Ming, GL, Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011, 70:687–702.
Zhao, C, Deng, W, Gage, FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132:645–660.
Graham, V, Khudyakov, J, Ellis, P, Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 2003, 39:749–765.
Thomas, S, Thomas, M, Wincker, P, Babarit, C, Xu, P, Speer, MC, Munnich, A, Lyonnet, S, Vekemans, M, Etchevers, HC. Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum Mol Genet 2008, 17:3411–3425.
Lendahl, U, Zimmerman, LB, McKay, RD. CNS stem cells express a new class of intermediate filament protein. Cell 1990, 60:585–595.
Lothian, C, Lendahl, U. An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur J Neurosci 1997, 9:452–462.
Zhang, X, Huang, CT, Chen, J, Pankratz, MT, Xi, J, Li, J, Yang, Y, Lavaute, TM, Li, XJ, Ayala, M, et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 2010, 7:90–100.
Ericson, J, Rashbass, P, Schedl, A, Brenner‐Morton, S, Kawakami, A, van Heyningen, V, Jessell, TM, Briscoe, J. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 1997, 90:169–180.
Kanakubo, S, Nomura, T, Yamamura, K, Miyazaki, J, Tamai, M, Osumi, N. Abnormal migration and distribution of neural crest cells in Pax6 heterozygous mutant eye, a model for human eye diseases. Genes Cells 2006, 11:919–933.
Dottori, M, Gross, MK, Labosky, P, Goulding, M. The winged‐helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 2001, 128:4127–4138.
Sauka‐Spengler, T, Bronner‐Fraser, M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 2008, 9:557–568.
LaBonne, C, Bronner‐Fraser, M. Neural crest induction in Xenopus: evidence for a two‐signal model. Development 1998, 125:2403–2414.
Hong, CS, Saint‐Jeannet, JP. The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. Mol Biol Cell 2007, 18:2192–2202.
Light, W, Vernon, AE, Lasorella, A, Iavarone, A, LaBonne, C. Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells. Development 2005, 132:1831–1841.
Bellmeyer, A, Krase, J, Lindgren, J, LaBonne, C. The protooncogene c‐myc is an essential regulator of neural crest formation in xenopus. Dev Cell 2003, 4:827–839.
Mori, N, Birren, SJ, Stein, R, Stemple, D, Vandenbergh, DJ, Wuenschell, CW, Anderson, DJ. Contributions of cell‐extrinsic and cell‐intrinsic factors to the differentiation of a neural‐crest‐derived neuroendocrine progenitor cell. Cold Spring Harb Symp Quant Biol 1990, 55:255–264.
Stemple, DL, Anderson, DJ. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 1992, 71:973–985.
de Croze, N, Maczkowiak, F, Monsoro‐Burq, AH. Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proc Natl Acad Sci U S A 2011, 108:155–160.
Chambers, SM, Fasano, CA, Papapetrou, EP, Tomishima, M, Sadelain, M, Studer, L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009, 27:275–280.
Kawaguchi, J, Nichols, J, Gierl, MS, Faial, T, Smith, A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development 2010, 137:693–704.
Koch, P, Opitz, T, Steinbeck, JA, Ladewig, J, Brustle, O. A rosette‐type, self‐renewing human ES cell‐derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A 2009, 106:3225–3230.
Menendez, L, Kulik, MJ, Page, AT, Park, SS, Lauderdale, JD, Cunningham, ML, Dalton, S. Directed differentiation of human pluripotent cells to neural crest stem cells. Nat Protoc 2013, 8:203–212.
Rubenstein, JL, Rakic, P. Genetic control of cortical development. Cereb Cortex 1999, 9:521–523.
Mizutani, K, Yoon, K, Dang, L, Tokunaga, A, Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 2007, 449:351–355.
Basak, O, Taylor, V. Identification of self‐replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosci 2007, 25:1006–1022.
Englund, C, Fink, A, Lau, C, Pham, D, Daza, RA, Bulfone, A, Kowalczyk, T, Hevner, RF. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 2005, 25:247–251.
Ying, QL, Nichols, J, Chambers, I, Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self‐renewal in collaboration with STAT3. Cell 2003, 115:281–292.
