Thomson, JA, Itskovitz‐Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS, Jones, JM. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282:1145–1147.
Odorico, JS, Kaufman, DS, Thomson, JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001, 19:193–204.
Takahashi, K, Tanabe, K, Ohnuki, M, Narita, M, Ichisaka, T, Tomoda, K, Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861–872.
Kattman, SJ, Witty, AD, Gagliardi, M, Dubois, NC, Niapour, M, Hotta, A, Ellis, J, Keller, G. Stage‐specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 2011, 8:228–240.
Laflamme, MA, Chen, KY, Naumova, AV, Muskheli, V, Fugate, JA, Dupras, SK, Reinecke, H, Xu, C, Hassanipour, M, Police, S, et al. Cardiomyocytes derived from human embryonic stem cells in pro‐survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007, 25:1015–1024.
Lian, X, Hsiao, C, Wilson, G, Zhu, K, Hazeltine, LB, Azarin, SM, Raval, KK, Zhang, J, Kamp, TJ, Palecek, SP. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA 2012, 109:E1848–E1857.
Mercola, M, Colas, A, Willems, E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 2013, 112:534–548.
Yang, L, Soonpaa, MH, Adler, ED, Roepke, TK, Kattman, SJ, Kennedy, M, Henckaerts, E, Bonham, K, Abbott, GW, Linden, RM, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic‐stem‐cell‐derived population. Nature 2008, 453:524–528.
Lian, X, Zhang, J, Azarin, SM, Zhu, K, Hazeltine, LB, Bao, X, Hsiao, C, Kamp, TJ, Palecek, SP. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β‐catenin signaling under fully defined conditions. Nat Protoc 2012, 8:162–175.
Willems, E, Spiering, S, Davidovics, H, Lanier, M, Xia, Z, Dawson, M, Cashman, J, Mercola, M. Small‐molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell‐derived mesoderm. Circ Res 2011, 109:360–364.
Murry, CE, Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008, 132:661–680.
Burridge, PW, Keller, G, Gold, JD, Wu, JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 2012, 10:16–28.
Bruneau, BG. The developmental genetics of congenital heart disease. Nature 2008, 451:943–948.
Aguirre, A, Sancho‐Martinez, I, Izpisua Belmonte, JC. Reprogramming toward heart regeneration: stem cells and beyond. Cell Stem Cell 2013, 12:275–284.
Gadue, P, Huber, TL, Paddison, PJ, Keller, GM. Wnt and TGF‐β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA 2006, 103:16806–16811.
Liu, P, Wakamiya, M, Shea, MJ, Albrecht, U, Behringer, RR, Bradley, A. Requirement for Wnt3 in vertebrate axis formation. Nat Genet 1999, 22:361–365.
Brennan, J, Lu, CC, Norris, DP, Rodriguez, TA, Beddington, RS, Robertson, EJ. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 2001, 411:965–969.
Yu, P, Pan, G, Yu, J, Thomson, JA. FGF2 sustains NANOG and switches the outcome of BMP4‐induced human embryonic stem cell differentiation. Cell Stem Cell 2011, 8:326–334.
Willems, E, Cabral‐Teixeira, J, Schade, D, Cai, W, Reeves, P, Bushway, PJ, Lanier, M, Walsh, C, Kirchhausen, T, Izpisua Belmonte, JC, et al. Small molecule‐mediated TGF‐β type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 2012, 11:242–252.
Cai, W, Albini, S, Wei, K, Willems, E, Guzzo, RM, Tsuda, M, Giordani, L, Spiering, S, Kurian, L, Yeo, GW, et al. Coordinate nodal and BMP inhibition directs Baf60c‐dependent cardiomyocyte commitment. Genes Dev 2013, 27:2332–2344.
He, J‐Q, Ma, Y, Lee, Y, Thomson, JA, Kamp, TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003, 93:32–39.
Zhang, Q, Jiang, J, Han, P, Yuan, Q, Zhang, J, Zhang, X, Xu, Y, Cao, H, Meng, Q, Chen, L, et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res 2011, 21:579–587.
