Herrmann, BG, Labeit, S, Poustka, A, King, TR, Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 1990, 343:617–622.
Tada, M, Smith, JC. T‐targets: clues to understanding the functions of T‐box proteins. Dev Growth Differ 2001, 43:1–11.
Papaioannou, VE, Silver, LM. The T‐box gene family. Bioessays 1998, 20:9–19.
Agulnik, SI, Garvey, N, Hancock, S, Ruvinsky, I, Chapman, DL, Agulnik, I, Bollag, R, Papaioannou, V, SIlver, LM. Evolution of mouse T‐box genes by tandem duplication and cluster dispersion. Genetics 1996, 144:249–254.
Chapman, DL, Garvey, N, Hancock, S, Alexiou, M, Agulnik, SI, Gibson‐Brown, JJ, Cebra‐Thomas, J, Bollag, RJ, Silver, LM, Papaioannou, VE. Expression of the T‐box family genes, Tbx1‐Tbx5, during early mouse development. Dev Dyn 1996, 206:379–390.
Hoogaars, WM, Barnett, P, Rodriguez, M, Clout, DE, Moorman, AF, Goding, CR, Christoffels, VM. TBX3 and its splice variant TBX3 + exon 2a are functionally similar. Pigment Cell Melanoma Res 2008, 21:379–387.
Davenport, TG, Jerome‐Majewska, LA, Papaioannou, VE. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 2003, 130:2263–2273.
Bamshad, M, Lin, RC, Law, DJ, Watkins, WC, Krakowiak, PA, Moore, ME, Franceshini, P, Lala, R, Holmes, LB, Gebuhr, TC, et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar‐mammary syndrome. Nat Genet 1997, 16:311–315.
Linden, H, Williams, R, King, J, Blair, E, Kini, U. Ulnar Mammary syndrome and TBX3: expanding the phenotype. Am J Med Genet A 2009, 149A:2809–2812.
Packham, EA, Brook, JD. T‐box genes in human disorders. Hum Mol Genet 2003, 1:R37–R44.
Ivanova, N, Dobrin, R, Lu, R, Kotenko, I, Levorse, J, DeCoste, C, Schafer, X, Lun, Y, Lemischka, IR. Dissecting self‐renewal in stem cells with RNA interference. Nature 2006, 442:533–538.
Kim, J, Chu, J, Shen, X, Wang, J, Orkin, SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008, 132:1049–1061.
Lu, R, Yang, A, Jin, Y. Dual functions of T‐box 3 (Tbx3) in the control of self‐renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol Chem 2011, 286:8425–8436.
Peres, J, Davis, E, Mowla, S, Bennett, DC, Li, JA, Wansleben, S, Prince, S. The highly homologous T‐box transcription factors, TBX2 and TBX3, have distinct roles in the oncogenic process. Genes Cancer 2010, 1:272–282.
Rowley, M, Grothey, E, Couch, FJ. The role of Tbx2 and Tbx3 in mammary development and tumorigenesis. J Mammary Gland Biol Neoplasia 2004, 9:109–118.
Boogerd, KJ, Wong, LY, Christoffels, VM, Klarenbeek, M, Ruijter, JM, Moorman, AF, Barnett, P. Msx1 and Msx2 are functional interacting partners of T‐box factors in the regulation of Connexin43. Cardiovasc Res 2008, 78:485–493.
Coll, M, Seidman, JG, Muller, CW. Structure of the DNA‐bound T‐box domain of human TBX3, a transcription factor responsible for ulnar‐mammary syndrome. Structure 2002, 10:343–356.
Carlson, H, Ota, S, Campbell, CE, Hurlin, PJ. A dominant repression domain in Tbx3 mediates transcriptional repression and cell immortalization: relevance to mutations in Tbx3 that cause ulnar‐mammary syndrome. Hum Mol Genet 2001, 10:2403–2413.