Conti, L, Cattaneo, E. Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 2010, 11:176–187.
Elkabetz, Y, Panagiotakos, G, Al Shamy, G, Socci, ND, Tabar, V, Studer, L. Human ES cell‐derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 2008, 22:152–165.
Shi, Y, Kirwan, P, Smith, J, Robinson, HP, Livesey, FJ. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 2012, 15:477–486, S471.
Mariani, J, Simonini, MV, Palejev, D, Tomasini, L, Coppola, G, Szekely, AM, Horvath, TL, Vaccarino, FM. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012, 109:12770–12775.
Doetsch, F, Alvarez‐Buylla, A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A 1996, 93:14895–14900.
Gage, FH. Mammalian neural stem cells. Science 2000, 287:1433–1438.
Lois, C, Garcia‐Verdugo, JM, Alvarez‐Buylla, A. Chain migration of neuronal precursors. Science 1996, 271:978–981.
Basak, O, Giachino, C, Fiorini, E, Macdonald, HR, Taylor, V. Neurogenic subventricular zone stem/progenitor cells are Notch1‐dependent in their active but not quiescent state. J Neurosci 2012, 32:5654–5666.
Merkle, FT, Mirzadeh, Z, Alvarez‐Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 2007, 317:381–384.
Doetsch, F, Petreanu, L, Caille, I, Garcia‐Verdugo, JM, Alvarez‐Buylla, A. EGF converts transit‐amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002, 36:1021–1034.
Hartfuss, E, Galli, R, Heins, N, Gotz, M. Characterization of CNS precursor subtypes and radial glia. Dev Biol 2001, 229:15–30.
Garcia, AD, Doan, NB, Imura, T, Bush, TG, Sofroniew, MV. GFAP‐expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 2004, 7:1233–1241.
Suh, H, Consiglio, A, Ray, J, Sawai, T, D`Amour, KA, Gage, FH. In vivo fate analysis reveals the multipotent and self‐renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 2007, 1:515–528.
Jablonska, B, Aguirre, A, Raymond, M, Szabo, G, Kitabatake, Y, Sailor, KA, Ming, GL, Song, H, Gallo, V. Chordin‐induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci 2010, 13:541–550.
Jessberger, S, Gage, FH. Stem‐cell‐associated structural and functional plasticity in the aging hippocampus. Psychol Aging 2008, 23:684–691.
Westermann, R, Grothe, C, Unsicker, K. Basic fibroblast growth factor (bFGF), a multifunctional growth factor for neuroectodermal cells. J Cell Sci Suppl 1990, 13:97–117.
Jin, K, Sun, Y, Xie, L, Batteur, S, Mao, XO, Smelick, C, Logvinova, A, Greenberg, DA. Neurogenesis and aging: FGF‐2 and HB‐EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2003, 2:175–183.
Zhao, M, Li, D, Shimazu, K, Zhou, YX, Lu, B, Deng, CX. Fibroblast growth factor receptor‐1 is required for long‐term potentiation, memory consolidation, and neurogenesis. Biol Psychiatry 2007, 62:381–390.
Leventhal, C, Rafii, S, Rafii, D, Shahar, A, Goldman, SA. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 1999, 13:450–464.
Cao, L, Jiao, X, Zuzga, DS, Liu, Y, Fong, DM, Young, D, During, MJ. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 2004, 36:827–835.
Nakashima, K, Yanagisawa, M, Arakawa, H, Taga, T. Astrocyte differentiation mediated by LIF in cooperation with BMP2. FEBS Lett 1999, 457:43–46.
Yanagisawa, M, Nakashima, K, Takizawa, T, Ochiai, W, Arakawa, H, Taga, T. Signaling crosstalk underlying synergistic induction of astrocyte differentiation by BMPs and IL‐6 family of cytokines. FEBS Lett 2001, 489:139–143.
Lim, DA, Tramontin, AD, Trevejo, JM, Herrera, DG, Garcia‐Verdugo, JM, Alvarez‐Buylla, A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000, 28:713–726.