Zhu, W‐Z, Xie, Y, Moyes, KW, Gold, JD, Askari, B, Laflamme, MA. Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res 2010, 107:776–786.
Otsuji, TG, Minami, I, Kurose, Y, Yamauchi, K, Tada, M, Nakatsuji, N. Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: qualitative effects on electrophysiological responses to drugs. Stem Cell Res 2010, 4:201–213.
Lee, YK, Ng, KM, Chan, YC, Lai, WH, Au, KW, Ho, CYJ, Wong, LY, Lau, CP, Tse, HF, Siu, CW. Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway. Mol Endocrinol 2010, 24:1728–1736.
Ieda, M, Fu, J‐D, Delgado‐Olguin, P, Vedantham, V, Hayashi, Y, Bruneau, BG, Srivastava, D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010, 142:375–386.
Fu, J‐D, Stone, NR, Liu, L, Spencer, CI, Qian, L, Hayashi, Y, Delgado‐Olguin, P, Ding, S, Bruneau, BG, Srivastava, D. Direct reprogramming of human fibroblasts toward a cardiomyocyte‐like state. Stem Cell Rep 2013, 1:235–247.
Islas, JF, Liu, Y, Weng, K‐C, Robertson, MJ, Zhang, S, Prejusa, A, Harger, J, Tikhomirova, D, Chopra, M, Iyer, D, et al. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA 2012, 109:13016–13021.
Wada, R, Muraoka, N, Inagawa, K, Yamakawa, H, Miyamoto, K, Sadahiro, T, Umei, T, Kaneda, R, Suzuki, T, Kamiya, K, et al. Induction of human cardiomyocyte‐like cells from fibroblasts by defined factors. Proc Natl Acad Sci USA 2013, 110:12667–12672.
Nam, Y‐J, Song, K, Luo, X, Daniel, E, Lambeth, K, West, K, Hill, JA, DiMaio, JM, Baker, LA, Bassel‐Duby, R, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA 2013, 110:5588–5593.
Rigbolt, KTG, Blagoev, B. Quantitative phosphoproteomics to characterize signaling networks. Semin Cell Dev Biol 2012, 23:863–871.
Mardis, ER. Next‐generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif) 2013, 6:287–303.
Shapiro, E, Biezuner, T, Linnarsson, S. Single‐cell sequencing‐based technologies will revolutionize whole‐organism science. Nat Rev Genet 2013, 14:618–630.
Derynck, R, Zhang, YE. Smad‐dependent and Smad‐independent pathways in TGF‐β family signalling. Nature 2003, 425:577–584.
Niehrs, C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 2012, 13:767–779.
Zhang, H, Pelech, S. Using protein microarrays to study phosphorylation‐mediated signal transduction. Semin Cell Dev Biol 2012, 23:872–882.
Caenepeel, S, Charydczak, G, Sudarsanam, S, Hunter, T, Manning, G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA 2004, 101:11707–11712.
Brill, LM, Xiong, W, Lee, K‐B, Ficarro, SB, Crain, A, Xu, Y, Terskikh, A, Snyder, EY, Ding, S. Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 2009, 5:204–213.
Krüger, M, Kratchmarova, I, Blagoev, B, Tseng, Y‐H, Kahn, CR, Mann, M. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci USA 2008, 105:2451–2456.
Gupta, S, Maurya, MR, Subramaniam, S. Identification of crosstalk between phosphoprotein signaling pathways in RAW 264.7 macrophage cells. PLoS Comput Biol 2010, 6:e1000654.
Bondue, A, Lapouge, G, Paulissen, C, Semeraro, C, Iacovino, M, Kyba, M, Blanpain, C. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 2008, 3:69–84.
Chan, SS‐K, Shi, X, Toyama, A, Arpke, RW, Dandapat, A, Iacovino, M, Kang, J, Le, G, Hagen, HR, Garry, DJ, et al. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context‐dependent manner. Cell Stem Cell 2013, 12:587–601.
