Scaglia, F, Wong, LJ. Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve 2008, 37: 150–171.
Vulliamy, T, Marrone, A, Goldman, F, Dearlove, A, Bessler, M, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001, 413: 432–435.
Ridanpaa, M, Van Eenennaam, H, Pelin, K, Chadwick, R, Johnson, C, et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage‐hair hypoplasia. Cell 2001, 104: 195–203.
Welting, TJ, Van Venrooij, WJ, Pruijn, GJ. Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. Nucleic Acids Res 2004, 19: 2138–2146.
Welting, TJ, Peters, FM, Hensen, SM, Van Doorn, NL, Kikkert, BJ, et al. Heterodimerization regulates RNase MRP/RNase P association, localization, and expression of Rpp20 and Rpp25. RNA 2007, 13: 65–75.
Welting, TJ, Kikkert, BJ, Van Venrooij, WJ, Pruijn, GJ. Differential association of protein subunits with the human RNase MRP and RNase P complexes. RNA 2006, 12: 1373–1382.
Pluk, H, Van Eenennaam, H, Rutjes, SA, Pruijn, GJ, Van Venrooij, WJ. RNA‐protein interactions in the human RNase MRP ribonucleoprotein complex. RNA 1999, 5: 512–524.
Chang, DD, Clayton, DA. A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. EMBO J 1987, 6: 409–417.
Chang, DD, Clayton, DA. A mammalian mitochondrial RNA processing activity contains nucleus‐encoded RNA. Science 1987, 235: 1178–1184.
Stohl, LL, Clayton, DA. Saccharomyces cerevisiae contains an RNase MRP that cleaves at a conserved mitochondrial RNA sequence implicated in replication priming. Mol Cell Biol 1992, 12: 2561–2569.
Tullo, A, Rossmanith, W, Imre, EM, Sbisa, E, Saccone, C, et al. RNase mitochondrial RNA processing cleaves RNA from the rat mitochondrial displacement loop at the origin of heavy‐strand DNA replication. Eur J Biochem 1995, 227: 657–662.
Dairaghi, DJ, Clayton, DA. Bovine RNase MRP cleaves the divergent bovine mitochondrial RNA sequence at the displacement‐loop region. J Mol Evol 1993, 37: 338–346.
Schmitt, ME, Clayton, DA. Nuclear RNase MRP is required for correct processing of pre‐5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 1993, 13: 7935–7941.
Lygerou, Z, Allmang, C, Tollervey, D, Seraphin, B. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 1996, 272: 268–270.
Li, X, Zaman, S, Langdon, Y, Zengel, JM, Lindahl, L. Identification of a functional core in the RNA component of RNase MRP of budding yeasts. Nucleic Acids Res 2004, 32: 3703–3711.
Lindahl, L, Bommankanti, A, Li, X, Hayden, L, Jones, A, et al. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway. RNA 2009, 15: 1407–1416.
Gill, T, Cai, T, Aulds, J, Wierzbicki, S, Schmitt, ME. RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol Cell Biol 2004, 24: 945–953.
Cai, T, Aulds, J, Gill, T, Cerio, M, Schmitt, ME. The Saccharomyces cerevisiae RNase mitochondrial RNA processing is critical for cell cycle progression at the end of mitosis. Genetics 2002, 161: 1029–1042.
Thiel, CT, Horn, D, Zabel, B, Ekici, AB, Salinas, K, et al. Severely incapacitating mutations in patients with extreme short stature identify RNA‐processing endoribonuclease RMRP as an essential cell growth regulator. Am J Hum Genet 2005, 77: 795–806.
Maida, Y, Yasukawa, M, Furuuchi, M, Lassmann, T, Possemato, R, et al. An RNA‐dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 2009, 461: 230–235.
Robertson, HD, Altman, S, Smith, JD. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem 1972, 247: 5243–5251.
Reiner, R, Ben‐Asouli, Y, Krilovetzky, I, Jarrous, N. A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes Dev 2006, 20: 1621–1635.
Reiner, R, Krasnov‐Yoeli, N, Dehtiar, Y, Jarrous, N. Function and assembly of a chromatin‐associated RNase P that is required for efficient transcription by RNA polymerase I. PLoS ONE 2008, 3: e4072.
Coughlin, DJ, Pleiss, JA, Walker, SC, Whitworth, GB, Engelke, DR. Genome‐wide search for yeast RNase P substrates reveals role in maturation of intron‐encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci U S A 2008, 105: 12218–12223.