Palma, V, Lim, DA, Dahmane, N, Sanchez, P, Brionne, TC, Herzberg, CD, Gitton, Y, Carleton, A, Alvarez‐Buylla, A, Ruiz i Altaba, A. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 2005, 132:335–344.
Barkho, BZ, Song, H, Aimone, JB, Smrt, RD, Kuwabara, T, Nakashima, K, Gage, FH, Zhao, X. Identification of astrocyte‐expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 2006, 15:407–421.
Song, H, Stevens, CF, Gage, FH. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002, 417:39–44.
Lie, DC, Colamarino, SA, Song, HJ, Desire, L, Mira, H, Consiglio, A, Lein, ES, Jessberger, S, Lansford, H, Dearie, AR, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005, 437:1370–1375.
Kaneko, N, Marin, O, Koike, M, Hirota, Y, Uchiyama, Y, Wu, JY, Lu, Q, Tessier‐Lavigne, M, Alvarez‐Buylla, A, Okano, H, et al. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 2010, 67:213–223.
Goritz, C, Mauch, DH, Nagler, K, Pfrieger, FW. Role of glia‐derived cholesterol in synaptogenesis: new revelations in the synapse‐glia affair. J Physiol Paris 2002, 96:257–263.
Christopherson, KS, Ullian, EM, Stokes, CC, Mullowney, CE, Hell, JW, Agah, A, Lawler, J, Mosher, DF, Bornstein, P, Barres, BA. Thrombospondins are astrocyte‐secreted proteins that promote CNS synaptogenesis. Cell 2005, 120:421–433.
Eroglu, C, Allen, NJ, Susman, MW, O`Rourke, NA, Park, CY, Ozkan, E, Chakraborty, C, Mulinyawe, SB, Annis, DS, Huberman, AD, et al. Gabapentin receptor α2δ‐1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 2009, 139:380–392.
Platel, JC, Dave, KA, Gordon, V, Lacar, B, Rubio, ME, Bordey, A. NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 2010, 65:859–872.
Sierra, A, Encinas, JM, Deudero, JJ, Chancey, JH, Enikolopov, G, Overstreet‐Wadiche, LS, Tsirka, SE, Maletic‐Savatic, M. Microglia shape adult hippocampal neurogenesis through apoptosis‐coupled phagocytosis. Cell Stem Cell 2010, 7:483–495.
Ekdahl, CT, Kokaia, Z, Lindvall, O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009, 158:1021–1029.
Aguirre, A, Rubio, ME, Gallo, V. Notch and EGFR pathway interaction regulates neural stem cell number and self‐renewal. Nature 2010, 467:323–327.
Marques‐Torrejon, MA, Porlan, E, Banito, A, Gomez‐Ibarlucea, E, Lopez‐Contreras, AJ, Fernandez‐Capetillo, O, Vidal, A, Gil, J, Torres, J, Farinas, I. Cyclin‐dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 2013, 12:88–100.
Molofsky, AV, Slutsky, SG, Joseph, NM, He, S, Pardal, R, Krishnamurthy, J, Sharpless, NE, Morrison, SJ. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 2006, 443:448–452.
Gil‐Perotin, S, Marin‐Husstege, M, Li, J, Soriano‐Navarro, M, Zindy, F, Roussel, MF, Garcia‐Verdugo, JM, Casaccia‐Bonnefil, P. Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 2006, 26:1107–1116.
Kippin, TE, Martens, DJ, van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 2005, 19:756–767.
Wood, HB, Episkopou, V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre‐gastrulation to early somite stages. Mech Dev 1999, 86:197–201.
Bylund, M, Andersson, E, Novitch, BG, Muhr, J. Vertebrate neurogenesis is counteracted by Sox1‐3 activity. Nat Neurosci 2003, 6:1162–1168.
Shi, Y, Chichung Lie, D, Taupin, P, Nakashima, K, Ray, J, Yu, RT, Gage, FH, Evans, RM. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 2004, 427:78–83.
Sun, G, Yu, RT, Evans, RM, Shi, Y. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 2007, 104:15282–15287.
Krichevsky, AM, Sonntag, KC, Isacson, O, Kosik, KS. Specific microRNAs modulate embryonic stem cell‐derived neurogenesis. Stem Cells 2006, 24:857–864.
