Papin, JA, Hunter, T, Palsson, BO, Subramaniam, S. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 2005, 6:99–111.

Lander, AD. The edges of understanding. BMC Biol 2010, 8:40.

Albert, R, Barabasi, AL. Statistical mechanics of complex networks. Rev Mod Phys 2002, 74:47–97.

Kestler, HA, Wawra, C, Kracher, B, Kuhl, M. Network modeling of signal transduction: establishing the global view. Bioessays 2008, 30:1110–1125.

Karlebach, G, Shamir, R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 2008, 9:770–780.

Pellegrini, M, Haynor, D, Johnson, JM. Protein interaction networks. Expert Rev Proteomics 2004, 1:239–249.

Kauffman, SA. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 1969, 22:437–467.

Thomas, R. Boolean formalization of genetic control circuits. J Theor Biol 1973, 42:563–585.

Assmann, SM, Albert, R. Discrete dynamic modeling with asynchronous update, or how to model complex systems in the absence of quantitative information. Methods Mol Biol 2009, 553:207–225.

Chaves, M, Sontag, ED, Albert, R. Methods of robustness analysis for Boolean models of gene control networks. Syst Biol (Stevenage) 2006, 153:154–167.

Giacomantonio, CE, Goodhill, GJ. A Boolean model of the gene regulatory network underlying Mammalian cortical area development. PLoS Comput Biol 2010, 6:e1000936.

Mendoza, L, Alvarez‐Buylla, ER. Dynamics of the genetic regulatory network for *Arabidopsis thaliana* flower morphogenesis. J Theor Biol 1998, 193:307–319.

Bhardwaj, G, Wells, CP, Albert, R, van Rossum, DB, Patterson, RL. Exploring phospholipase C‐coupled Ca(2+) signalling networks using Boolean modelling. IET Syst Biol 2011, 5:174–184.

Saez‐Rodriguez, J, Simeoni, L, Lindquist, JA, Hemenway, R, Bommhardt, U, Arndt, B, Haus, UU, Weismantel, R, Gilles, ED, Klamt, S, et al. A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 2007, 3:e163.

Thakar, J, Pilione, M, Kirimanjeswara, G, Harvill, ET, Albert, R. Modeling systems‐level regulation of host immune responses. PLoS Comput Biol 2007, 3:e109.

Thakar, J, Pathak, AK, Murphy, L, Albert, R, Cattadori, IM. Network model of immune responses reveals key effectors to single and co‐infection dynamics by a respiratory bacterium and a gastrointestinal helminth. PLoS Comput Biol 2012, 8:e1002345.

Walsh, ER, Thakar, J, Stokes, K, Huang, F, Albert, R, August, A. Computational and experimental analysis reveals a requirement for eosinophil‐derived IL‐13 for the development of allergic airway responses in C57BL/6 mice. J Immunol 2011, 186:2936–2949.

Campbell, C, Yang, S, Albert, R, Shea, K. A network model for plant‐pollinator community assembly. Proc Natl Acad Sci USA 2011, 108:197–202.

Davidich, MI, Bornholdt, S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 2008, 3:e1672.

Li, FT, Long, T, Lu, Y, Ouyang, Q, Tang, C. The yeast cell‐cycle network is robustly designed. Proc Natl Acad Sci USA 2004, 101:4781–4786.

Christensen, TS, Oliveira, AP, Nielsen, J. Reconstruction and logical modeling of glucose repression signaling pathways in *Saccharomyces cerevisiae*. BMC Syst Biol 2009, 3:7.

Mendoza, L, Alvarez‐Buylla, ER. Genetic regulation of root hair development in *Arabidopsis thaliana*: a network model. J Theor Biol 2000, 204:311–326.

Li, S, Assmann, SM, Albert, R. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 2006, 4:e312.

Akman, OE, Watterson, S, Parton, A, Binns, N, Millar, AJ, Ghazal, P. Digital clocks: simple Boolean models can quantitatively describe circadian systems. J R Soc Interface 2012, 9:2365–2382.

