Schöler, HR, Ruppert, S, Suzuki, N, Chowdhury, K, Gruss, P. New type of POU domain in germ line‐specific protein Oct‐4. Nature 1990, 344(6265): 435–439.
Niwa, H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 2001, 26(3): 137–148.
Hu, T, Liu, S, Breiter, DR, Wang, F, Tang, Y, et al. Octamer 4 small interfering RNA results in cancer stem cell‐like cell apoptosis. Cancer Res 2008, 68(16): 6533–6540.
Takahashi, K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126(4): 663–676.
Yu, J, Vodyanik, MA, Smuga‐Otto, K, Antosiewicz‐Bourget, J, Frane, JL, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318(5858): 1917–1920.
Nakagawa, M, Koyanagi, M, Tanabe, K, Takahashi, K, Ichisaka, T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2007, 26(1): 101–106.
Huangfu, D, Maehr, R, Guo, W, Eijkelenboom, A, Snitow, M, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small‐molecule compounds. Nat Biotechnolol. 2008, 26(7): 795–797.
Mali, P, Zhaohui, Y, Hommond, HH, Yu, X, Lin, J, et al. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 2008, 26: 1998–2005.
Eminli, S, Utikal, JS, Arnold, K, Jaenisch, R, Hochedlinger, K. Reprogramming of neural progenitor cells into iPS cells in the absence of exogenous Sox2 expression. Stem Cells 2008, 26(10): 2467–2474.
Kim, JB, Zaehres, H, Wu, G, Gentile, L, Ko, K, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008, 454(7204): 646–650.
Kiefer, JC. Back to basics: Sox genes. Dev Dynamics 2007, 236(8): 2356–2366.
Nichols, J, Zevnik, B, Anastassiadis, K, Niwa, H, Klewe‐Nebenius, D, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998, 95(3): 379–391.
Avilion, AA, Nicolis, SK, Pevny, LH, Perez, L, Vivian, N et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003, 17(1): 126–140, PMCID: PMC195970.
Niwa, H, Miyazaki, J, Smith, AG. Quantitative expression of Oct‐3/4 defines differentiation, dedifferentiation or self‐renewal of ES cells. Nat Genet 2000, 24(4): 328–330.
Chew, JL, Loh, YH, Zhang, W, Chen, X, Tam, WL, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox 2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005, 25(14): 6031–6046, PMCID: PMC1168830.
Chen, Y, Shi, L, Zhang, L, Li, R, Liang, J, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 2008, 283(26): 17969–17978.
Otsubo, T, Akiyama, Y, Yanagihara, K, Yuasa, Y. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell‐cycle arrest and apoptosis. Br J Cancer 2008, 98(4): 824–831.
Reményi, A, Lins, K, Nissen, LJ, Reinbold, R, Schöler, HR, et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev 2003, 17(16): 2048–2059.
Williams, DC Jr, Cai, M, Clore, GM. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42‐kDa Oct1.Sox2.Hoxb1‐DNA ternary transcription factor complex. J Biol Chem 2004, 279(2): 1449–1457.
Boiani, M, Schöler, HR. Regulatory networks in embryo‐derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005, 6(11): 872–884.
Pan, G, Thomson, JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 2007, 17(1): 42–49.
Sharov, AA, Ko, MSH. Human ES cell profiling broadens the reach of bivalent domains. Cell Stem Cell 2007, 1(3): 237–238.
Lorincz, MC, Schübeler, D. RNA polymerase II: just stopping by. Cell 2007, 130(1): 16–18.
Jaenisch, R, Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008, 132(4): 567–582.
Curatola, AM, Basilico, C. Expression of the K‐fgf proto‐oncogene is controlled by 3′ regulatory elements which are specific for embryonic carcinoma cells. Mol Cell Biol 1990, 10(6): 2475–2484, PMCID: PMC360604.
Ma, Y‐G, Rosfjord, E, Huebert, C, Wilder, P, Tiesman, J, et al. Transcriptional regulation of the murine k‐FGF gene in embryonic cell lines. Dev Biol 1992, 154(1): 45–54.
Yuan, H, Corbi, N, Basilico, C, Dailey, L. Developmental‐specific activity of the FGF‐4 enhancer requires the synergistic action of Sox2 and Oct‐3. Genes Dev 1995, 9(21): 2635–2645.
Boer, B, Bernadt, CT, Desler, M, Wilder, PJ, Kopp, JL, et al. Differential activity of the FGF‐4 enhancer in F9 and P19 embryonal carcinoma cells. J Cell Physiol 2006, 208(1): 97–108.
Nowling, TK, Johnson, LR, Wiebe, MS, Rizzino, A. Identification of the transactivation domain of the transcription factor Sox‐2 and an associated co‐activator. J. Biol Chem 2000, 275(6): 3810–3818.