Jerome‐Majewska, LA, Jenkins, GP, Ernstoff, E, Zindy, F, Sherr, CJ, Papaioannou, VE. Tbx3, the ulnar‐mammary syndrome gene, and Tbx2 interact in mammary gland development through a p19Arf/p53‐independent pathway. Dev Dyn 2005, 234:922–933.
Eblaghie, MC, Song, SJ, Kim, JY, Akita, K, Tickle, C, Jung, HS. Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. J Anat 2004, 205:1–13.
Platonova, N, Scotti, M, Babich, P, Bertoli, G, Mento, E, Meneghini, V, Egeo, A, Zucchi, I, Merlo, GR. TBX3, the gene mutated in ulnar‐mammary syndrome, promotes growth of mammary epithelial cells via repression of p19ARF, independently of p53. Cell Tissue Res 2007, 328:301–316.
Cho, KW, Kim, JY, Song, SJ, Farrell, E, Eblaghie, MC, Kim, HJ, Tickle, C, Jung, HS. Molecular interactions between Tbx3 and Bmp4 and a model for dorsoventral positioning of mammary gland development. Proc Natl Acad Sci U S A 2006, 103:16788–16793.
Howard, B, Ashworth, A. Signalling pathways implicated in early mammary gland morphogenesis and breast cancer. PLoS Genet 2006, 2:e112.
Howard, B, Panchal, H, McCarthy, A, Ashworth, A Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev 2005, 19:2078–2090.
King, M, Arnold, JS, Shanske, A, Morrow, BE. T‐genes and limb bud development. Am J Med Genet A 2006, 140:1407–1413.
Martin, GR. The roles of FGFs in the early development of vertebrate limbs. Genes Dev 1998, 12:1571–1586.
Gibson‐Brown, JJ, Agulnik, SI, Chapman, DL, Alexiou, M, Garvey, N, Silver, LM, Papaioannou, VE. Evidence of a role for T‐box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech Dev 1996, 56:93–101.
Gibson‐Brown, JJ, Agulnik, SI, Silver, LM, Niswander, L, Papaioannou, VE. Involvement of T‐box genes Tbx2‐Tbx5 in vertebrate limb specification and development. Development 1998, 125:2499–2509.
Gibson‐Brown, JJ, Agulnik, SI, Silver, LM, Papaioannou, VE. Expression of T‐box genes Tbx2‐Tbx5 during chick organogenesis. Mech Dev 1998, 74:165–169.
Logan, M, Simon, HG, Tabin, C. Differential regulation of T‐box and homeobox transcription factors suggests roles in controlling chick limb‐type identity. Development 1998, 125:2825–2835.
Tümpel, S, Sanz‐Ezquerro, JJ, Isaac, A, Eblaghie, MC, Dobson, J, Tickle, C. Regulation of Tbx3 expression by anteroposterior signalling in vertebrate limb development. Dev Biol 2002, 250:251–262.
Rallis, C, Buono, JD, Logan, MPO. Tbx3 can alter limb position along the rostrocaudal axis of the developing embryo. Development 2005, 132:1961–1970.
Zhang, Z, O’Rourke, JR, McManus, MT, Lewandoski, M, Harfe, BD, Sun, X. The microRNA‐processing enzyme Dicer is dispensable for somite segmentation but essential for limb bud positioning. Dev Biol 2011, 351:254–265.
Suzuki, T, Takeuchi, J, Koshiba‐Takeuchi, K, Ogura, T. Tbx genes specify posterior digit identity through Shh and BMP signaling. Dev Cell 2004, 6:43–53.
Mesbah, K, Harrelson, Z, Theveniau‐Ruissy, M, Papaioannou, VE, Kelly, RG. Tbx3 is required for outflow tract development. Circ Res 2008, 103:743–750.
Ribeiro, I, Kawakami, Y, Buscher, D, Raya, A, Rodriguez‐Leon, J, Morita, M, Rodriguez Esteban, C, Izpisua Beloment, JC. Tbx2 and Tbx3 regulate the dynamics of cell proliferation during heart remodeling. PLoS One 2007, 2:e398.