Chaves, M, Albert, R. Studying the effect of cell division on expression patterns of the segment polarity genes. J R Soc Interface 2008, 5(Suppl 1):S71–S84.

Zhang, R, Shah, MV, Yang, J, Nyland, SB, Liu, X, Yun, JK, Albert, R, Loughran, TP Jr. Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 2008, 105:16308–16313.

Saadatpour, A, Wang, RS, Liao, A, Liu, X, Loughran, TP, Albert, I, Albert, R. Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLoS Comput Biol 2011, 7:e1002267.

Schlatter, R, Philippi, N, Wangorsch, G, Pick, R, Sawodny, O, Borner, C, Timmer, J, Ederer, M, Dandekar, T. Integration of Boolean models exemplified on hepatocyte signal transduction. Brief Bioinform 2011, 13:365–376.

Choi, M, Shi, J, Jung, SH, Chen, X, Cho, KH. Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage. Sci Signal 2012, 5:ra83.

Sobie, EA, Lee, YS, Jenkins, SL, Iyengar, R. Systems biology—biomedical modeling. Sci Signal 2011, 4:tr2.

Aldridge, BB, Burke, JM, Lauffenburger, DA, Sorger, PK. Physicochemical modelling of cell signalling pathways. Nat Cell Biol 2006, 8:1195–1203.

Kauffman, SA. The Origins of Order: Self Organization and Selection in Evolution. New York: Oxford University Press; 1993.

Thomas, R, d`Ari, R. Biological Feedback. Boca Raton, FL: CRC Press; 1990.

Aldridge, BB, Saez‐Rodriguez, J, Muhlich, JL, Sorger, PK, Lauffenburger, DA. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin‐induced signaling. PLoS Comput Biol 2009, 5:e1000340.

Morris, MK, Saez‐Rodriguez, J, Clarke, DC, Sorger, PK, Lauffenburger, DA. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput Biol 2011, 7:e1001099.

Chaouiya, C. Petri net modelling of biological networks. Brief Bioinform 2007, 8:210–219.

Ruths, D, Muller, M, Tseng, JT, Nakhleh, L, Ram, PT. The signaling Petri net‐based simulator: a non‐parametric strategy for characterizing the dynamics of cell‐specific signaling networks. PLoS Comput Biol 2008, 4:e1000005.

Samaga, R, Saez‐Rodriguez, J, Alexopoulos, LG, Sorger, PK, Klamt, S. The logic of EGFR/ErbB signaling: theoretical properties and analysis of high‐throughput data. PLoS Comput Biol 2009, 5:e1000438.

Schlatter, R, Schmich, K, Avalos Vizcarra, I, Scheurich, P, Sauter, T, Borner, C, Ederer, M, Merfort, I, Sawodny, O. ON/OFF and beyond‐‐a boolean model of apoptosis. PLoS Comput Biol 2009, 5:e1000595.

Davidich, M, Bornholdt, S. The transition from differential equations to Boolean networks: a case study in modeling regulatory networks. J Theor Biol 2008, 225:269–277.

von Dassow, G, Meir, E, Munro, EM, Odell, GM. The segment polarity network is a robust developmental module. Nature 2000, 406:188–192.

Glass, L, Kauffman, SA. Logical analysis of continuous, nonlinear biochemical control networks. J Theor Biol 1973, 39:103–129.

Huang, S, Eichler, G, Bar‐Yam, Y, Ingber, DE. Cell fates as high‐dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 2005, 94:128701.

Saadatpour, A, Albert, I, Albert, R. Attractor analysis of asynchronous Boolean models of signal transduction networks. J Theor Biol 2010, 4:641–656.

Tyson, JJ, Chen, KC, Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 2003, 15:221–231.

Serra, R, Villani, M, Barbieri, A, Kauffman, SA, Colacci, A. On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types. J Theor Biol 2010, 265:185–193.