Fraidenraich, D, Lang, R, Basilico, C. Distinct regulatory elements govern Fgf4 gene expression in the mouse blastocyst, myotomes, and developing limb. Dev Biol 1998, 204(1): 197–209.
Ambrosetti, D‐C, Schöler, HR, Dailey, L, Basilico, C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct‐3 on the Fibroblast Growth Factor‐4 enhancer. J Biol Chem 2000, 275(30): 23387–23397.
Nowling, T, Bernadt, C, Johnson, L, Desler, M, Rizzino, A. The Co‐activator p300 associates physically with and can mediate the action of the distal enhancer of the FGF‐4 gene. J Biol Chem 2003, 278(16): 13696–13705.
Masui,, S, Nakatake,, Y, Toyooka,, Y, Shimosato,, D, Yagi,, R, et al. Nat Cell Biol 2007, 9(6): 625–635.
Tomioka, M, Nishimoto, M, Miyagi, S, Katayanagi, T, Fukui, N, et al. Identification of Sox‐2 regulatory region which is under the control of Oct‐3/4‐Sox‐2 complex. Nucleic Acids Res 2002, 30(14): 3202–3213.
Okumura‐Nakanishi, S, Saito, M, Niwa, H, Ishikawa, F. Oct‐3/4 and Sox2 regulate Oct‐3/4 gene in embryonic stem cells. J Biol Chem 2005, 280(7): 5307–5317.
Mallanna, SK, Boer, B, Desler, M, Rizzino, A. Differential regulation of the Oct‐3/4 gene in cell culture model systems that parallel different stages of mammalian development. Mol Reprod Dev 2008, 75(8): 1247–1257.
Boyer, LA, Lee, TI, Cole, MF, Johnstone, SE, Levine, SS, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122(6): 947–956.
Loh, Y‐H, Wu, Q, Chew, J‐L, Vega, VB, Zhang, W, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006, 38: 431–440.
Chen, X, Xu, H, Yuan, P, Fang, F, Huss, M, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008, 133(6): 1106–1117.
Chakravarthy, H, Boer, B, Desler, M, Mallanna, SK, McKeithan, TW, et al. Identification of DPPA4 and other genes as putative Sox2:Oct‐3/4 target genes using a combination of in silico analysis and transcription‐based assays. J Cell Physiol 2008, 216(3): 651–662.
Lee, TI, Jenner, RG, Boyer, LA, Guenther, MG, Levine, SS, et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 2006, 125(2): 301–313.
Boyer, LA, Plath, K, Zeitlinger, J, Brambrink, T, Medeiros, LA, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006, 441: 349–353.
Wiebe, MS, Nowling, TK, Rizzino, A. Identification of novel domains within Sox‐2 and Sox‐11 involved in autoinhibition of DNA binding and partnership specificity. J Biol Chem 2003, 278(20): 17901–17911.
Maruyama, M, Ichisaka, T, Nakagawa, M, Yamanaka, S. Differential roles for Sox15 and Sox2 in transcriptional control in mouse embryonic stem cells. J Biol Chem 2005, 280(26): 24371–24379.
Schilham, MW, Oosterwegel, MA, Moerer, P, Ya, J, de Boer, PA, et al. Defects in cardiac outflow tract formation and pro‐B‐lymphocyte expansion in mice lacking Sox‐4. Nature 1996, 380(6576): 711–714.
Sock, E, Rettig, SD, Enderich, J, Bösl, MR, Tamm, ER, et al. Gene targeting reveals a widespread role for the high‐mobility‐group transcription factor Sox11 in tissue remodeling. Mol Cell Biol 2004, 24(15): 6635–6644.
Bernadt, CT, Nowling, T, Rizzino, A. Transcription factor Sox‐2 inhibits Co‐activator stimulated transcription. Mol Reprod Dev 2004, 69(3): 260–267.
Boer, B, Kopp, J, Mallanna, S, Desler, M, Chakravarthy, H, et al. Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct‐3/4 target genes. Nucleic Acids Res 2007, 35(6): 1773–1786.
Pan, G, Li, J, Zhou, Y, Zheng, H, Pei, D. A negative feedback loop of transcription factors that controls stem cell pluripotency and self‐renewal. FASEB J 2006, 20(10): 1730–1732.
Kopp, JL, Ormsbee, BD, Desler, M, Rizzino, A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 2008, 26(4): 903–911.
Niwa, H, Toyooka, Y, Shimosato, D, Strumpf, D, Takahashi, K, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005, 123(5): 917–929.
Hay, DC, Sutherland, L, Clark, J, Burdon, T. Oct‐4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 2004, 22(2): 225–235.
Liang, J, Wan, M, Zhang, Y, Gu, P, Xin, H, et al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol 2008, 10(6): 731–739.
Wang, J, Rao, S, Chu, J, Shen, X, Levasseur, DN, et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006, 444(7117): 364–368.