Randau, L, Schroder, I, Soll, D. Life without RNase P. Nature 2008, 453: 120–123.
Guerrier‐Takada, C, Gardiner, K, Marsh, T, Pace, N, Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983, 35: 849–857.
Kruger, K, Grabowski, PJ, Zaug, AJ, Sands, J, Gottschling, DE, et al. Self‐splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982, 31: 147–157.
Forster, AC, Altman, S. Similar cage‐shaped structures for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell 1990, 62: 407–409.
Jacobson, MR, Cao, LG, Wang, YL, Pederson, T. Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J Cell Biol 1995, 131: 1649–1658.
Jacobson, MR, Cao, LG, Taneja, K, Singer, RH, Wang, YL, et al. Nuclear domains of the RNA subunit of RNase P. J Cell Sci 1997, 110: 829–837.
Siew, D, Zahler, NH, Cassano, AG, Strobel, SA, Harris, ME. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme. Biochemistry 1999, 38: 1873–1883.
Haga, S, Tanaka, T, Kikuchi, Y. Mutational analysis of the length of the J3/4 domain of Escherichia coli ribonuclease P ribozyme. Biosci Biotechnol Biochem 2004, 68: 2630–2632.
Lindahl, L, Fretz, S, Epps, N, Zengel, JM. Functional equivalence of hairpins in the RNA subunits of RNase MRP and RNase P in Saccharomyces cerevisiae. RNA 2000, 6: 653–658.
Morrissey, JP, Tollervey, D. Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre‐rRNA‐processing system. Trends Biochem Sci 1995, 20: 78–82.
Zhu, Y, Stribinskis, V, Ramos, KS, Li, Y. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA. RNA 2006, 12: 699–706.
Rosenblad, MA, Lopez, MD, Piccinelli, P, Samuelsson, T. Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 2006, 34: 5145–5156.
Walker, SC, Engelke, DR. Ribonuclease P: the evolution of an ancient RNA enzyme. Crit Rev Biochem Mol Biol 2006, 41: 77–102.
Lygerou, Z, Pluk, H, Van Venrooij, WJ, Seraphin, B. hPop1: an autoantigenic protein subunit shared by the human RNase P and RNase MRP ribonucleoproteins. EMBO J 1996, 15: 5936–5948.
Jarrous, N, Eder, PS, Wesolowski, D, Altman, S. Rpp14 and Rpp29, two protein subunits of human ribonuclease P. RNA 1999, 5: 153–157.
Jarrous, N, Reiner, R, Wesolowski, D, Mann, H, Guerrier‐Takada, C, et al. Function and subnuclear distribution of Rpp21, a protein subunit of the human ribonucleoprotein ribonuclease P. RNA 2001, 7: 1153–1164.
Eder, PS, Kekuda, R, Stolc, V, Altman, S. Characterization of two scleroderma autoimmune antigens that copurify with human ribonuclease P. Proc Natl Acad Sci U S A 1997, 94: 1101–1106.
Guerrier‐Takada, C, Eder, PS, Gopalan, V, Altman, S. Purification and characterization of Rpp25, an RNA‐binding protein subunit of human ribonuclease P. RNA 2002, 8: 290–295.
Van Eenennaam, H, Lugtenberg, D, Vogelzangs, JH, Van Venrooij, WJ, Pruijn, GJ, et al. hPop5, a protein subunit of the human and RNase P endoribonucleases. J Biol Chem 2001, 276: 31635–31641.
Van Eenennaam, H, Pruijn, GJ, Van Venrooij, WJ. hPop4: a new protein subunit of the human RNase MRP and RNase P ribonucleoprotein complexes. Nucleic Acids Res 1999, 27: 2465–2472.
Jarrous, N, Eder, PS, Guerrier‐Takada, C, Hoog, C, Altman, S. Autoantigenic properties of some protein subunits of catalytically active complexes of human ribonuclease P. RNA 1998, 4: 407–417.
Van Eenennaam, H, Vogelzangs, JH, Lugtenberg, D, Van Den Hoogen, FH, Van Venrooij, WJ, et al. Identity of the RNase MRP‐ and RNase P‐associated Th/To autoantigen. Arthritis Rheum 2002, 46: 3266–3272.
Jiang, T, Guerrier‐Takada, C, Altman, S. Protein‐RNA interactions in the subunits of human nuclear RNase P. RNA 2001, 7: 937–941.
Jiang, T, Altman, S. Protein‐protein interactions with subunits of human nuclear RNase P. Proc Natl Acad Sci U S A 2001, 98: 920–925.
