Alseikhan, BA, DeMaria, CD, Colecraft, HM, Yue, DT. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc Natl Acad Sci USA 2002, 99:17185–17190.
Yue, D, Backx, P, Imredy, J. Calcium‐sensitive inactivation in the gating of single calcium channels. Science 1990, 250:1735–1738.
Bers, DM. Excitation‐Contraction Coupling and Cardiac Contractile Force. 2nd ed. Dordrecht/Boston, MA/London: Kluwer Academic Publishers; 1993.
Cortassa, S, Aon, MA, O`Rourke, B, Jacques, R, Tseng, HJ, Marban, E, Winslow, RL. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 2006, 91:1564–1589.
Liu, T, O`Rourke, B. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. J Bioenerg Biomembr 2009, 41:127–132.
Erickson, JR. Mechanisms of CaMKII activation in the heart. Front Pharmacol 2014, 5:59.
Ljubojevic, S, Bers, DM. Nuclear calcium in cardiac myocytes. J Cardiovasc Pharmacol 2015, 65:211–217.
Kamp, TJ, Hell, JW. Regulation of cardiac L‐type calcium channels by protein kinase A and protein kinase C. Circ Res 2000, 87:1095–1102.
Zaccolo, M. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 2009, 158:50–60.
Takimoto, E. Cyclic GMP‐dependent signaling in cardiac myocytes. Circ J 2012, 76:1819–1825.
Burgoyne, JR, Mongue‐Din, H, Eaton, P, Shah, AM. Redox signaling in cardiac physiology and pathology. Circ Res 2012, 111:1091–1106.
O`Rourke, B, Cortassa, S, Aon, MA. Mitochondrial ion channels: gatekeepers of life and death. Physiology (Bethesda) 2005, 20:303–315.
Bers, DM. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 2000, 87:275–281.
Bers, DM. Cardiac excitation‐contraction coupling. Nature 2002, 415:198–205.
Fill, M, Copello, JA. Ryanodine receptor calcium release channels. Physiol Rev 2002, 82:893–922.
Bodi, I, Mikala, G, Koch, SE, Akhter, SA, Schwartz, A. The L‐type calcium channel in the heart: the beat goes on. J Clin Invest 2005, 115:3306–3317.
Hofmann, F, Flockerzi, V, Kahl, S, Wegener, JW. L‐type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014, 94:303–326.
Shaw, RM, Colecraft, HM. L‐type calcium channel targeting and local signalling in cardiac myocytes. Cardiovasc Res 2013, 98:177–186.
Greenstein, JL, Winslow, RL. Integrative systems models of cardiac excitation‐contraction coupling. Circ Res 2011, 108:70–84.
Williams, GS, Smith, GD, Sobie, EA, Jafri, MS. Models of cardiac excitation‐contraction coupling in ventricular myocytes. Math Biosci 2010, 226:1–15.
Bers, DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 2008, 70:23–49.
Brette, F, Orchard, C. T‐tubule function in mammalian cardiac myocytes. Circ Res 2003, 92:1182–1192.
Soeller, C, Cannell, MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2‐photon microscopy and digital image‐processing techniques. Circ Res 1999, 84:266–275.
Bers, DM. Excitation‐Contraction Coupling and Cardiac Contractile Force. 2nd ed. Boston, MA: Kluwer; 2001.
Hayashi, T, Martone, ME, Yu, Z, Thor, A, Doi, M, Holst, MJ, Ellisman, MH, Hoshijima, M. Three‐dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 2009, 122:1005–1013.
Baddeley, D, Jayasinghe, ID, Lam, L, Rossberger, S, Cannell, MB, Soeller, C. Optical single‐channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci USA 2009, 106:22275–22280.
Franzini‐Armstrong, C, Protasi, F, Ramesh, V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 1999, 77:1528–1539.
Bers, D, Stiffel, V. Ratio of ryanodine to dihidropyridine receptors in cardiac and skeletal muscle and implications for E‐C coupling. Am J Physiol 1993, 264:C1587–C1593.
Fabiato, A. Time and calcium dependence of activation and inactivation of calcium‐induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 1985, 85:247–289.
Reeves, JP, Hale, CC. The stoichiometry of the cardiac sodium‐calcium exchange system. J Biol Chem 1984, 259:7733–7739.
Bassani, RA, Bassani, JW, Bers, DM. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J Physiol 1992, 453:591–608.
Hicks, MJ, Shigekawa, M, Katz, AM. Mechanism by which cyclic adenosine 3`:5`‐monophosphate‐dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ Res 1979, 44:384–391.
Stern, MD. Theory of excitation‐contraction coupling in cardiac muscle. Biophys J 1992, 63:497–517.
Tanskanen, AJ, Greenstein, JL, Chen, A, Sun, SX, Winslow, RL. Protein geometry and placement in the cardiac dyad influence macroscopic properties of calcium‐induced calcium release. Biophys J 2007, 92:3379–3396.
Cannell, MB, Cheng, H, Lederer, WJ. Spatial non‐uniformities in [Ca2+]i during excitation‐contraction coupling in cardiac myocytes. Biophys J 1994, 67:1942–1956.
Cheng, H, Lederer, WJ, Cannell, MB. Calcium sparks: elementary events underlying excitation‐contraction coupling in heart muscle. Science 1993, 262:740–744.
Sato, D, Bers, DM. How does stochastic ryanodine receptor‐mediated Ca leak fail to initiate a Ca spark? Biophys J 2011, 101:2370–2379.