Zhao, C, Sun, G, Li, S, Shi, Y. A feedback regulatory loop involving microRNA‐9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009, 16:365–371.
Shibata, M, Kurokawa, D, Nakao, H, Ohmura, T, Aizawa, S. MicroRNA‐9 modulates Cajal‐Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 2008, 28:10415–10421.
Tan, SL, Ohtsuka, T, Gonzalez, A, Kageyama, R. MicroRNA9 regulates neural stem cell differentiation by controlling Hes1 expression dynamics in the developing brain. Genes Cells 2012, 17:952–961.
Leucht, C, Stigloher, C, Wizenmann, A, Klafke, R, Folchert, A, Bally‐Cuif, L. MicroRNA‐9 directs late organizer activity of the midbrain‐hindbrain boundary. Nat Neurosci 2008, 11:641–648.
Yoo, AS, Staahl, BT, Chen, L, Crabtree, GR. MicroRNA‐mediated switching of chromatin‐remodelling complexes in neural development. Nature 2009, 460:642–646.
Sun, G, Ye, P, Murai, K, Lang, MF, Li, S, Zhang, H, Li, W, Fu, C, Yin, J, Wang, A, et al. miR‐137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2011, 2:529.
Smrt, RD, Szulwach, KE, Pfeiffer, RL, Li, X, Guo, W, Pathania, M, Teng, ZQ, Luo, Y, Peng, J, Bordey, A, et al. MicroRNA miR‐137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb‐1. Stem Cells 2010, 28:1060–1070.
Szulwach, KE, Li, X, Smrt, RD, Li, Y, Luo, Y, Lin, L, Santistevan, NJ, Li, W, Zhao, X, Jin, P. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 2010, 189:127–141.
Liu, C, Teng, ZQ, Santistevan, NJ, Szulwach, KE, Guo, W, Jin, P, Zhao, X. Epigenetic regulation of miR‐184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 2010, 6:433–444.
Zhao, X, Ueba, T, Christie, BR, Barkho, B, McConnell, MJ, Nakashima, K, Lein, ES, Eadie, BD, Willhoite, AR, Muotri, AR, et al. Mice lacking methyl‐CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A 2003, 100:6777–6782.
Li, X, Barkho, BZ, Luo, Y, Smrt, RD, Santistevan, NJ, Liu, C, Kuwabara, T, Gage, FH, Zhao, X. Epigenetic regulation of the stem cell mitogen Fgf‐2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem 2008, 283:27644–27652.
Henry, RA, Hughes, SM, Connor, B. AAV‐mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid‐lesioned adult rat brain. Eur J Neurosci 2007, 25:3513–3525.
Scharfman, H, Goodman, J, Macleod, A, Phani, S, Antonelli, C, Croll, S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 2005, 192:348–356.
Jackson, EL, Garcia‐Verdugo, JM, Gil‐Perotin, S, Roy, M, Quinones‐Hinojosa, A, VandenBerg, S, Alvarez‐Buylla, A. PDGFR α‐positive B cells are neural stem cells in the adult SVZ that form glioma‐like growths in response to increased PDGF signaling. Neuron 2006, 51:187–199.
Ahn, S, Joyner, AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 2005, 437:894–897.
Banerjee, SB, Rajendran, R, Dias, BG, Ladiwala, U, Tole, S, Vaidya, VA. Recruitment of the Sonic hedgehog signalling cascade in electroconvulsive seizure‐mediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci 2005, 22:1570–1580.
Machold, R, Hayashi, S, Rutlin, M, Muzumdar, MD, Nery, S, Corbin, JG, Gritli‐Linde, A, Dellovade, T, Porter, JA, Rubin, LL, et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 2003, 39:937–950.
Zhou, Q, Choi, G, Anderson, DJ. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 2001, 31:791–807.
Hsieh, J, Nakashima, K, Kuwabara, T, Mejia, E, Gage, FH. Histone deacetylase inhibition‐mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004, 101:16659–16664.
Chickarmane, V, Troein, C, Nuber, UA, Sauro, HM, Peterson, C. Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput Biol 2006, 2:e123.