Aravind, L, Iyer, LM, Anantharaman, V. The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 2003, 4: R64.
Van Eenennaam, H, van der Heijden, A, Janssen, RJ, Van Venrooij, WJ, Pruijn, GJ. Basic domains target protein subunits of the RNase MRP complex to the nucleolus independently of complex association. Mol Biol Cell 2001, 12: 3680–3689.
Reimer, G, Raska, I, Scheer, U, Tan, EM. Immunolocalization of 7‐2‐ribonucleoprotein in the granular component of the nucleolus. Exp Cell Res 1988, 176: 117–128.
Puranam, RS, Attardi, G. The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 2001, 21: 548–561.
Holzmann, J, Frank, P, Loffler, E, Bennett, KL, Gerner, C, et al. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008, 135: 462–474.
Jarrous, N, Wolenski, JS, Wesolowski, D, Lee, C, Altman, S. Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol 1999, 146: 559–572.
Matera, AG, Frey, MR, Margelot, K, Wolin, SL. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract‐binding protein, hnRNP I. J Cell Biol 1995, 129: 1181–1193.
Van Eenennaam, H, Vogelzangs, JH, Bisschops, L, Te Boome, LC, Seelig, HP, et al. Autoantibodies against small nucleolar ribonucleoprotein complexes and their clinical associations. Clin Exp Immunol 2002, 130: 532–540.
Fischer, A, Pfalzgraf, FJ, Feghali‐Bostwick, CA, Wright, TM, Curran‐Everett, D, et al. Anti‐th/to‐positivity in a cohort of patients with idiopathic pulmonary fibrosis. J Rheumatol 2006, 33: 1600–1605.
Rossmanith, W, Karwan, R. Definition of the Th/To ribonucleoprotein by RNase P and RNase MRP. Mol Biol Rep 1993, 18: 29–35.
Gold, HA, Topper, JN, Clayton, DA, Craft, J. The RNA processing enzyme RNase MRP is identical to the Th RNP and related to RNase P. Science 1989, 245: 1377–1380.
Gold, HA, Craft, J, Hardin, JA, Bartkiewicz, M, Altman, S. Antibodies in human serum that precipitate ribonuclease P. Proc Natl Acad Sci U S A 1988, 85: 5483–5487.
Hashimoto, C, Steitz, JA. Sequential association of nucleolar 7‐2 RNA with two different autoantigens. J Biol Chem 1983, 258: 1379–1382.
Karwan, RM. Further characterization of human RNase MRP/RNase P and related autoantibodies. Mol Biol Rep 1998, 25: 95–101.
Karwan, R, Bennett, JL, Clayton, DA. Nuclear RNase MRP processes RNA at multiple discrete sites: interaction with an upstream G box is required for subsequent downstream cleavages. Genes Dev 1991, 5: 1264–1276.
Kipnis, RJ, Craft, J, Hardin, JA. The analysis of antinuclear and antinucleolar autoantibodies of scleroderma by radioimmunoprecipitation assays. Arthritis Rheum 1990, 33: 1431–1437.
Okano, Y, Medsger, TA Jr. Autoantibody to Th ribonucleoprotein (nucleolar 7‐2 RNA protein particle) in patients with systemic sclerosis. Arthritis Rheum 1990, 33: 1822–1828.
Mitri, GM, Lucas, M, Fertig, N, Steen, VD, Medsger, TA Jr. A comparison between anti‐Th/To‐ and anticentromere antibody‐positive systemic sclerosis patients with limited cutaneous involvement. Arthritis Rheum 2003, 48: 203–209.
Hamaguchi, Y, Hasegawa, M, Fujimoto, M, Matsushita, T, Komura, K, et al. The clinical relevance of serum antinuclear antibodies in Japanese patients with systemic sclerosis. Br J Dermatol 2008, 158: 487–495.
Kuwana, M, Kimura, K, Hirakata, M, Kawakami, Y, Ikeda, Y. Differences in autoantibody response to Th/To between systemic sclerosis and other autoimmune diseases. Ann Rheum Dis 2002, 61: 842–846.
McKusick, VA, Eldridge, R, Hostetler, JA, Ruangwit, U, Egeland, JA: Dwarfism in the Amish. II. Cartilage‐hair hypoplasia. Bull Johns Hopkins Hosp 1965, 116: 285–326.