Albert, R, Othmer, HG. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in *Drosophila melanogaster*. J Theor Biol 2003, 223:1–18.

Mendoza, L. A network model for the control of the differentiation process in Th cells. Biosystems 2006, 84:101–114.

Mendoza, L, Pardo, F. A robust model to describe the differentiation of T‐helper cells. Theory Biosci 2010, 129:283–293.

Kaech, SM, Hemby, S, Kersh, E, Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 2002, 111:837–851.

Lund, RJ, Loytomaki, M, Naumanen, T, Dixon, C, Chen, Z, Ahlfors, H, Tuomela, S, Tahvanainen, J, Scheinin, J, Henttinen, T, et al. Genome‐wide identification of novel genes involved in early Th1 and Th2 cell differentiation. J Immunol 2007, 178:3648–3660.

Mathur, D, Danford, TW, Boyer, LA, Young, RA, Gifford, DK, Jaenisch, R. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP‐chip and ChIP‐PET. Genome Biol 2008, 9:R126.

Albert, R, Assmann, SM. Discrete dynamic modeling with asynchronous update or, how to model complex systems in the absence of quantitative information. In: Belostotsky, D, Totowa, NJ, eds. Plant Systems Biology, vol. 553. New York: Humana Press; 2009, 207–225.

Albert, R, DasGupta, B, Dondi, R, Kachalo, S, Sontag, E, Zelikovsky, A, Westbrooks, K. A novel method for signal transduction network inference from indirect experimental evidence. J Comput Biol 2007, 14:927–949.

Faith, JJ, Hayete, B, Thaden, JT, Mogno, I, Wierzbowski, J, Cottarel, G, Kasif, S, Collins, JJ, Gardner, TS. Large‐scale mapping and validation of *Escherichia coli* transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007, 5:e8.

Friedman, N, Linial, M, Nachman, I, Pe`er, D. Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7:601–620.

Gardner, TS, di Bernardo, D, Lorenz, D, Collins, JJ. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102–105.

Akutsu, T, Miyano, S, Kuhara, S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp Biocomput 1999, 4:17–28.

Ideker, TE, Thorsson, V, Karp, RM. Discovery of regulatory interactions through perturbation: inference and experimental design. Pac Symp Biocomput 2000, 5:305–316.

Shmulevich, I, Dougherty, ER, Kim, S, Zhang, W. Probabilistic Boolean networks: a rule‐based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18:261–274.

Kim, SY, Imoto, S, Miyano, S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 2003, 4:228–235.

Kachalo, S, Zhang, R, Sontag, E, Albert, R, DasGupta, B. NET‐SYNTHESIS: a software for synthesis, inference and simplification of signal transduction networks. Bioinformatics 2008, 24:293–295.

yEd Graph Editor. Available at: http://www.yworks.com/en/products_yed_about.html.

Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D, Amin, N, Schwikowski, B, Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498–2504.

Smoot, ME, Ono, K, Ruscheinski, J, Wang, PL, Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27:431–432.

Klamt, S, Saez‐Rodriguez, J, Gilles, ED. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 2007, 1:2.

Klamt, S, Saez‐Rodriguez, J, Lindquist, JA, Simeoni, L, Gilles, ED. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 2006, 7:56.

Hagberg, A, Schult, D, Swart, P. Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA, 2008.

Batagelj, V, Mrvar, A. Pajek – analysis and visualization of large networks. In: Jünger, M, Mutzel, P, eds. Graph Drawing Software. Berlin: Springer; 2003, 77–103.

Luscombe, NM, Babu, MM, Yu, H, Snyder, M, Teichmann, SA, Gerstein, M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004, 431:308–312.

Han, JD, Bertin, N, Hao, T, Goldberg, DS, Berriz, GF, Zhang, LV, Dupuy, D, Walhout, AJ, Cusick, ME, Roth, FP, et al. Evidence for dynamically organized modularity in the yeast protein‐protein interaction network. Nature 2004, 430:88–93.