Williams, GS, Chikando, AC, Tuan, HT, Sobie, EA, Lederer, WJ, Jafri, MS. Dynamics of calcium sparks and calcium leak in the heart. Biophys J 2011, 101:1287–1296.
Brochet, DX, Xie, W, Yang, D, Cheng, H, Lederer, WJ. Quarky calcium release in the heart. Circ Res 2011, 108:210–218.
Walker, MA, Kohl, T, Lehnart, SE, Greenstein, JL, Lederer, WJ, Winslow, RL. On the adjacency matrix of RyR2 cluster structures. PLoS Comput Biol 2015, 11:e1004521. doi: 10.1371/journal.pcbi.1004521.
Wagner, E, Lauterbach, MA, Kohl, T, Westphal, V, Williams, GS, Steinbrecher, JH, Streich, JH, Korff, B, Tuan, HT, Hagen, B, et al. Stimulated emission depletion live‐cell super‐resolution imaging shows proliferative remodeling of T‐tubule membrane structures after myocardial infarction. Circ Res 2012, 111:402–414.
Walker, MA, Williams, GS, Kohl, T, Lehnart, SE, Jafri, MS, Greenstein, JL, Lederer, WJ, Winslow, RL. Superresolution modeling of calcium release in the heart. Biophys J 2014, 107:3018–3029.
Gyorke, S, Gyorke, I, Lukyanenko, V, Terentyev, D, Viatchenko‐Karpinski, S, Wiesner, TF. Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle. Front Biosci 2002, 7:d1454–d1463.
Marx, SO, Gaburjakova, J, Gaburjakova, M, Henrikson, C, Ondrias, K, Marks, AR. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 2001, 88:1151–1158.
Gomez, AC, Yamaguchi, N. Two regions of the ryanodine receptor calcium channel are involved in Ca(2+)‐dependent inactivation. Biochemistry 2014, 53:1373–1379.
Schiefer, A, Meissner, G, Isenberg, G. Ca2+ activation and Ca2+ inactivation of canine reconstituted cardiac sarcoplasmic reticulum Ca(2+)‐release channels. J Physiol 1995, 489(Pt 2):337–348.
Laver, DR, Lamb, GD. Inactivation of Ca2+ release channels (ryanodine receptors RyR1 and RyR2) with rapid steps in [Ca2+] and voltage. Biophys J 1998, 74:2352–2364.
Sobie, EA, Dilly, KW, dos Santos, CJ, Lederer, WJ, Jafri, MS. Termination of cardiac Ca(2+) sparks: an investigative mathematical model of calcium‐induced calcium release. Biophys J 2002, 83:59–78.
Laver, DR, Kong, CH, Imtiaz, MS, Cannell, MB. Termination of calcium‐induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol 2013, 54:98–100.
Gillespie, D, Fill, M. Pernicious attrition and inter‐RyR2 CICR current control in cardiac muscle. J Mol Cell Cardiol 2013, 58:53–58.
Cannell, MB, Kong, CH, Imtiaz, MS, Laver, DR. Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 2013, 104:2149–2159.
DeRemigio, H, Smith, GD. The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain. Cell Calcium 2005, 38:73–86.
Stern, MD, Song, LS, Cheng, H, Sham, JS, Yang, HT, Boheler, KR, Rios, E. Local control models of cardiac excitation‐contraction coupling. A possible role for allosteric interactions between ryanodine receptors. J Gen Physiol 1999, 113:469–489.
Zima, AV, Picht, E, Bers, DM, Blatter, LA. Termination of cardiac Ca2+ sparks: role of intra‐SR [Ca2+], release flux, and intra‐SR Ca2+ diffusion. Circ Res 2008, 103:e105–e115.
Linz, KW, Meyer, R. Control of L‐type calcium current during the action potential of guinea‐pig ventricular myocytes. J Physiol 1998, 513(Pt 2):425–442.
Peterson, BZ, DeMaria, CD, Adelman, JP, Yue, DT. Calmodulin is the Ca2+ sensor for Ca2+‐dependent inactivation of L‐type calcium channels. Neuron 1999, 22:549–558.
Winslow, RL, Rice, J, Jafri, S, Marban, E, O`Rourke, B. Mechanisms of altered excitation‐contraction coupling in canine tachycardia‐induced heart failure, II: model studies. Circ Res 1999, 84:571–586.
Dick, IE, Tadross, MR, Liang, H, Tay, LH, Yang, W, Yue, DT. A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 2008, 451:830–834.
Tadross, MR, Dick, IE, Yue, DT. Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 2008, 133:1228–1240.
Seidman, JG, Seidman, C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 2001, 104:557–567.
Dobesh, DP, Konhilas, JP, de Tombe, PP. Cooperative activation in cardiac muscle: Impact of sarcomere length. Am J Physiol Heart Circ Physiol 2002, 282:H1055–H1062.
Kang, TM, Hilgemann, DW. Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature 2004, 427:544–548.
Moss, RL, Fitzsimons, DP. Frank‐Starling relationship: long on importance, short on mechanism. Circ Res 2002, 90:11–13.
Rice, JJ, Wang, F, Bers, DM, de Tombe, PP. Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 2008, 95:2368–2390.
Hunter, PJ, McCulloch, AD, ter Keurs, HE. Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 1998, 69:289–331.
Landesberg, A, Sideman, S. Coupling calcium binding to troponin C and cross‐bridge cycling in skinned cardiac cells. Am J Physiol 1994, 266:H1260–H1271.