Taskinen, M, Ranki, A, Pukkala, E, Jeskanen, L, Kaitila, I, et al. Extended follow‐up of the Finnish cartilage‐hair hypoplasia cohort confirms high incidence of non‐Hodgkin lymphoma and basal cell carcinoma. Am J Med Genet A 2008, 146A: 2370–2375.
Makitie, OM, Tapanainen, PJ, Dunkel, L, Siimes, MA. Impaired spermatogenesis: an unrecognized feature of cartilage‐hair hypoplasia. Ann Med 2001, 33: 201–205.
Makitie, O, Kaitila, I. Cartilage‐hair hypoplasia–clinical manifestations in 108 Finnish patients. Eur J Pediatr 1993, 152: 211–217.
Makitie, O, Kaitila, I, Savilahti, E. Deficiency of humoral immunity in cartilage‐hair hypoplasia. J Pediatr 2000, 137: 487–492.
Toiviainen‐Salo, S, Kajosaari, M, Piilonen, A, Makitie, O. Patients with cartilage‐hair hypoplasia have an increased risk for bronchiectasis. J Pediatr 2008, 152: 422–428.
Makitie, O, Perheentupa, J, Kaitila, I. Growth in cartilage‐hair hypoplasia. Pediatr Res 1992, 31: 176–180.
Makitie, O, Pukkala, E, Kaitila, I. Increased mortality in cartilage‐hair hypoplasia. Arch Dis Child 2001, 84: 65–67.
Berthet, F, Siegrist, CA, Ozsahin, H, Tuchschmid, P, Eich, G, et al. Bone marrow transplantation in cartilage‐hair hypoplasia: correction of the immunodeficiency but not of the chondrodysplasia. Eur J Pediatr 1996, 155: 286–290.
Guggenheim, R, Somech, R, Grunebaum, E, Atkinson, A, Roifman, CM. Bone marrow transplantation for cartilage‐hair‐hypoplasia. Bone Marrow Transplant 2006, 38: 751–756.
Bocca, G, Weemaes, CM, van der Burgt, I, Otten, BJ. Growth hormone treatment in cartilage‐hair hypoplasia: effects on growth and the immune system. J Pediatr Endocrinol Metab 2004, 17: 47–54.
Harada, D, Yamanaka, Y, Ueda, K, Shimizu, J, Inoue, M, et al. An effective case of growth hormone treatment on cartilage‐hair hypoplasia. Bone 2005, 36: 317–322.
Makitie, O. Cartilage‐hair hypoplasia in Finland: epidemiological and genetic aspects of 107 patients. J Med Genet 1992, 29: 652–655.
Sulisalo, T, Klockars, J, Makitie, O, Francomano, CA, de la, CA, et al. High‐resolution linkage‐disequilibrium mapping of the cartilage‐hair hypoplasia gene. Am J Hum Genet 1994, 55: 937–945.
Roifman, CM, Gu, Y, Cohen, A. Mutations in the RNA component of RNase mitochondrial RNA processing might cause Omenn syndrome. J Allergy Clin Immunol 2006, 117: 897–903.
Bonafe, L, Schmitt, K, Eich, G, Giedion, A, Superti‐Furga, A. RMRP gene sequence analysis confirms a cartilage‐hair hypoplasia variant with only skeletal manifestations and reveals a high density of single‐nucleotide polymorphisms. Clin Genet 2002, 61: 146–151.
Thiel, CT, Mortier, G, Kaitila, I, Reis, A, Rauch, A. Type and level of RMRP functional impairment predicts phenotype in the cartilage hair hypoplasia‐anauxetic dysplasia spectrum. Am J Hum Genet 2007, 81: 519–529.
Cohen, SB, Graham, ME, Lovrecz, GO, Bache, N, Robinson, PJ, et al. Protein composition of catalytically active human telomerase from immortal cells. Science 2007, 315: 1850–1853.
Armanios, MY, Chen, JJ, Cogan, JD, Alder, JK, Ingersoll, RG, et al. III Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 2007, 356: 1317–1326.
Tsakiri, KD, Cronkhite, JT, Kuan, PJ, Xing, C, Raghu, G, et al. Adult‐onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A 2007, 104: 7552–7557.
Dokal, I. Dyskeratosis congenita in all its forms. Br J Haematol 2000, 110: 768–779.
Nakashima, E, Tran, JR, Welting, TJ, Pruijn, GJ, Hirose, Y, et al. Cartilage hair hypoplasia mutations that lead to RMRP promoter inefficiency or RNA transcript instability. Am J Med Genet A 2007, 143A: 2675–2681.