Tanaka, M, Chen, Z, Bartunkova, S, Yamasaki, N, Izumo, S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 1999, 126:1269–1280.
Bodmer, R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 1993, 118:719–729.
Paige, SL, Thomas, S, Stoick‐Cooper, CL, Wang, H, Maves, L, Sandstrom, R, Pabon, L, Reinecke, H, Pratt, G, Keller, G, et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 2012, 151:221–232.
Wamstad, JA, Alexander, JM, Truty, RM, Shrikumar, A, Li, F, Eilertson, KE, Ding, H, Wylie, JN, Pico, AR, Capra, JA, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 2012, 151:206–220.
Wang, Z, Gerstein, M, Snyder, M. RNA‐Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57–63.
Picelli, S, Björklund, ÅK, Faridani, OR, Sagasser, S, Winberg, G, Sandberg, R. Smart‐seq2 for sensitive full‐length transcriptome profiling in single cells. Nat Methods 2013, 10:1096–1098.
Ramsköld, D, Luo, S, Wang, Y‐C, Li, R, Deng, Q, Faridani, OR, Daniels, GA, Khrebtukova, I, Loring, JF, Laurent, LC, et al. Full‐length mRNA‐Seq from single‐cell levels of RNA and individual circulating tumor cells. Nature 2012, 30:777–782.
Bhargava, V, Ko, P, Willems, E, Mercola, M, Subramaniam, S. Quantitative transcriptomics using designed primer‐based amplification. Sci Rep 2013, 3:1740–1748.
Perissi, V, Jepsen, K, Glass, CK, Rosenfeld, MG. Deconstructing repression: evolving models of co‐repressor action. Nat Rev Genet 2010, 11:109–123.
Hubner, MR, Spector, DL. Role of H3K27 demethylases Jmjd3 and UTX in transcriptional regulation. Cold Spring Harb Symp Quant Biol 2011, 75:43–49.
Pengelly, AR, Copur, Ö, Jäckle, H, Herzig, A, Müller, J. A histone mutant reproduces the phenotype caused by loss of histone‐modifying factor Polycomb. Science 2013, 339:698–699.
Willems, E, Mercola, M. Jumonji and cardiac fate. Circ Res 2013, 113:837–839.
Dai, J‐P, Lu, J‐Y, Zhang, Y, Shen, Y‐F. Jmjd3 activates Mash1 gene in RA‐induced neuronal differentiation of P19 cells. J Cell Biochem 2010, 110:1457–1463.
Kartikasari, AER, Zhou, JX, Kanji, MS, Chan, DN, Sinha, A, Grapin‐Botton, A, Magnuson, MA, Lowry, WE, Bhushan, A. The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO J 2013, 32:1393–1408.
Dahle, O, Kumar, A, Kuehn, MR. Nodal signaling recruits the histone demethylase Jmjd3 to counteract polycomb‐mediated repression at target genes. Sci Signal 2010, 3:ra48.
Ohtani, K, Zhao, C, Dobreva, G, Manavski, Y, Kluge, B, Braun, T, Rieger, MA, Zeiher, AM, Dimmeler, S. Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ Res 2013, 113:856–862.
Puri, PL, Mercola, M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev 2012, 26:2673–2683.
Johnson, DS, Mortazavi, A, Myers, RM, Wold, B. Genome‐wide mapping of in vivo protein‐DNA interactions. Science 2007, 316:1497–1502.
Zhou, VW, Goren, A, Bernstein, BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2010, 12:7–18.
Barski, A, Cuddapah, S, Cui, K, Roh, T‐Y, Schones, DE, Wang, Z, Wei, G, Chepelev, I, Zhao, K. High‐resolution profiling of histone methylations in the human genome. Cell 2007, 129:823–837.
Mikkelsen, TS, Ku, M, Jaffe, DB, Issac, B, Lieberman, E, Giannoukos, G, Alvarez, P, Brockman, W, Kim, T‐K, Koche, RP, et al. Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells. Nature 2007, 448:553–560.