Chambers, I, Silva, J, Colby, D, Nichols, J, Nijmeijer, B, Robertson, M, Vrana, J, Jones, K, Grotewold, L, Smith, A. Nanog safeguards pluripotency and mediates germline development. Nature 2007, 450:1230–1234.
Peltier, J, Schaffer, DV. Systems biology approaches to understanding stem cell fate choice. IET Syst Biol 2010, 4:1–11.
Schaffer, DV, O`Neill, A, Hochrein, L, McGranahan, T. Quantitative analysis of signaling mechanisms controlling adult neural progenitor cell proliferation. Conf Proc IEEE Eng Med Biol Soc 2004, 7:4965.
Willerth, SM, Sakiyama‐Elbert, SE. Kinetic analysis of neurotrophin‐3‐mediated differentiation of embryonic stem cells into neurons. Tissue Eng Part A 2009, 15:307–318.
Monk, NA. Oscillatory expression of Hes1, p53, and NF‐κB driven by transcriptional time delays. Curr Biol 2003, 13:1409–1413.
Jensen, MH, Sneppen, K, Tiana, G. Sustained oscillations and time delays in gene expression of protein Hes1. FEBS Lett 2003, 541:176–177.
Agrawal, S, Archer, C, Schaffer, DV. Computational models of the Notch network elucidate mechanisms of context‐dependent signaling. PLoS Comput Biol 2009, 5:e1000390.
Shimojo, H, Ohtsuka, T, Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 2008, 58:52–64.
Sivakumar, KC, Dhanesh, SB, Shobana, S, James, J, Mundayoor, S. A systems biology approach to model neural stem cell regulation by notch, shh, wnt, and EGF signaling pathways. OMICS 2011, 15:729–737.
Graf, T, Stadtfeld, M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 2008, 3:480–483.
Chang, HH, Hemberg, M, Barahona, M, Ingber, DE, Huang, S. Transcriptome‐wide noise controls lineage choice in mammalian progenitor cells. Nature 2008, 453:544–547.
Aiba, K, Sharov, AA, Carter, MG, Foroni, C, Vescovi, AL, Ko, MS. Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. Stem Cells 2006, 24:889–895.
Nagano, R, Akanuma, H, Qin, XY, Imanishi, S, Toyoshiba, H, Yoshinaga, J, Ohsako, S, Sone, H. Multi‐parametric profiling network based on gene expression and phenotype data: a novel approach to developmental neurotoxicity testing. Int J Mol Sci 2012, 13:187–207.
Shin, S, Sun, Y, Liu, Y, Khaner, H, Svant, S, Cai, J, Xu, QX, Davidson, BP, Stice, SL, Smith, AK, et al. Whole genome analysis of human neural stem cells derived from embryonic stem cells and stem and progenitor cells isolated from fetal tissue. Stem Cells 2007, 25:1298–1306.
Lu, W, Wang, J, Wen, T. Downregulation of ρ‐GDI γ promotes differentiation of neural stem cells. Mol Cell Biochem 2008, 311:233–240.
Wang, J, Hu, F, Cheng, H, Zhao, XM, Wen, T. A systems biology approach to identify the signalling network regulated by ρ‐GDI‐γ during neural stem cell differentiation. Mol Biosyst 2012, 8:2916–2923.
Fietz, SA, Lachmann, R, Brandl, H, Kircher, M, Samusik, N, Schroder, R, Lakshmanaperumal, N, Henry, I, Vogt, J, Riehn, A, et al. Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self‐renewal. Proc Natl Acad Sci U S A 2012, 109:11836–11841.
Pang, ZP, Yang, N, Vierbuchen, T, Ostermeier, A, Fuentes, DR, Yang, TQ, Citri, A, Sebastiano, V, Marro, S, Sudhof, TC, et al. Induction of human neuronal cells by defined transcription factors. Nature 2011, 476:220–223.
Ambasudhan, R, Talantova, M, Coleman, R, Yuan, X, Zhu, S, Lipton, SA, Ding, S. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 2011, 9:113–118.