Hermanns, P, Bertuch, AA, Bertin, TK, Dawson, B, Schmitt, ME, et al. Consequences of mutations in the non‐coding RMRP RNA in cartilage‐hair hypoplasia. Hum Mol Genet 2005, 14: 3723–3740.
Ridanpaa, M, Sistonen, P, Rockas, S, Rimoin, DL, Makitie, O, et al. Worldwide mutation spectrum in cartilage‐hair hypoplasia: ancient founder origin of the major70A–%3E G mutation of the untranslated RMRP. Eur J Hum Genet 2002, 10: 439–447.
Hirose, Y, Nakashima, E, Ohashi, H, Mochizuki, H, Bando, Y, et al. Identification of novel RMRP mutations and specific founder haplotypes in Japanese patients with cartilage‐hair hypoplasia. J Hum Genet 2006, 51: 706–710.
Hermanns, P, Tran, A, Munivez, E, Carter, S, Zabel, B, et al. RMRP mutations in cartilage‐hair hypoplasia. Am J Med Genet A 2006, 140: 2121–2130.
Bonafe, L, Dermitzakis, ET, Unger, S, Greenberg, CR, Campos‐Xavier, BA, et al. Evolutionary comparison provides evidence for pathogenicity of RMRP mutations. PLoS Genet 2005, 1: e47.
Lam, AC, Chan, DH, Tong, TM, Tang, MH, Lo, SY, et al. Metaphyseal chondrodysplasia McKusick type in a Chinese fetus, caused by novel compound heterozygosity 64T %3E A and 79G %3E T in RMRPgene. Prenat Diagn 2006, 26: 1018–1020.
Kavadas, FD, Giliani, S, Gu, Y, Mazzolari, E, Bates, A, et al. Variability of clinical and laboratory features among patients with ribonuclease mitochondrial RNA processing endoribonuclease gene mutations. J Allergy Clin Immunol 2008, 122: 1178–1184.
Nakashima, E, Mabuchi, A, Kashimada, K, Onishi, T, Zhang, J, et al. RMRP mutations in Japanese patients with cartilage‐hair hypoplasia. Am J Med Genet A 2003, 123A: 253–256.
Kuijpers, TW, Ridanpaa, M, Peters, M, de Boer, I, Vossen, JM, et al. Short‐limbed dwarfism with bowing, combined immune deficiency, and late onset aplastic anaemia caused by novel mutations in the RMPR gene. J Med Genet 2003, 40: 761–766.
Graf, SA, Calado, RT, Kajigaya, S, Young, NS. RMRP mutations in hematological disorders. Clin Genet 2007, 71: 468–470.
Bacchetta, J, Ranchin, B, Brunet, AS, Bouvier, R, Duquesne, A, et al. Autoimmune hypoparathyroidism in a 12‐year‐old girl with McKusick cartilage hair hypoplasia. Pediatr Nephrol 2009, 24: 2449–2453.
Munoz‐Robles, J, Allende, LM, Clemente, J, Calleja, S, Varela, P, et al. A novel RMRP mutation in a Spanish patient with cartilage‐hair hypoplasia. Immunobiology 2006, 211: 753–757.
Welting, TJ, Mattijssen, S, Peters, FM, Van Doorn, NL, Dekkers, L, et al. Cartilage‐hair hypoplasia‐associated mutations in the RNase MRP P3 domain affect RNA folding and ribonucleoprotein assembly. Biochim Biophys Acta 2008, 1783: 455–466.
Rider, NL, Morton, DH, Puffenberger, E, Hendrickson, CL, Robinson, DL, et al. Immunologic and clinical features of 25 Amish patients with RMRP 70 A–%3E G cartilage hair hypoplasia. Clin Immunol 2009, 131: 119–128.
Shadel, GS, Buckenmeyer, GA, Clayton, DA, Schmitt, ME. Mutational analysis of the RNA component of Saccharomyces cerevisiae RNase MRP reveals distinct nuclear phenotypes. Gene 2000, 245: 175–184.
Polmar, SH, Pierce, GF. Cartilage hair hypoplasia: immunological aspects and their clinical implications. Clin Immunol Immunopathol 1986, 40: 87–93.
Castigli, E, Irani, AM, Geha, RS, Chatila, T. Defective expression of early activation genes in cartilage‐hair hypoplasia (CHH) with severe combined immunodeficiency (SCID). Clin Exp Immunol 1995, 102: 6–10.
Kronenberg, HM. Developmental regulation of the growth plate. Nature 2003, 423: 332–336.