Kim, PM, Lu, LJ, Xia, Y, Gerstein, MB. Relating three‐dimensional structures to protein networks provides evolutionary insights. Science 2006, 314:1938–1941.

Ma, HW, Buer, J, Zeng, AP. Hierarchical structure and modules in the *Escherichia coli* transcriptional regulatory network revealed by a new top‐down approach. BMC Bioinformatics 2004, 5:199.

Sanz, J, Navarro, J, Arbues, A, Martin, C, Marijuan, PC, Moreno, Y. The transcriptional regulatory network of *Mycobacterium tuberculosis*. PLoS One 2011, 6:e22178.

Ma, HW, Zeng, AP. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 2003, 19:1423–1430.

Ma`ayan, A, Jenkins, SL, Neves, S, Hasseldine, A, Grace, E, Dubin‐Thaler, B, Eungdamrong, NJ, Weng, G, Ram, PT, Rice, JJ, et al. Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 2005, 309:1078–1083.

Milo, R, Shen‐Orr, S, Itzkovitz, S, Kashtan, N, Chklovskii, D, Alon, U. Network motifs: simple building blocks of complex networks. Science 2002, 298:824–827.

Shen‐Orr, SS, Milo, R, Mangan, S, Alon, U. Network motifs in the transcriptional regulation network of *Escherichia coli*. Nat Genet 2002, 31:64–68.

Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits, vol. 10. Boca Raton, FL: Chapman %26 Hall/CRC; 2006.

Sontag, E, Veliz‐Cuba, A, Laubenbacher, R, Jarrah, AS. The effect of negative feedback loops on the dynamics of Boolean networks. Biophys J 2008, 95:518–526.

Bornholdt, S. Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 2008, 5(Suppl 1):S85–S94.

Shmulevich, I, Dougherty, ER. Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. New York: SIAM; 2010.

Berestovsky, N, Nakhleh, L. An evaluation of methods for inferring Boolean networks from time‐series data. PLoS One 2013, 8:e66031.

Cheng, X, Sun, M, Socolar, JE. Autonomous Boolean modelling of developmental gene regulatory networks. J R Soc Interface 2013, 10:20120574.

Murrugarra, D, Veliz‐Cuba, A, Aguilar, B, Arat, S, Laubenbacher, R. Modeling stochasticity and variability in gene regulatory networks. EURASIP J Bioinform Syst Biol 2012, 2012:5.

Chaves, M, Albert, R, Sontag, ED. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 2005, 235:431–449.

Harvey, I, Bossomaier, T. Time out of joint: attractors in asynchronous random Boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life, Cambridge, UK, 1997.

Faure, A, Naldi, A, Chaouiya, C, Thieffry, D. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 2006, 22:e124–e131.

Tournier, L, Chaves, M. Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics. J Theor Biol 2009, 260:196–209.

Garg, A, Di Cara, A, Xenarios, I, Mendoza, L, De Micheli, G. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 2008, 24:1917–1925.

Albert, I, Thakar, J, Li, S, Zhang, R, Albert, R. Boolean network simulations for life scientists. Source Code Biol Med 2008, 3:16.

Mussel, C, Hopfensitz, M, Kestler, HA. BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 2010, 26:1378–1380.

Dubrova, E, Teslenko, M. A SAT‐based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinform 2011, 8:1393–1399.

Skodawessely, T, Klemm, K. Finding attractors in asynchronous Boolean dynamics. Adv Complex Syst 2011, 14:439–449.

Berenguier, D, Chaouiya, C, Monteiro, PT, Naldi, A, Remy, E, Thieffry, D, Tichit, L. Dynamical modeling and analysis of large cellular regulatory networks. Chaos 2013, 23:025114.

Bilke, S, Sjunnesson, F. Stability of the Kauffman model. Phys Rev E 2002, 65:016129.

Naldi, A, Remy, E, Thieffry, D, Chaouiya, C. Dynamically consistent reduction of logical regulatory graphs. Theor Comput Sci 2011, 412:2207–2218.