Hoogaars, WM, Engel, A, Brons, JF, Verkerk, AO, de Lange, FJ, Wong, LY, Bakker, ML, Clout, DE, Wakker, V, Barnett, P, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 2007, 21:1098–1112.
Habets, PEMH. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 2002, 16:1234–1246.
Aanhaanen, WTJ, Boukens, BJD, Sizarov, A, Wakker, V, de Gier‐de Vries, C, Anderson, RH, Kispert, A, Moorman, AF, Christoffels, VM. Defective Tbx2‐dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice. J Clin Invest 2011, 121:534–544.
Niwa, H, Ogawa, K, Shimosato, D, Adachi, K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 2009, 460:118–122.
Han, J, Yuan, P, Yang, H, Zhang, J, Soh, BS, Li, p, Lim, SL, Cao, S, Tay, J, Orlov, YL, et al. Tbx3 improves the germ‐line competency of induced pluripotent stem cells. Nature 463:1096–1100.
Fan, W, Huang, X, Chen, C, Gray, J, Huang, T. TBX3 and its isoform TBX3+2a are functionally distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines. Cancer Res 2004, 64:5132–5139.
Gudmundsson, J, Besenbacher, S, Sulem, P, Gudbjartsson, DF, Olafsson, I, Arinbjarnarson, S, Agnarsson, BA, Benediktsdottir, KR, Isaksson, HJ, Kostic, JP, et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med 2010, 2:62ra92.
Lomnytska, M, Dubrovska, A, Hellman, U, Volodko, N, Souchelnytskyi, S. Increased expression of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients. Int J Cancer 2006, 118:412–421.
Lyng, H, Brovig, RS, Svendsrud, DH, Holm, R, Kaalhus, O, Knutstad, K, Oksefjell, H, Sundfor, K, Kristensen, GB, Stokke, T. Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genom 2006, 7:268.
Renard, CA, Labalette, C, Armengol, C, Cougot, D, Wei, Y, Cairo, S, Pineau, P, Neuveut, C, de Reynies, A, Dejean, A, et al. Tbx3 is a downstream target of the Wnt/β‐catenin pathway and a critical mediator of β‐catenin survival functions in liver cancer. Cancer Res 2007, 67:901–910.
Rodriguez, M, Aladowicz, E, Lanfrancone, L, Goding, CR. Tbx3 represses E‐cadherin expression and enhances melanoma invasiveness. Cancer Res 2008, 68:7872–7881.
Suh, I, Shibru, D, Eisenhofer, G, Pacak, K, Duh, QY, Clark, OH, Kebebew, E. Candidate genes associated with malignant pheochromocytomas by genome‐wide expression profiling. Ann Surg 2009, 250:983–990.
Witte, JS. Personalized prostate cancer screening: improving PSA tests with genomic information. Sci Transl Med 2010, 2:62ps55.
Yamashita, S, Tsujino, Y, Moriguchi, K, Tatematsu, M, Ushijima, T. Chemical genomic screening for methylation‐silenced genes in gastric cancer cell lines using 5‐aza‐2′‐deoxycytidine treatment and oligonucleotide microarray. Cancer Sci 2006, 97:64–71.
Yarosh, W, Barrientos, T, Esmailpour, T, Lin, L, Carpenter, PM, Osann, K, Anton‐Culver, H, Huang, T. TBX3 is overexpressed in breast cancer and represses p14 ARF by interacting with histone deacetylases. Cancer Res 2008, 68:693–699.
Zhang, JF, He, ML, Qi, D, Xie, WD, Chen, YC, Lin, MC, Leung, PC, Zhang, YO, Kung, HF. Aqueous extracts of Fructus Ligustri Lucidi enhance the sensitivity of human colorectal carcinoma DLD‐1 cells to doxorubicin‐induced apoptosis via Tbx3 suppression. Integr Cancer Ther 2011, 10:85–91.