Rice, JJ, Winslow, RL, Hunter, WC. Comparison of putative cooperative mechanisms in cardiac muscle: length dependence and dynamic responses. Am J Physiol 1999, 276:H1734–H1754.
Razumova, MV, Bukatina, AE, Campbell, KB. Stiffness‐distortion sarcomere model for muscle simulation. J Appl Physiol 1999, 87:1861–1876.
Negroni, JA, Lascano, EC. Concentration and elongation of attached cross‐bridges as pressure determinants in a ventricular model. J Mol Cell Cardiol 1999, 31:1509–1526.
Smith, NP. From sarcomere to cell: an efficient algorithm for linking mathematical models of muscle contraction. Bull Math Biol 2003, 65:1141–1162.
Campbell, KB, Razumova, MV, Kirkpatrick, RD, Slinker, BK. Myofilament kinetics in isometric twitch dynamics. Ann Biomed Eng 2001, 29:384–405.
Izakov, V, Katsnelson, LB, Blyakhman, FA, Markhasin, VS, Shklyar, TF. Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading. Circ Res 1991, 69:1171–1184.
Matsuoka, S, Sarai, N, Jo, H, Noma, A. Simulation of ATP metabolism in cardiac excitation‐contraction coupling. Prog Biophys Mol Biol 2004, 85:279–299.
Campbell, SG, Lionetti, FV, Campbell, KS, McCulloch, AD. Coupling of adjacent tropomyosins enhances cross‐bridge‐mediated cooperative activation in a markov model of the cardiac thin filament. Biophys J 2010, 98:2254–2264.
Land, S, Niederer, SA. A spatially detailed model of isometric contraction based on competitive binding of troponin I explains cooperative interactions between tropomyosin and crossbridges. PLoS Comput Biol 2015, 11:e1004376.
Land, S, Niederer, SA, Aronsen, JM, Espe, EK, Zhang, L, Louch, WE, Sjaastad, I, Sejersted, OM, Smith, NP. An analysis of deformation‐dependent electromechanical coupling in the mouse heart. J Physiol 2012, 590:4553–4569.
Metalnikova, NA, Tsaturyan, AK. A mechanistic model of Ca regulation of thin filaments in cardiac muscle. Biophys J 2013, 105:941–950.
Niederer, SA, Hunter, PJ, Smith, NP. A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys J 2006, 90:1697–1722.
Hilgemann, DW, Noble, D. Excitation‐contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc R Soc Lond B Biol Sci 1987, 230:163–205.
Niederer, SA, Smith, NP. A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys J 2007, 92:4030–4044.
Rice, JJ, Stolovitzky, G, Tu, Y, de Tombe, PP. Ising model of cardiac thin filament activation with nearest‐neighbor cooperative interactions. Biophys J 2003, 84:897–909.
Trayanova, NA, Rice, JJ. Cardiac electromechanical models: from cell to organ. Front Physiol 2011, 2:43.
Rice, JJ, de Tombe, PP. Approaches to modeling crossbridges and calcium‐dependent activation in cardiac muscle. Prog Biophys Mol Biol 2004, 85:179–195.
Earm, YE, Noble, D. A model of the single atrial cell: relation between calcium current and calcium release. Proc R Soc Lond B Biol Sci 1990, 240:83–96.
Noble, D, Varghese, A, Kohl, P, Noble, P. Improved guinea‐pig ventricular cell model incorporating a diadic space, IKr and IKs, and length‐ and tension‐dependent processes. Can J Cardiol 1998, 14:123–134.
Pandit, SV, Clark, RB, Giles, WR, Demir, SS. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys J 2001, 81:3029–3051.
Niederer, SA, Smith, NP. The role of the Frank‐Starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis. PLoS Comput Biol 2009, 5:e1000371.
Sham, JS, Cleemann, L, Morad, M. Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na(+)‐Ca2+ exchange. Science 1992, 255:850–853.
Bouchard, RA, Clark, RB, Giles, WR. Role of sodium‐calcium exchange in activation of contraction in rat ventricle. J Physiol 1993, 472:391–413.
Sipido, KR, Maes, M, Van de Werf, F. Low efficiency of Ca2+ entry through the Na(+)‐Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L‐type Ca2+ current and reverse‐mode Na(+)‐Ca2+ exchange. Circ Res 1997, 81:1034–1044.
Litwin, SE, Li, J, Bridge, JH. Na‐Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys J 1998, 75:359–371.
Wasserstrom, JA, Vites, AM. The role of Na(+)‐Ca2+ exchange in activation of excitation‐contraction coupling in rat ventricular myocytes. J Physiol 1996, 493(Pt 2):529–542.
Bovo, E, de Tombe, PP, Zima, AV. The role of dyadic organization in regulation of sarcoplasmic reticulum Ca(2+) handling during rest in rabbit ventricular myocytes. Biophys J 2014, 106:1902–1909.
Goldhaber, JI, Lamp, ST, Walter, DO, Garfinkel, A, Fukumoto, GH, Weiss, JN. Local regulation of the threshold for calcium sparks in rat ventricular myocytes: role of sodium‐calcium exchange. J Physiol 1999, 520(Pt 2):431–438.
Ottolia, M, Nicoll, DA, Philipson, KD. Roles of two Ca2+‐binding domains in regulation of the cardiac Na+‐Ca2+ exchanger. J Biol Chem 2009, 284:32735–32741.