Richardson, KA. Simplifying Boolean networks. Adv Complex Syst 2005, 8:365–381.

Veliz‐Cuba, A. Reduction of Boolean network models. J Theor Biol 2011, 289:167–172.

Saadatpour, A, Albert, R, Reluga, TC. A reduction method for Boolean network models proven to conserve attractors. SIAM J Appl Dyn Syst 2013, 12:1997–2011.

Huang, S, Ernberg, I, Kauffman, S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 2009, 20:869–876.

Darabos, C, Tomassini, M, Giacobini, M. Dynamics of unperturbed and noisy generalized Boolean networks. J Theor Biol 2009, 260:531–544.

Samaga, R, Von Kamp, A, Klamt, S. Computing combinatorial intervention strategies and failure modes in signaling networks. J Comput Biol 2010, 17:39–53.

Wang, RS, Albert, R. Elementary signaling modes predict the essentiality of signal transduction network components. BMC Syst Biol 2011, 5:44.

Wolpert, L, Beddington, R, Brockes, J, Jessell, T, Lawrence, P, Meyerowitz, E. Principles of Development. London: Current Biology Press; 1998.

Zanudo, JG, Albert, R. An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 2013, 23:025111.

De Jong, H, Gouze, JL, Hernandez, C, Page, M, Sari, T, Geiselmann, J. Qualitative simulation of genetic regulatory networks using piecewise‐linear models. Bull Math Biol 2004, 66:301–340.

Thakar, J, Saadatpour‐Moghaddam, A, Harvill, ET, Albert, R. Constraint‐based network model of pathogen‐immune system interactions. J R Soc Interface 2009, 6:599–612.

de Jong, H, Geiselmann, J, Hernandez, C, Page, M. Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 2003, 19:336–344.

Di Cara, A, Garg, A, De Micheli, G, Xenarios, I, Mendoza, L. Dynamic simulation of regulatory networks using SQUAD. BMC Bioinformatics 2007, 8:462.

Krumsiek, J, Polsterl, S, Wittmann, DM, Theis, FJ. Odefy—from discrete to continuous models. BMC Bioinformatics 2010, 11:233.

Schmidt, H, Jirstrand, M. Systems biology toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 2006, 22:514–515.

Thomas, R. Regulatory networks seen as asynchronous automata—a logical description. J Theor Biol 1991, 153:1–23.

Naldi, A, Berenguier, D, Faure, A, Lopez, F, Thieffry, D, Chaouiya, C. Logical modelling of regulatory networks with GINsim 2.3. Biosystems 2009, 97:134–139.

Veliz‐Cuba, A, Jarrah, AS, Laubenbacher, R. Polynomial algebra of discrete models in systems biology. Bioinformatics 2010, 26:1637–1643.

Hinkelmann, F, Brandon, M, Guang, B, McNeill, R, Blekherman, G, Veliz‐Cuba, A, Laubenbacher, R. ADAM: analysis of discrete models of biological systems using computer algebra. BMC Bioinformatics 2011, 12:295.

Box, GEP. Robustness in the strategy of scientific model building. In: Launer, RL, Wilkinson, GN, eds. Robustness in Statistics. New York: Academic Press; 1979, 201–236.

Payne, JL, Wagner, A. Constraint and contingency in multifunctional gene regulatory circuits. PLoS Comput Biol 2013, 9:e1003071.

Oikonomou, P, Cluzel, P. Effects of topology on network evolution. Nat Phys 2006, 2:532–536.

Wittmann, DM, Krumsiek, J, Saez‐Rodriguez, J, Lauffenburger, DA, Klamt, S, Theis, FJ. Transforming Boolean models to continuous models: methodology and application to T‐cell receptor signaling. BMC Syst Biol 2009, 3:98.

Chaves, M, Preto, M. Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria. Chaos 2013, 23:025113.

Sun, MY, Cheng, XR, Socolar, JES. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors. Chaos 2013, 23.