Cavard, C, Audebourg, A, Letourneur, F, Audard, V, Beuvon, F, Cagnard, N, Radenen, B, Varlet, P, Vacher‐Lavenu, MC, Perret, C, et al. Gene expression profiling provides insights into the pathways involved in solid pseudopapillary neoplasm of the pancreas. J Pathol 2009, 218:201–209.
Etcheverry, A, Aubry, M, de Tayrac, M, Vauleon, E, Boniface, R, Guenot, F, Saikali, S, Hamlat, A, Riffaud, L, Menei, P, et al. DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genom 2010, 11:701.
Hansel, DE, Rahman, A, House, M, Ashfaq, R, Berg, K, Yeo, CJ, Maitra, A. Met proto‐oncogene and insulin‐like growth factor binding protein 3 overexpression correlates with metastatic ability in well‐differentiated pancreatic endocrine neoplasms. Clin Cancer Res 2004, 10(18 Pt 1):6152–6158.
Schmalhofer, O, Brabletz, S, Brabletz, T. E‐cadherin, β‐catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009, 28:151–166.
Kowalski, PJ, Rubin, MA, Kleer, CG. E‐cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 2003, 5:R217–R222.
Mowla, S, Pinnock, R, Leaner, VD, Goding, CR, Prince, S. PMA‐induced up‐regulation of TBX3 is mediated by AP‐1 and contributes to breast cancer cell migration. Biochem J 2010, 433:145–153.
Begum, S, Papaioannou, VE. Dynamic expression of Tbx2 and Tbx3 in developing mouse pancreas. Gene Expr Patterns 2011.
Suzuki, A, Sekiya, S, Buscher, D, Izpisua Belmonte, JC, Taniguchi, H. Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression. Development 2008, 135:1589–1595.
Fillmore, CM, Gupta, PB, Rudnick, JA, Caballero, S, Keller, PJ, Lander, ES, Kuperwasser, C. Estrogen expands breast cancer stem‐like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci U S A 2010, 107:21737–21742.
Gupta, PB, Fillmore, CM, Jiang, G, Shapira, SD, Tao, K, Kuperwasser, C, Lander, ES. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011, 146:633–644.
Lingbeek, ME, Jacobs, JJ, van Lohuizen, M. The T‐box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T‐site in the initiator. J Biol Chem 2002, 277:26120–26127.
Brummelkamp, TR, Kortlever, RM, Lingbeek, M, Trettel, F, MacDonald, ME, van Lohuizen, M, Bernards, R. TBX‐3, the gene mutated in Ulnar‐Mammary Syndrome, is a negative regulator of p19ARF and inhibits senescence. J Biol Chem 2002, 277:6567–6572.
Carlson, H, Ota, S, Song, Y, Chen, Y, Hurlin, PJ. Tbx3 impinges on the p53 pathway to suppress apoptosis, facilitate cell transformation and block myogenic differentiation. Oncogene 2002, 21:3827–3835.
Mosca, E, Bertoli, G, Piscitelli, E, Vilardo, L, Reinbold, RA, Zucchi, I, Milanesi, L. Identification of functionally related genes using data mining and data integration: a breast cancer case study. BMC Bioinform 2009, 10(Suppl 12):S8.
Yan, W, Cao, QJ, Arenas, RB, Bentley, B, Shao, R. GATA3 inhibits breast cancer metastasis through the reversal of epithelial‐mesenchymal transition. J Biol Chem 2010, 285:14042–14051.
Hatsell, SJ, Cowin, P. Gli3‐mediated repression of Hedgehog targets is required for normal mammary development. Development 2006, 133:3661–3670.
He, M, Wen, L, Campbell, CE, Wu, JY, Rao, Y. Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar‐mammary syndrome. Proc Natl Acad Sci U S A 1999, 96:10212–10217.