Giladi, M, Boyman, L, Mikhasenko, H, Hiller, R, Khananshvili, D. Essential role of the CBD1‐CBD2 linker in slow dissociation of Ca2+ from the regulatory two‐domain tandem of NCX1. J Biol Chem 2010, 285:28117–28125.
Giladi, M, Bohbot, H, Buki, T, Schulze, DH, Hiller, R, Khananshvili, D. Dynamic features of allosteric Ca2+ sensor in tissue‐specific NCX variants. Cell Calcium 2012, 51:478–485.
Sobie, EA, Cannell, MB, Bridge, JH. Allosteric activation of Na+‐Ca2+ exchange by L‐type Ca2+ current augments the trigger flux for SR Ca2+ release in ventricular myocytes. Biophys J 2008, 94:L54–L56.
Lines, GT, Sande, JB, Louch, WE, Mork, HK, Grottum, P, Sejersted, OM. Contribution of the Na‐Ca exchanger to rapid Ca release in cardiomyocytes. Biophys J 2006, 91:779–792.
Jayasinghe, ID, Cannell, MB, Soeller, C. Organization of ryanodine receptors, transverse tubules, and sodium‐calcium exchanger in rat myocytes. Biophys J 2009, 97:2664–2673.
Wang, W, Landstrom, AP, Wang, Q, Munro, ML, Beavers, D, Ackerman, MJ, Soeller, C, Wehrens, XH. Reduced junctional Na+/Ca2+‐exchanger activity contributes to sarcoplasmic reticulum Ca2+ leak in junctophilin‐2‐deficient mice. Am J Physiol Heart Circ Physiol 2014, 307:H1317–H1326.
Janiak, R, Lewartowski, B, Langer, GA. Functional coupling between sarcoplasmic reticulum and Na/Ca exchange in single myocytes of guinea‐pig and rat heart. J Mol Cell Cardiol 1996, 28:253–264.
Viatchenko‐Karpinski, S, Terentyev, D, Jenkins, LA, Lutherer, LO, Gyorke, S. Synergistic interactions between Ca2+ entries through L‐type Ca2+ channels and Na+‐Ca2+ exchanger in normal and failing rat heart. J Physiol 2005, 567:493–504.
Larbig, R, Torres, N, Bridge, JH, Goldhaber, JI, Philipson, KD. Activation of reverse Na+‐Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J Physiol 2010, 588:3267–3276.
Hake, J, Edwards, AG, Yu, Z, Kekenes‐Huskey, PM, Michailova, AP, McCammon, JA, Holst, MJ, Hoshijima, M, McCulloch, AD. Modelling cardiac calcium sparks in a three‐dimensional reconstruction of a calcium release unit. J Physiol 2012, 590:4403–4422.
Mohler, PJ, Davis, JQ, Bennett, V. Ankyrin‐B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T‐tubule/SR microdomain. PLoS Biol 2005, 3:e423.
Maier, SK, Westenbroek, RE, McCormick, KA, Curtis, R, Scheuer, T, Catterall, WA. Distinct subcellular localization of different sodium channel α and β subunits in single ventricular myocytes from mouse heart. Circulation 2004, 109:1421–1427.
Torres, NS, Larbig, R, Rock, A, Goldhaber, JI, Bridge, JH. Na+ currents are required for efficient excitation‐contraction coupling in rabbit ventricular myocytes: a possible contribution of neuronal Na+ channels. J Physiol 2010, 588:4249–4260.
Leblanc, N, Hume, JR. Sodium current‐induced release of calcium from cardiac sarcoplasmic reticulum. Science 1990, 248:372–376.
Lederer, WJ, Niggli, E, Hadley, RW. Sodium‐calcium exchange in excitable cells: fuzzy space. Science 1990, 248:283.
Verdonck, F, Mubagwa, K, Sipido, KR. [Na(+)] in the subsarcolemmal `fuzzy` space and modulation of [Ca(2+)](i) and contraction in cardiac myocytes. Cell Calcium 2004, 35:603–612.
Cheng, H, Lederer, MR, Lederer, WJ, Cannell, MB. Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am J Physiol 1996, 270:C148–C159.
Kass, RS, Lederer, WJ, Tsien, RW, Weingart, R. Role of calcium ions in transient inward currents and after contractions induced by strophanthidin in cardiac Purkinje fibres. J Physiol 1978, 281:187–208.
Cerrone, M, Napolitano, C, Priori, SG. Catecholaminergic polymorphic ventricular tachycardia: a paradigm to understand mechanisms of arrhythmias associated to impaired Ca(2+) regulation. Heart Rhythm 2009, 6:1652–1659.
Li, P, Wei, W, Cai, X, Soeller, C, Cannell, MB, Holden, AV. Computational modelling of the initiation and development of spontaneous intracellular Ca2+ waves in ventricular myocytes. Philos Trans A Math Phys Eng Sci 2010, 368:3953–3965.
Rovetti, R, Cui, X, Garfinkel, A, Weiss, J, Qu, Z. Spark‐induced sparks as a mechanism of intracellular calcium alternans in cardiac myocytes. Circ Res 2010, 106:1582–1591.
Xie, L‐H, Weiss, JN. Arrhythmogenic consequences of intracellular calcium waves. Am J Physiol Heart Circ Physiol 2009, 297:H997–H1002.
Negroni, JA, Morotti, S, Lascano, EC, Gomes, AV, Grandi, E, Puglisi, JL, Bers, DM. β‐Adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model. J Mol Cell Cardiol 2015, 81:162–175.