Yoo, AS, Sun, AX, Li, L, Shcheglovitov, A, Portmann, T, Li, Y, Lee‐Messer, C, Dolmetsch, RE, Tsien, RW, Crabtree, GR. MicroRNA‐mediated conversion of human fibroblasts to neurons. Nature 2011, 476:228–231.
Caiazzo, M, Dell`Anno, MT, Dvoretskova, E, Lazarevic, D, Taverna, S, Leo, D, Sotnikova, TD, Menegon, A, Roncaglia, P, Colciago, G, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 2011, 476:224–227.
Takahashi, K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663–676.
Takahashi, K, Okita, K, Nakagawa, M, Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007, 2:3081–3089.
Thier, M, Worsdorfer, P, Lakes, YB, Gorris, R, Herms, S, Opitz, T, Seiferling, D, Quandel, T, Hoffmann, P, Nothen, MM, et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 2012, 10:473–479.
Kumar, A, Declercq, J, Eggermont, K, Agirre, X, Prosper, F, Verfaillie, CM. Zic3 induces conversion of human fibroblasts to stable neural progenitor‐like cells. J Mol Cell Biol 2012, 4:252–255.
Lujan, E, Chanda, S, Ahlenius, H, Sudhof, TC, Wernig, M. Direct conversion of mouse fibroblasts to self‐renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 2012, 109:2527–2532.
Ring, KL, Tong, LM, Balestra, ME, Javier, R, Andrews‐Zwilling, Y, Li, G, Walker, D, Zhang, WR, Kreitzer, AC, Huang, Y. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 2012, 11:100–109.
Wang, L, Huang, W, Su, H, Xue, Y, Su, Z, Liao, B, Wang, H, Bao, X, Qin, D, He, J, et al. Generation of integration‐free neural progenitor cells from cells in human urine. Nat Methods 2012, 10:84–89.
Tian, C, Ambroz, RJ, Sun, L, Wang, Y, Ma, K, Chen, Q, Zhu, B, Zheng, JC. Direct conversion of dermal fibroblasts into neural progenitor cells by a novel cocktail of defined factors. Curr Mol Med 2012, 12:126–137.
Kriks, S, Shim, JW, Piao, J, Ganat, YM, Wakeman, DR, Xie, Z, Carrillo‐Reid, L, Auyeung, G, Antonacci, C, Buch, A, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson`s disease. Nature 2011, 480:547–551.
Kamiya, A, Kubo, K, Tomoda, T, Takaki, M, Youn, R, Ozeki, Y, Sawamura, N, Park, U, Kudo, C, Okawa, M, et al. A schizophrenia‐associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005, 7:1167–1178.
Kamiya, A, Tomoda, T, Chang, J, Takaki, M, Zhan, C, Morita, M, Cascio, MB, Elashvili, S, Koizumi, H, Takanezawa, Y, et al. DISC1‐NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1. Hum Mol Genet 2006, 15:3313–3323.
Clapcote, SJ, Lipina, TV, Millar, JK, Mackie, S, Christie, S, Ogawa, F, Lerch, JP, Trimble, K, Uchiyama, M, Sakuraba, Y, et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007, 54:387–402.
Kim, JY, Duan, X, Liu, CY, Jang, MH, Guo, JU, Pow‐anpongkul, N, Kang, E, Song, H, Ming, GL. DISC1 regulates new neuron development in the adult brain via modulation of AKT‐mTOR signaling through KIAA1212. Neuron 2009, 63:761–773.
Kim, JY, Liu, CY, Zhang, F, Duan, X, Wen, Z, Song, J, Feighery, E, Lu, B, Rujescu, D, St Clair, D, et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 2012, 148:1051–1064.
Meechan, DW, Tucker, ES, Maynard, TM, LaMantia, AS. Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome. Proc Natl Acad Sci U S A 2009, 106:16434–16445.
Carper, RA, Moses, P, Tigue, ZD, Courchesne, E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 2002, 16:1038–1051.
Courchesne, E, Karns, CM, Davis, HR, Ziccardi, R, Carper, RA, Tigue, ZD, Chisum, HJ, Moses, P, Pierce, K, Lord, C, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001, 57:245–254.
