Hold, GL, Smith, M, Grange, C, Watt, EW, El‐Omar, EM, Mukhopadhya, I. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 2014, 20:1192–1210.
Moran, CP, Shanahan, F. Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol 2014, 28:585–597.
Moreno Indias, I, Cardona, F, Tinahones, F, Queipo Ortuño, MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014, 5:190.
Hanage, WP. Microbiology: microbiome science needs a healthy dose of scepticism. Nature 2014, 512:247–248.
Diaz Heijtz, R, Wang, S, Anuar, F, Qian, Y, Bjorkholm, B, Samuelsson, A, Hibberd, ML, Forssberg, H, Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011, 108:3047–3052.
Bäckhed, F et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004, 101:15718–15723.
Clarke, G, Grenham, S, Scully, P, Fitzgerald, P, Moloney, RD, Shanahan, F, Dinan, TG, Cryan, JF. The microbiome‐gut‐brain axis during early life regulates the hippocampal serotonergic system in a sex‐dependent manner. Mol Psychiatry 2013, 18:666–673.
Ivanov, II, Honda, K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012, 12:496–508.
Bäckhed, F, Manchester, JK, Semenkovich, CF, Gordon, JI. Mechanisms underlying the resistance to diet‐induced obesity in germ‐free mice. Proc Natl Acad Sci USA 2007, 104:979–984.
Claesson, MJ, Jeffery, IB, Conde, S, Power, SE, O`Connor, EM, Cusack, S, Harris, HMB, Coakley, M, Lakshminarayanan, B, O`Sullivan, O. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488:178–184.
McCabe, RP. Gastrointestinal manifestations of non‐AIDS immunodeficiency. Curr Treat Options Gastroenterol 2002, 5:17–25.
El Aidy, S, van Baarlen, P, Derrien, M, Lindenbergh‐Kortleve, DJ, Hooiveld, G, Levenez, F, Dore, J, Dekker, J, Samsom, JN, Nieuwenhuis, EE, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol 2012, 5:567–579.
Atarashi, K, Tanoue, T, Shima, T, Imaoka, A, Kuwahara, T, Momose, Y, Cheng, G, Yamasaki, S, Saito, T, Ohba, Y. Induction of colonic regulatory T cells by indigenous clostridium species. Science (New York, NY) 2011, 331:337–341.
Gaboriau‐Routhiau, V, Rakotobe, S, Lécuyer, E, Mulder, I, Lan, A, Bridonneau, C, Rochet, V, Pisi, A, De Paepe, M, Brandi, G. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677–689.
Shimotoyodome, A, Meguro, S, Hase, T, Tokimitsu, I, Sakata, T. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol 2000, 125:525–531.
Camilleri, M, Lasch, K, Zhou, W. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2012, 303:G775–785.
Loxham, M, Davies, DE, Blume, C. Epithelial function and dysfunction in asthma. Clin Exp Allergy 2014, 44:1299–1313.
Vanuytsel, T, Vermeire, S, Cleynen, I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers 2013, 1:e27321.
Caricilli, AM, Castoldi, A, Câmara, NOS. Intestinal barrier: a gentlemen`s agreement between microbiota and immunity. World J Gastrointest Pathophysiol 2014, 5:18–32.
Liévin‐Le Moal, V, Servin, AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006, 19:315–337.
Salzman, NH, Hung, K, Haribhai, D, Chu, H, Karlsson‐Sjoberg, J, Amir, E, Teggatz, P, Barman, M, Hayward, M, Eastwood, D. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2010, 11:76–82.
van der Waaij, LA, Limburg, PC, Mesander, G, van der Waaij, D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 1996, 38:348–354.
Liu, Y, Rhoads, J. Communication between B‐cells and microbiota for the maintenance of intestinal homeostasis. Antibodies 2013, 2:535–553.
Egan, M, O`Connell Motherway, M, Kilcoyne, M, Kane, M, Joshi, L, Ventura, M, van Sinderen, D. Cross‐feeding by Bifidobacterium breve UCC2003 during co‐cultivation with Bifidobacterium bifidum PRL2010 in a mucin‐based medium. BMC Microbiol 2014, 14:282.
DiGiulio, DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 2012, 17:2–11.
DiGiulio, DB, Romero, R, Amogan, HP, Kusanovic, JP, Bik, EM, Gotsch, F, Kim, CJ, Erez, O, Edwin, S, Relman, DA. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture‐based investigation. PLoS One 2008, 3:e3056.
Jiménez, E, Fernándes, L, Marín, M, Martín, R, Odriozola, JM, Nueno‐Palop, C, Narbad, A, Olivares, M, Xaus, J, Rodríguez, JM. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 2005, 51:270–274.
Satokari, R, Grönroos, T, Laitinen, K, Salminen, S, Isolauri, E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 2009, 48:8–12.
Jiménez, E, Marín, ML, Martín, R, Odriozola, JM, Olivares, M, Xaus, J, Fernández, L, Rodríguez, JM. Is meconium from healthy newborns actually sterile? Res Microbiol 2008, 159:187–193.
Salter, SJ, Cox, MJ, Turek, EM, Calus, ST, Cookson, WO, Moffatt, MF, Turner, P, Parkhill, J, Loman, NJ, Walker, AW. Reagent and laboratory contamination can critically impact sequence‐based microbiome analyses. BMC Biol 2014, 12:87.
Costello, EK, Lauber, CL, Hamady, M, Fierer, N, Gordon, JI, Knight, R. Bacterial community variation in human body habitats across space and time. Science 2009, 326:1694–1697.
Dominguez‐Bello, MG, Costello, EK, Contreras, M, Magris, M, Hildalgo, G, Fierer, N, Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010, 107:11971–11975.