Balaban, RS. Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 2002, 34:1259–1271.
Dedkova, EN, Blatter, LA. Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol 2013, 58:125–133.
Griffiths, EJ, Balaska, D, Cheng, WH. The ups and downs of mitochondrial calcium signalling in the heart. Biochim Biophys Acta 1797, 2010:856–864.
Rizzuto, R, De Stefani, D, Raffaello, A, Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012, 13:566–578.
Chance, B, Williams, GR. Method for the localization of sites for oxidative phosphorylation. Nature 1955, 176:250–254.
Territo, PR, French, SA, Dunleavy, MC, Evans, FJ, Balaban, RS. Calcium activation of heart mitochondrial oxidative phosphorylation—rapid kinetics of m(V) over dot (O2), NADH, and light scattering. J Biol Chem 2001, 276:2586–2599.
Williams, GS, Boyman, L, Chikando, AC, Khairallah, RJ, Lederer, WJ. Mitochondrial calcium uptake. Proc Natl Acad Sci USA 2013, 110:10479–10486.
Eisner, V, Csordas, G, Hajnoczky, G. Interactions between sarco‐endoplasmic reticulum and mitochondria in cardiac and skeletal muscle—pivotal roles in Ca(2)(+) and reactive oxygen species signaling. J Cell Sci 2013, 126:2965–2978.
Sharma, VK, Ramesh, V, Franzini‐Armstrong, C, Sheu, SS. Transport of Ca2+ from sarcoplasmic reticulum to mitochondria in rat ventricular myocytes. J Bioenerg Biomembr 2000, 32:97–104.
Parfenov, AS, Salnikov, V, Lederer, WJ, Lukyanenko, V. Aqueous diffusion pathways as a part of the ventricular cell ultrastructure. Biophys J 2006, 90:1107–1119.
Dorn, GW 2nd, Song, M, Walsh, K. Functional implications of mitofusin 2‐mediated mitochondrial‐SR tethering. J Mol Cell Cardiol 2015, 78:123–128.
Chen, Y, Csordas, G, Jowdy, C, Schneider, TG, Csordas, N, Wang, W, Liu, Y, Kohlhaas, M, Meiser, M, Bergem, S, et al. Mitofusin 2‐containing mitochondrial‐reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk. Circ Res 2012, 111:863–875.
Peskoff, A, Langer, GA. Calcium concentration and movement in the ventricular cardiac cell during an excitation‐contraction cycle. Biophys J 1998, 74:153–174.
Drago, I, De Stefani, D, Rizzuto, R, Pozzan, T. Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci USA 2012, 109:12986–12991.
Csordas, G, Varnai, P, Golenar, T, Roy, S, Purkins, G, Schneider, TG, Balla, T, Hajnoczky, G. Imaging interorganelle contacts and local calcium dynamics at the ER‐mitochondrial interface. Mol Cell 2010, 39:121–132.
Giacomello, M, Drago, I, Bortolozzi, M, Scorzeto, M, Gianelle, A, Pizzo, P, Pozzan, T. Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store‐operated Ca2+ channels. Mol Cell 2010, 38:280–290.
O`Rourke, B, Blatter, LA. Mitochondrial Ca2+ uptake: tortoise or hare? J Mol Cell Cardiol 2009, 46:767–774.
Maack, C, O`rourke, B. Excitation‐contraction coupling and mitochondrial energetics. Basic Res Cardiol 2007, 102:369–392.
Di Lisa, F, Gambassi, G, Spurgeon, H, Hansford, RG. Intramitochondrial free calcium in cardiac myocytes in relation to dehydrogenase activation. Cardiovasc Res 1993, 27:1840–1844.
Miyata, H, Silverman, HS, Sollott, SJ, Lakatta, EG, Stern, MD, Hansford, RG. Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am J Physiol 1991, 261:H1123–H1134.
Zhou, Z, Matlib, MA, Bers, DM. Cytosolic and mitochondrial Ca2+ signals in patch clamped mammalian ventricular myocytes. J Physiol 1998, 507(Pt 2):379–403.
Andrienko, TN, Picht, E, Bers, DM. Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. J Mol Cell Cardiol 2009, 46:1027–1036.
Lu, X, Ginsburg, KS, Kettlewell, S, Bossuyt, J, Smith, GL, Bers, DM. Measuring local gradients of intramitochondrial [Ca(2+)] in cardiac myocytes during sarcoplasmic reticulum Ca(2+) release. Circ Res 2013, 112:424–431.
Bell, CJ, Bright, NA, Rutter, GA, Griffiths, EJ. ATP regulation in adult rat cardiomyocytes: time‐resolved decoding of rapid mitochondrial calcium spiking imaged with targeted photoproteins. J Biol Chem 2006, 281:28058–28067.
Maack, C, Cortassa, S, Aon, MA, Ganesan, AN, Liu, T, O`Rourke, B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation‐contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res 2006, 99:172–182.
Robert, V, Gurlini, P, Tosello, V, Nagai, T, Miyawaki, A, Di Lisa, F, Pozzan, T. Beat‐to‐beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J 2001, 20:4998–5007.
Wei, AC, Liu, T, Winslow, RL, O`Rourke, B. Dynamics of matrix‐free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. J Gen Physiol 2012, 139:465–478.
Buntinas, L, Gunter, KK, Sparagna, GC, Gunter, TE. The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. Biochim Biophys Acta 2001, 1504:248–261.