Hazlett, HC, Poe, M, Gerig, G, Smith, RG, Provenzale, J, Ross, A, Gilmore, J, Piven, J. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005, 62:1366–1376.
Courchesne, E, Mouton, P, Calhoun, M, Semendeferi, K, Ahrens‐Barbeau, C, Hallet, M, Carter Barnes, C, Pierce, K. Neuron Number and Size in Prefrontal Cortex of Children With Autism. JAMA 2011, 206:2001–2010.
Chen, RZ, Akbarian, S, Tudor, M, Jaenisch, R. Deficiency of methyl‐CpG binding protein‐2 in CNS neurons results in a Rett‐like phenotype in mice. Nat Genet 2001, 27:327–331.
Zhou, Z, Hong, EJ, Cohen, S, Zhao, WN, Ho, HY, Schmidt, L, Chen, WG, Lin, Y, Savner, E, Griffith, EC, et al. Brain‐specific phosphorylation of MeCP2 regulates activity‐dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 2006, 52:255–269.
Li, H, Radford, JC, Ragusa, MJ, Shea, KL, McKercher, SR, Zaremba, JD, Soussou, W, Nie, Z, Kang, YJ, Nakanishi, N, et al. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc Natl Acad Sci U S A 2008, 105:9397–9402.
Desplats, P, Spencer, B, Crews, L, Pathel, P, Morvinski‐Friedmann, D, Kosberg, K, Roberts, S, Patrick, C, Winner, B, Winkler, J, et al. α‐Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53‐mediated repression of Notch1. J Biol Chem 2012, 287:31691–31702.
Yang, CP, Gilley, JA, Zhang, G, Kernie, SG. ApoE is required for maintenance of the dentate gyrus neural progenitor pool. Development 2011, 138:4351–4362.
Gadadhar, A, Marr, R, Lazarov, O. Presenilin‐1 regulates neural progenitor cell differentiation in the adult brain. J Neurosci 2011, 31:2615–2623.
Haughey, NJ, Nath, A, Chan, SL, Borchard, AC, Rao, MS, Mattson, MP. Disruption of neurogenesis by amyloid β‐peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer`s disease. J Neurochem 2002, 83:1509–1524.
Mu, Y, Gage, FH. Adult hippocampal neurogenesis and its role in Alzheimer`s disease. Mol Neurodegener 2011, 6:85.
Gibson, P, Tong, Y, Robinson, G, Thompson, MC, Currle, DS, Eden, C, Kranenburg, TA, Hogg, T, Poppleton, H, Martin, J, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010, 468:1095–1099.
Genovesi, LA, Carter, KW, Gottardo, NG, Giles, KM, Dallas, PB. Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells. PLoS One 2011, 6:e23935.
Reya, T, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001, 414:105–111.
Olanow, CW, Schapira, AH, Agid, Y. Neuroprotection for Parkinson`s disease: prospects and promises. Ann Neurol 2003, 53(Suppl 3):S1–2.
Freed, CR, Greene, PE, Breeze, RE, Tsai, WY, DuMouchel, W, Kao, R, Dillon, S, Winfield, H, Culver, S, Trojanowski, JQ, et al. Transplantation of embryonic dopamine neurons for severe Parkinson`s disease. N Engl J Med 2001, 344:710–719.
Marchetto, MC, Carromeu, C, Acab, A, Yu, D, Yeo, GW, Mu, Y, Chen, G, Gage, FH, Muotri, AR. A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell 2010, 143:527–539.
Brennand, KJ, Simone, A, Jou, J, Gelboin‐Burkhart, C, Tran, N, Sangar, S, Li, Y, Mu, Y, Chen, G. Yu, D, et al. Nature: Modelling schizophrenia using human induced pluripotent stem cells; 2011.
Israel, MA, Goldstein, LS. Capturing Alzheimer`s disease genomes with induced pluripotent stem cells: prospects and challenges. Genome Med 2011, 3:49.
Hoing, S, Rudhard, Y, Reinhardt, P, Glatza, M, Stehling, M, Wu, G, Peiker, C, Bocker, A, Parga, JA, Bunk, E, et al. Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem‐cell‐based phenotypic assay. Cell Stem Cell 2012, 11:620–632.