Jakobsson, HE, Abrahamsson, TR, Jenmalm, MC, Harris, K, Quince, C, Jernberg, C, Björkstén, B, Engstrand, L, Andersson, AF. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014, 63:559–566.
Salminen, S, Gibson, GR, McCartney, AL, Isolauri, E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 2004, 53:1388–1389.
Favier, CF, Vaughan, EE, De Vos, WM, Akkermans, ADL. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 2002, 68:219–226.
Klaassens, ES, Boesten, RJ, Haarman, M, Knol, J, Schuren, FH, Vaughan, EE, de Vos, WM. Mixed‐species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast‐ and formula‐fed infants. Appl Environ Microbiol 2009, 75:2668–2676.
Stark, PL, Lee, A. The microbial ecology of the large bowel of breastfed and formula‐fed infants during the first year of life. J Med Microbiol 1982, 15:189–203.
Mackie, RI, Sghir, A, Gaskins, HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999, 69:1035s–1045s.
Biasucci, G, Benenati, B, Morelli, L, Bessi, E, Boehm, G. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 2008, 138:1796S–1800S.
Gewolb, I, Schwalbe, R, Taciak, V, Harrison, T, Panigrahi, P. Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed 1999, 80:F167–173.
Magne, F, Abély, M, Boyer, F, Morville, P, Pochart, P, Suau, A. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR‐temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol Ecol 2006, 57:128–138.
Huurre, A, Kalliomäki, M, Rautava, S, Rinne, M, Salminen, S, Isolauri, E. Mode of delivery – effects on gut microbiota and humoral immunity. Neonatology 2008, 93:236–240.
Zeuthen, LH, Fink, LN, Frokiaer, H. Epithelial cells prime the immune response to an array of gut‐derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor‐β. Immunology 2008, 123:197–208.
Bager, P, Wohlfahrt, J, Westergaard, T. Caesarean delivery and risk of atopy and allergic disease: meta‐analyses. Clin Exp Allergy 2008, 38:634–642.
Negele, K, Heinrich, J, Borte, M, von Berg, A, Schaaf, B, Lehmann, I, Wichmann, HE, Bolte, G. Mode of delivery and development of atopic disease during the first 2 years of life. Pediatr Allergy Immunol 2004, 15:48–54.
Kvenshagen, B, Halvorsen, R, Jacobsen, M. Is there an increased frequency of food allergy in children delivered by caesarean section compared to those delivered vaginally? Acta Paediatr 2009, 98:324–327.
Pyrhönen, K, Näyhä, S, Hiltunen, L, Läärä, E. Caesarean section and allergic manifestations: insufficient evidence of association found in population‐based study of children aged 1 to 4 years. Acta Paediatr 2013, 102:982–989.
Vasilopoulos, T, Kotwal, A, Huisingh‐Scheetz, MJ, Waite, LJ, McClintock, MK, Dale, W. Comorbidity and chronic conditions in the National Social Life, Health and Aging Project (NSHAP), Wave 2. J Gerontol B Psychol Sci Soc Sci 2014, 69 Suppl 2:S154–165.
van Deursen, JM. The role of senescent cells in ageing. Nature 2014, 509:439–446.
Ren, J‐L, Pan, J‐S, Lu, Y‐P, Sun, P, Han, J. Inflammatory signaling and cellular senescence. Cell Signal 2009, 21:378–383.
Villeda, SA, Plambeck, KE, Middeldorp, J, Castellano, JM, Mosher, KI, Luo, J, Smith, LK, Bieri, G, Lin, K, Berdnik, D. et al. Young blood reverses age‐related impairments in cognitive function and synaptic plasticity in mice. Nat Med 2014, 20:659–663.
Cusack, S, O`Toole, PW. The human intestinal microbiota, diet and health. From infancy to old age. Agro Food Industry Hi‐Tech 2010, 5:32–35.
Alcock, J, Maley, CC, Aktipis, CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 2014, 36:940–949.
Hopkins, MJ, Macfarlane, GT. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 2002, 51:448–454.
Woodmansey, EJ, McMurdo, MET, Macfarlane, GT, Macfarlane, S. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic‐treated and non‐antibiotic‐treated elderly subjects. Appl Environ Microbiol 2004, 70:6113–6122.
Biagi, E, Nylund, L, Candela, M, Ostan, R, Bucci, L, Pini, E, Nikkïla, J, Monti, D, Satokari, R, Francheschi, C. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 2010, 5:e10667.
Wichmann, A, Allahyar, A, Greiner, TU, Plovier, H, Lundén, GÖ, Larsson, T, Drucker, DJ, Delzenne, NM, Cani, PD, Bäckhed, F. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 2013, 14:582–590.
Napolitano, A, Miller, S, Nicholls, AW, Baker, D, Van Horn, S, Thomas, E, Rajpal, D, Spivak, A, Brown, JR, Nunez, DJ. Novel gut‐based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One 2014, 9:e100778.
Viaud, S, Saccheri, F, Mignot, G, Yamazaki, T, Daillère, R, Hannani, D, Enot, DP, Pfirschke, C, Engblom, C, Pittet, MJ. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science (New York, NY) 2013, 342:971–976.
Khoruts, A, Dicksved, J, Jansson, JK, Sadowsky, MJ. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile‐associated diarrhea. J Clin Gastroenterol 2010, 44:354–360. doi:10.1097/MCG.1090b1013e3181c1087e1002.
Lund‐Tonnesen, S, Berstad, A, Schreiner, A, Midtvedt, T. Clostridium difficile‐associated diarrhea treated with homologous feces. Tidsskr Nor Laegeforen 1998, 118:1027–1030.
Borody, TJ, Brandt, LJ, Paramsothy, S. Therapeutic faecal microbiota transplantation: current status and future developments. Curr Opin Gastroenterol 2014, 30:97–105.