Willems, E, Leyns, L. Patterning of mouse embryonic stem cell‐derived pan‐mesoderm by activin A/nodal and Bmp4 signaling requires fibroblast growth factor activity. Differentiation 2008, 76:745–759.
Lee, KL, Lim, SK, Orlov, YL, Yit, LY, Yang, H, Ang, LT, Poellinger, L, Lim, B. Graded nodal/activin signaling titrates conversion of quantitative phospho‐Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genet 2011, 7:e1002130.
Palpant, NJ, Pabon, L, Rabinowitz, JS, Hadland, BK, Stoick‐Cooper, CL, Paige, SL, Bernstein, ID, Moon, RT, Murry, CE. Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. Development 2013, 140:3799–3808.
Suh, N, Blelloch, R. Small RNAs in early mammalian development: from gametes to gastrulation. Development 2011, 138:1653–1661.
Zhao, Y, Srivastava, D. A developmental view of microRNA function. Trends Biochem Sci 2007, 32:189–197.
Gurtan, AM, Sharp, PA. The role of miRNAs in regulating gene expression networks. J Mol Biol 2013, 425:3582–3600.
Ebert, MS, Sharp, PA. Roles for microRNAs in conferring robustness to biological processes. Cell 2012, 149:515–524.
Kozomara, A, Griffiths‐Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2013, 42:D68–D73.
Hata, A. Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol 2013, 75:69–93.
Park, CY, Choi, YS, McManus, MT. Analysis of microRNA knockouts in mice. Hum Mol Genet 2010, 19:R169–R175.
Wong, SSY, Ritner, C, Ramachandran, S, Aurigui, J, Pitt, C, Chandra, P, Ling, VB, Yabut, O, Bernstein, HS. miR‐125b promotes early germ layer specification through Lin28/let‐7d and preferential differentiation of mesoderm in human embryonic stem cells. PLoS ONE 2012, 7:e36121.
Wilson, KD, Hu, S, Venkatasubrahmanyam, S, Fu, JD, Sun, N, Abilez, OJ, Baugh, JJA, Jia, F, Ghosh, Z, Li, RA, et al. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR‐499. Circ Cardiovasc Genet 2010, 3:426–435.
Fu, J‐D, Rushing, SN, Lieu, DK, Chan, CW, Kong, C‐W, Geng, L, Wilson, KD, Chiamvimonvat, N, Boheler, KR, Wu, JC, et al. Distinct roles of microRNA‐1 and −499 in ventricular specification and functional maturation of human embryonic stem cell‐derived cardiomyocytes. PLoS One 2011, 6:e27417.
Ivey, KN, Muth, A, Arnold, J, King, FW, Yeh, R‐F, Fish, JE, Hsiao, EC, Schwartz, RJ, Conklin, BR, Bernstein, HS, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2008, 2:219–229.
Wang, J, Greene, SB, Bonilla‐Claudio, M, Tao, Y, Zhang, J, Bai, Y, Huang, Z, Black, BL, Wang, F, Martin, JF. Bmp signaling regulates myocardial differentiation from cardiac progenitors through a microRNA‐mediated mechanism. Dev Cell 2010, 19:903–912.
Baek, D, Villén, J, Shin, C, Camargo, FD, Gygi, SP, Bartel, DP. The impact of microRNAs on protein output. Nature 2008, 455:64–71.
Lewis, BP, Shih, I‐H, Jones‐Rhoades, MW, Bartel, DP, Burge, CB. Prediction of mammalian microRNA targets. Cell 2003, 115:787–798.
Betel, D, Wilson, M, Gabow, A, Marks, DS, Sander, C. The microRNA.org resource: targets and expression. Nucleic Acids Res 2007, 36:D149–D153.
John, B, Enright, AJ, Aravin, A, Tuschl, T, Sander, C, Marks, DS. Human microRNA targets. PLoS Biol 2004, 2:e363.
Krek, A, Grün, D, Poy, MN, Wolf, R, Rosenberg, L, Epstein, EJ, MacMenamin, P, da Piedade, I, Gunsalus, KC, Stoffel, M, et al. Combinatorial microRNA target predictions. Nat Genet 2005, 37:495–500.