De Stefani, D, Patron, M, Rizzuto, R. Structure and function of the mitochondrial calcium uniporter complex. Biochim Biophys Acta 2015, 1853:2006–2011.
Crompton, M, Virji, S, Doyle, V, Johnson, N, Ward, JM. The mitochondrial permeability transition pore. Biochem Soc Symp 1999, 66:167–179.
Lemasters, JJ, Qian, T, Bradham, CA, Brenner, DA, Cascio, WE, Trost, LC, Nishimura, Y, Nieminen, AL, Herman, B. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr 1999, 31:305–319.
Lukyanenko, V, Chikando, A, Lederer, WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol 2009, 41:1957–1971.
Brandes, R, Bers, DM. Simultaneous measurements of mitochondrial NADH and Ca(2+) during increased work in intact rat heart trabeculae. Biophys J 2002, 83:587–604.
Liu, T, O`Rourke, B. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res 2008, 103:279–288.
Bers, DM, Barry, WH, Despa, S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc Res 2003, 57:897–912.
Verdonck, F, Volders, PG, Vos, MA, Sipido, KR. Intracellular Na+ and altered Na+ transport mechanisms in cardiac hypertrophy and failure. J Mol Cell Cardiol 2003, 35:5–25.
Gauthier, LD, Greenstein, JL, O`Rourke, B, Winslow, RL. An integrated mitochondrial ROS production and scavenging model: implications for heart failure. Biophys J 2013, 105:2832–2842.
Cortassa, S, Aon, MA, Marban, E, Winslow, RL, O`Rourke, B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 2003, 84:2734–2755.
Gauthier, LD, Greenstein, JL, Cortassa, S, O`Rourke, B, Winslow, RL. A computational model of reactive oxygen species and redox balance in cardiac mitochondria. Biophys J 2013, 105:1045–1056.
Kembro, JM, Aon, MA, Winslow, RL, O`Rourke, B, Cortassa, S. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two‐compartment model. Biophys J 2013, 104:332–343.
Isenberg, G, Han, S, Schiefer, A, Wendt‐Gallitelli, MF. Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovasc Res 1993, 27:1800–1809.
Seguchi, H, Ritter, M, Shizukuishi, M, Ishida, H, Chokoh, G, Nakazawa, H, Spitzer, KW, Barry, WH. Propagation of Ca2+ release in cardiac myocytes: role of mitochondria. Cell Calcium 2005, 38:1–9.
Pacher, P, Thomas, AP, Hajnoczky, G. Ca2+ marks: miniature calcium signals in single mitochondria driven by ryanodine receptors. Proc Natl Acad Sci USA 2002, 99:2380–2385.
Gauthier, LD, Greenstein, JL, Winslow, RL. Toward an integrative computational model of the Guinea pig cardiac myocyte. Front Physiol 2012, 3:244.
Viola, HM, Arthur, PG, Hool, LC. Transient exposure to hydrogen peroxide causes an increase in mitochondria‐derived superoxide as a result of sustained alteration in L‐type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. Circ Res 2007, 100:1036–1044.
Hool, LC. The L‐type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state. Heart Lung Circ 2009, 18:3–10.
Murphy, AJ. Sulfhydryl group modification of sarcoplasmic reticulum membranes. Biochemistry 1976, 15:4492–4496.
Morris, TE, Sulakhe, PV. Sarcoplasmic reticulum Ca(2+)‐pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic Biol Med 1997, 22:37–47.
Scherer, NM, Deamer, DW. Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydryl groups in the Ca2+‐ATPase. Arch Biochem Biophys 1986, 246:589–601.
Reeves, JP, Bailey, CA, Hale, CC. Redox modification of sodium‐calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 1986, 261:4948–4955.
Kato, M, Kako, KJ. Na+/Ca2+ exchange of isolated sarcolemmal membrane: effects of insulin, oxidants and insulin deficiency. Mol Cell Biochem 1988, 83:15–25.
Coetzee, WA, Ichikawa, H, Hearse, DJ. Oxidant stress inhibits Na‐Ca‐exchange current in cardiac myocytes: mediation by sulfhydryl groups? Am J Physiol 1994, 266:H909–H919.
Haddock, PS, Shattock, MJ, Hearse, DJ. Modulation of cardiac Na(+)‐K+ pump current: role of protein and nonprotein sulfhydryl redox status. Am J Physiol 1995, 269:H297–H307.
Kukreja, RC, Weaver, AB, Hess, ML. Sarcolemmal Na(+)‐K(+)‐ATPase: inactivation by neutrophil‐derived free radicals and oxidants. Am J Physiol 1990, 259:H1330–H1336.
Cutaia, M, Parks, N. Oxidant stress decreases Na+/H+ antiport activity in bovine pulmonary artery endothelial cells. Am J Physiol 1994, 267:L649–L659.
Chao, CM, Jin, JS, Tsai, CS, Tsai, Y, Chen, WH, Chung, CC, Loh, SH. Effect of hydrogen peroxide on intracellular pH in the human atrial myocardium. Chin J Physiol 2002, 45:123–129.
Maczewski, M, Beresewicz, A. Role of nitric oxide and free radicals in cardioprotection by blocking Na+/H+ and Na+/Ca2+ exchange in rat heart. Eur J Pharmacol 2003, 461:139–147.
Belevych, AE, Terentyev, D, Viatchenko‐Karpinski, S, Terentyeva, R, Sridhar, A, Nishijima, Y, Wilson, LD, Cardounel, AJ, Laurita, KR, Carnes, CA, et al. Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 2009, 84:387–395.
Yan, Y, Liu, J, Wei, C, Li, K, Xie, W, Wang, Y, Cheng, H. Bidirectional regulation of Ca2+ sparks by mitochondria‐derived reactive oxygen species in cardiac myocytes. Cardiovasc Res 2008, 77:432–441.
Rokita, AG, Anderson, ME. New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin‐dependent kinase II (CaMKII). Circulation 2012, 126:2125–2139.
Mattiazzi, A, Bassani, RA, Escobar, AL, Palomeque, J, Valverde, CA, Vila Petroff, M, Bers, DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 2015, 308:H1177–H1191.
Currie, S, Loughrey, CM, Craig, MA, Smith, GL. Calcium/calmodulin‐dependent protein kinase IIδ associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem J 2004, 377:357–366.
Hudmon, A, Schulman, H, Kim, J, Maltez, JM, Tsien, RW, Pitt, GS. CaMKII tethers to L‐type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 2005, 171:537–547.
Maier, LS, Bers, DM. Role of Ca2+/calmodulin‐dependent protein kinase (CaMK) in excitation‐contraction coupling in the heart. Cardiovasc Res 2007, 73:631–640.
Meyer, T, Hanson, PI, Stryer, L, Schulman, H. Calmodulin trapping by calcium‐calmodulin‐dependent protein kinase. Science 1992, 256:1199–1202.
Greenstein, JL, Foteinou, PT, Hashambhoy‐Ramsay, YL, Winslow, RL. Modeling CaMKII‐mediated regulation of L‐type Ca(2+) channels and ryanodine receptors in the heart. Front Pharmacol 2014, 5:60.
Hund, TJ, Rudy, Y. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 2004, 110:3168–3174.
O`Hara, T, Virag, L, Varro, A, Rudy, Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 2011, 7:e1002061.
Hund, TJ, Decker, KF, Kanter, E, Mohler, PJ, Boyden, PA, Schuessler, RB, Yamada, KA, Rudy, Y. Role of activated CaMKII in abnormal calcium homeostasis and I(Na) remodeling after myocardial infarction: insights from mathematical modeling. J Mol Cell Cardiol 2008, 45:420–428.
Iribe, G, Kohl, P, Noble, D. Modulatory effect of calmodulin‐dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval‐force relations: a modelling study. Philos Trans A Math Phys Eng Sci 2006, 364:1107–1133.
Koivumaki, JT, Korhonen, T, Takalo, J, Weckstrom, M, Tavi, P. Regulation of excitation‐contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling. BMC Physiol 2009, 9:16.
Livshitz, LM, Rudy, Y. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am J Physiol Heart Circ Physiol 2007, 292:H2854–H2866.
Zang, Y, Dai, L, Zhan, H, Dou, J, Xia, L, Zhang, H. Theoretical investigation of the mechanism of heart failure using a canine ventricular cell model: especially the role of up‐regulated CaMKII and SR Ca(2+) leak. J Mol Cell Cardiol 2013, 56:34–43.
Grandi, E, Puglisi, JL, Wagner, S, Maier, LS, Severi, S, Bers, DM. Simulation of Ca‐calmodulin‐dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. Biophys J 2007, 93:3835–3847.
Grandi, E, Herren, AW. CaMKII‐dependent regulation of cardiac Na(+) homeostasis. Front Pharmacol 2014, 5:41.
Saucerman, JJ, Bers, DM. Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. Biophys J 2008, 95:4597–4612.
Soltis, AR, Saucerman, JJ. Synergy between CaMKII substrates and β‐adrenergic signaling in regulation of cardiac myocyte Ca(2+) handling. Biophys J 2010, 99:2038–2047.
Hashambhoy, YL, Winslow, RL, Greenstein, JL. CaMKII‐induced shift in modal gating explains L‐type Ca(2+) current facilitation: a modeling study. Biophys J 2009, 96:1770–1785.
Greenstein, JL, Winslow, RL. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophys J 2002, 83:2918–2945.
Hudmon, A, Schulman, H. Structure‐function of the multifunctional Ca2+/calmodulin‐dependent protein kinase II. Biochem J 2002, 364:593–611.
Dupont, G, Houart, G, De Koninck, P. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. Cell Calcium 2003, 34:485–497.
Grueter, CE, Abiria, SA, Dzhura, I, Wu, Y, Ham, AJ, Mohler, PJ, Anderson, ME, Colbran, RJ. L‐type Ca2+ channel facilitation mediated by phosphorylation of the β subunit by CaMKII. Mol Cell 2006, 23:641–650.
Lee, TS, Karl, R, Moosmang, S, Lenhardt, P, Klugbauer, N, Hofmann, F, Kleppisch, T, Welling, A. Calmodulin kinase II is involved in voltage‐dependent facilitation of the L‐type Cav1.2 calcium channel: Identification of the phosphorylation sites. J Biol Chem 2006, 281:25560–25567.
Jafri, MS, Rice, JJ, Winslow, RL. Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J 1998, 74:1149–1168.
Dzhura, I, Wu, Y, Colbran, RJ, Balser, JR, Anderson, ME. Calmodulin kinase determines calcium‐dependent facilitation of L‐type calcium channels. Nat Cell Biol 2000, 2:173–177.
Hashambhoy, YL, Greenstein, JL, Winslow, RL. Role of CaMKII in RyR leak, EC coupling and action potential duration: a computational model. J Mol Cell Cardiol 2010, 49:617–624.
Guo, T, Zhang, T, Mestril, R, Bers, DM. Ca2+/calmodulin‐dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res 2006, 99:398–406.
Erickson, JR, Joiner, ML, Guan, X, Kutschke, W, Yang, J, Oddis, CV, Bartlett, RK, Lowe, JS, O`Donnell, SE, Aykin‐Burns, N, et al. A dynamic pathway for calcium‐independent activation of CaMKII by methionine oxidation. Cell 2008, 133:462–474.
Wagner, S, Ruff, HM, Weber, SL, Bellmann, S, Sowa, T, Schulte, T, Anderson, ME, Grandi, E, Bers, DM, Backs, J, et al. Reactive oxygen species‐activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ Res 2011, 108:555–565.
Xie, LH, Chen, F, Karagueuzian, HS, Weiss, JN. Oxidative‐stress‐induced afterdepolarizations and calmodulin kinase II signaling. Circ Res 2009, 104:79–86.
Foteinou, PT, Greenstein, JL, Winslow, RL. Mechanistic investigation of the arrhythmogenic role of oxidized CaMKII in the heart. Biophys J 2015, 109:838–849.
Yang, JH, Saucerman, JJ. Computational models reduce complexity and accelerate insight into cardiac signaling networks. Circ Res 2011, 108:85–97.
Saucerman, JJ, Brunton, LL, Michailova, AP, McCulloch, AD. Modeling β‐adrenergic control of cardiac myocyte contractility in silico. J Biol Chem 2003, 278:47997–48003.
Saucerman, JJ, McCulloch, AD. Mechanistic systems models of cell signaling networks: a case study of myocyte adrenergic regulation. Prog Biophys Mol Biol 2004, 85:261–278.
Eisner, DA, Choi, HS, Diaz, ME, O`Neill, SC, Trafford, AW. Integrative analysis of calcium cycling in cardiac muscle. Circ Res 2000, 87:1087–1094.
Yang, JH, Saucerman, JJ. Phospholemman is a negative feed‐forward regulator of Ca2+ in β‐adrenergic signaling, accelerating β‐adrenergic inotropy. J Mol Cell Cardiol 2012, 52:1048–1055.
Greenstein, JL, Tanskanen, AJ, Winslow, RL. Modeling the actions of β‐adrenergic signaling on excitation–contraction coupling processes. Ann N Y Acad Sci 2004, 1015:16–27.
Tanskanen, AJ, Greenstein, JL, O`Rourke, B, Winslow, RL. The role of stochastic and modal gating of cardiac L‐type Ca2+ channels on early after‐depolarizations. Biophys J 2005, 88:85–95.
Weiss, S, Dascal, N. Molecular aspects of modulation of L‐type calcium channels by protein kinase C. Curr Mol Pharmacol 2015, 8:43–53.
Steinberg, SF. Mechanisms for redox‐regulation of protein kinase C. Front Pharmacol 2015, 6:128.
Hammond, J, Balligand, JL. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol 2012, 52:330–340.
Tsai, EJ, Kass, DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 2009, 122:216–238.
Stangherlin, A, Zaccolo, M. cGMP‐cAMP interplay in cardiac myocytes: a local affair with far‐reaching consequences for heart function. Biochem Soc Trans 2012, 40:11–14.
Omori, K, Kotera, J. Overview of PDEs and their regulation. Circ Res 2007, 100:309–327.
Coultrap, SJ, Bayer, KU. Nitric oxide induces Ca2+‐independent activity of the Ca2+/calmodulin‐dependent protein kinase II (CaMKII). J Biol Chem 2014, 289:19458–19465.
Curran, J, Tang, L, Roof, SR, Velmurugan, S, Millard, A, Shonts, S, Wang, H, Santiago, D, Ahmad, U, Perryman, M, et al. Nitric oxide‐dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation. PLoS One 2014, 9:e87495.
Negulescu, PA, Shastri, N, Cahalan, MD. Intracellular calcium dependence of gene expression in single T lymphocytes. Proc Natl Acad Sci USA 1994, 91:2873–2877.
Molkentin, JD, Lu, JR, Antos, CL, Markham, B, Richardson, J, Robbins, J, Grant, SR, Olson, EN. A calcineurin‐dependent transcriptional pathway for cardiac hypertrophy. Cell 1998, 93:215–228.
Alonso, MT, Garcia‐Sancho, J. Nuclear Ca(2+) signalling. Cell Calcium 2011, 49:280–289.
Bootman, MD, Fearnley, C, Smyrnias, I, MacDonald, F, Roderick, HL. An update on nuclear calcium signalling. J Cell Sci 2009, 122:2337–2350.
Wu, X, Bers, DM. Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 2006, 99:283–291.
Wente, SR, Rout, MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2010, 2:a000562.
Gerasimenko, O, Gerasimenko, J. New aspects of nuclear calcium signalling. J Cell Sci 2004, 117:3087–3094.
Bkaily, G, Nader, M, Avedanian, L, Jacques, D, Perrault, C, Abdel‐Samad, D, D`Orleans‐Juste, P, Gobeil, F, Hazzouri, KM. Immunofluorescence revealed the presence of NHE‐1 in the nuclear membranes of rat cardiomyocytes and isolated nuclei of human, rabbit, and rat aortic and liver tissues. Can J Physiol Pharmacol 2004, 82:805–811.
Wu, G, Xie, X, Lu, ZH, Ledeen, RW. Sodium‐calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci USA 2009, 106:10829–10834.
Garner, MH. