:3463–3468.
Plotch, SJ, Bouloy, M, Ulmanen, I, Krug, RM. A unique cap(m7GpppXm)‐dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 1981, 23:847–858.
Honda, A, Mukaigawa, J, Yokoiyama, A, Kato, A, Ueda, S, Nagata, K, Krystal, M, Nayak, DP, Ishihama, A. Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem 1990, 107:624–628.
Guilligay, D, Tarendeau, F, Resa‐Infante, P, Coloma, R, Crepin, T, Sehr, P, Lewis, J, Ruigrok, RW, Ortin, J, Hart, DJ, et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 2008, 15:500–506.
Dias, A, Bouvier, D, Crepin, T, McCarthy, AA, Hart, DJ, Baudin, F, Cusack, S, Ruigrok, RW. The cap‐snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009, 458:914–918.
Belsham, GJ, Sonenberg, N. RNA‐protein interactions in regulation of picornavirus RNA translation. Microbiol Rev 1996, 60:499–511.
Gingras, AC, Svitkin, Y, Belsham, GJ, Pause, A, Sonenberg, N. Activation of the translational suppressor 4E‐BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci USA 1996, 93:5578–5583.
Aoyagi, M, Gaspar, M, Shenk, TE. Human cytomegalovirus UL69 protein facilitates translation by associating with the mRNA cap‐binding complex and excluding 4EBP1. Proc Natl Acad Sci USA 2010, 107:2640–2645.
Moorman, NJ, Cristea, IM, Terhune, SS, Rout, MP, Chait, BT, Shenk, T. Human cytomegalovirus protein UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex. Cell Host Microbe 2008, 3:253–262.
Toth, Z, Lischka, P, Stamminger, T. RNA‐binding of the human cytomegalovirus transactivator protein UL69, mediated by arginine‐rich motifs, is not required for nuclear export of unspliced RNA. Nucleic Acids Res 2006, 34:1237–1249.
Winkler, M, Rice, SA, Stamminger, T. UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J Virol 1994, 68:3943–3954.
Sandri‐Goldin, RM. The many roles of the regulatory protein ICP27 during herpes simplex virus infection. Front Biosci 2008, 13:5241–5256.
Fontaine‐Rodriguez, EC, Taylor, TJ, Olesky, M, Knipe, DM. Proteomics of herpes simplex virus infected cell protein 27: association with translation initiation factors. Virology 2004, 330:487–492.
Osborne, JC, Elliott, RM. RNA binding properties of bunyamwera virus nucleocapsid protein and selective binding to an element in the 5′ terminus of the negative‐sense S segment. J Virol 2000, 74:9946–9952.
Mir, MA, Panganiban, AT. A protein that replaces the entire cellular eIF4F complex. EMBO J 2008, 27:3129–3139.
Panganiban, AT, Mir, MA. Bunyavirus N: eIF4F surrogate and cap‐guardian. Cell Cycle 2009, 8:1332–1337.
Schwer, B, Saha, N, Mao, X, Chen, HW, Shuman, S. Structure‐function analysis of yeast mRNA cap methyltransferase and high‐copy suppression of conditional mutants by AdoMet synthase and the ubiquitin conjugating enzyme Cdc34p. Genetics 2000, 155:1561–1576.
Radomski, N, Barreto, G, Kaufmann, C, Yokoska, J, Mizumoto, K, Dreyer, C. Interaction of S‐adenosylhomocysteine hydrolase of Xenopus laevis with mRNA(guanine‐7‐)methyltransferase: implication on its nuclear compartmentalisation and on cap methylation of hnRNA. Biochim Biophys Acta 2002, 1590:93–102.
Chiang, PK, Gordon, RK, Tal, J, Zeng, GC, Doctor, BP, Pardhasaradhi, K, McCann, PP. S‐Adenosylmethionine and methylation. FASEB J 1996, 10:471–480.
Wen, Y, Shatkin, AJ. Cap methyltransferase selective binding and methylation of GpppG‐RNA are stimulated by importin‐alpha. Genes Dev 2000, 14:2944–2949.
Terry, LJ, Shows, EB, Wente, SR. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 2007, 318:1412–1416.
Cole, MD, Cowling, VH. Specific regulation of mRNA cap methylation by the c‐Myc and E2F1 transcription factors. Oncogene 2009, 28:1169–1175.
Cowling, VH, Cole, MD. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy‐terminal domain independently of direct DNA binding. Mol Cell Biol 2007, 27:2059–2073.
Fernandez‐Sanchez, ME, Gonatopoulos‐Pournatzis, T, Preston, G, Lawlor, MA, Cowling, VH. S‐adenosyl homocysteine hydrolase is required for Myc‐induced mRNA cap methylation, protein synthesis, and cell proliferation. Mol Cell Biol 2009, 29:6182–6191.
Cougot, N, van Dijk, E, Babajko, S, Seraphin, B. Cap‐tabolism. Trends Biochem Sci 2004, 29:436–444.
Parker, R, Sheth, U. P bodies and the control of mRNA translation and degradation. Mol Cell 2007, 25:635–646.
Lim, S, Mullins, JJ, Chen, CM, Gross, KW, Maquat, LE. Novel metabolism of several beta zero‐thalassemic beta‐globin mRNAs in the erythroid tissues of transgenic mice. EMBO J 1989, 8:2613–2619.
Lim, SK, Sigmund, CD, Gross, KW, Maquat, LE. Nonsense codons in human beta‐globin mRNA result in the production of mRNA degradation products. Mol Cell Biol 1992, 12:1149–1161.
Lim, SK, Maquat, LE. Human beta‐globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap‐like structure at the 5′ termini. EMBO J 1992, 11:3271–3278.
Stevens, A, Wang, Y, Bremer, K, Zhang, J, Hoepfner, R, Antoniou, M, Schoenberg, DR, Maquat, LE. Beta‐ globin mRNA decay in erythroid cells: UG site‐preferred endonucleolytic cleavage that is augmented by a premature termination codon. Proc Natl Acad Sci USA 2002, 99:12741–12746.
Otsuka, Y, Kedersha, NL, Schoenberg, DR. Identification of a cytoplasmic complex that adds a cap onto 5′‐monophosphate RNA. Mol Cell Biol 2009, 29:2155–2167.
She, M, Decker, CJ, Chen, N, Tumati, S, Parker, R, Song, H. Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol 2006, 13:63–70.
Wu, M, Nilsson, P, Henriksson, N, Niedzwiecka, A, Lim, MK, Cheng, Z, Kokkoris, K, Virtanen, A, Song, H. Structural basis of m(7)GpppG binding to poly(A)‐specific ribonuclease. Structure 2009, 17:276–286.
Nagata, T, Suzuki, S, Endo, R, Shirouzu, M, Terada, T, Inoue, M, Kigawa, T, Kobayashi, N, Guntert, P, Tanaka, A, et al. The RRM domain of poly(A)‐specific ribonuclease has a noncanonical binding site for mRNA cap analog recognition. Nucleic Acids Res 2008, 36:4754–4767.
Shiraki, T, Kondo, S, Katayama, S, Waki, K, Kasukawa, T, Kawaji, H, Kodzius, R, Watahiki, A, Nakamura, M, Arakawa, T, et al. Cap analysis gene expression for high‐throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA 2003, 100:15776–15781.
Cowling, VH. Enhanced mRNA cap methylation increases cyclin D1 expression and promotes cell transformation. Oncogene 2010, 29:930–936.
Dancey, J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol 2010, 7:209–219.
Graff, JR, Konicek, BW, Vincent, TM, Lynch, RL, Monteith, D, Weir, SN, Schwier, P, Capen, A, Goode, RL, Dowless, MS, et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 2007, 117:2638–2648.
Assouline, S, Culjkovic, B, Cocolakis, E, Rousseau, C, Beslu, N, Amri, A, Caplan, S, Leber, B, Roy, DC, Miller, WH Jr, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof‐of‐principle clinical trial with ribavirin. Blood 2009, 114:257–260.