Hafner, M, Landthaler, M, Burger, L, Khorshid, M, Hausser, J, Berninger, P, Rothballer, A, Ascano, M, Jungkamp, A‐C, Munschauer, M, et al. Transcriptome‐wide identification of RNA‐binding protein and microRNA target sites by PAR‐CLIP. Cell 2010, 141:129–141.
Wahlquist, C, Jeong, D, Rojas‐Munoz, A, Kho, C, Lee, A, Mitsuyama, S, van Mil, A, Park, WJ, Sluijter, JPG, Doevendans, P, et al. Inhibition of miR‐25 improves cardiac contractility in the failing heart. Nature. In Press.
Helwak, A, Kudla, G, Dudnakova, T, Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 2013, 153:654–665.
Chatterjee, S, Fasler, M, Büssing, I, Großhans, H. Target‐mediated protection of endogenous microRNAs in C. elegans. Dev Cell 2011, 20:388–396.
Yang, L, Froberg, JE, Lee, JT. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci 2014, 39:35–43.
Pandey, RR, Mondal, T, Mohammad, F, Enroth, S, Redrup, L, Komorowski, J, Nagano, T, Mancini‐DiNardo, D, Kanduri, C. Kcnq1ot1 antisense noncoding RNA mediates lineage‐specific transcriptional silencing through chromatin‐level regulation. Mol Cell 2008, 32:232–246.
Kwek, KY, Murphy, S, Furger, A, Thomas, B, O`Gorman, W, Kimura, H, Proudfoot, NJ, Akoulitchev, A. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 2002, 9:800–805.
Cesana, M, Cacchiarelli, D, Legnini, I, Santini, T, Sthandier, O, Chinappi, M, Tramontano, A, Bozzoni, I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011, 147:358–369.
Klattenhoff, CA, Scheuermann, JC, Surface, LE, Bradley, RK, Fields, PA, Steinhauser, ML, Ding, H, Butty, VL, Torrey, L, Haas, S, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013, 152:570–583.
Grote, P, Wittler, L, Hendrix, D, Koch, F, Währisch, S, Beisaw, A, Macura, K, Bläss, G, Kellis, M, Werber, M, et al. The tissue‐specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013, 24:206–214.
Wingender, E, Dietze, P, Karas, H, Knüppel, R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 1996, 24:238–241.
Huang, DW, Sherman, BT, Lempicki, RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44–57.
Huang, DW, Sherman, BT, Lempicki, RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1–13.
Saito, R, Smoot, ME, Ono, K, Ruscheinski, J, Wang, P‐L, Lotia, S, Pico, AR, Bader, GD, Ideker, T. A travel guide to cytoscape plugins. Nat Methods 2012, 9:1069–1076.
Baker, EJ, Jay, JJ, Bubier, JA, Langston, MA, Chesler, EJ. GeneWeaver: a web‐based system for integrative functional genomics. Nucleic Acids Res 2011, 40:D1067–D1076.
Keshava Prasad, TS, Goel, R, Kandasamy, K, Keerthikumar, S, Kumar, S, Mathivanan, S, Telikicherla, D, Raju, R, Shafreen, B, Venugopal, A, et al. Human protein reference database – 2009 update. Nucleic Acids Res 2009, 37:D767–D772.
Ceol, A, Chatr Aryamontri, A, Licata, L, Peluso, D, Briganti, L, Perfetto, L, Castagnoli, L, Cesareni, G. MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 2009, 38:D532–D539.
Aranda, B, Achuthan, P, Alam‐Faruque, Y, Armean, I, Bridge, A, Derow, C, Feuermann, M, Ghanbarian, AT, Kerrien, S, Khadake, J, et al. The IntAct molecular interaction database in 2010. Nucleic Acids Res 2009, 38:D525–D531.
Lemons, D, Maurya, MR, Subramaniam, S, Mercola, M. Developing microRNA screening as a functional genomics tool for disease research. Front Physiol 2013, 4:223.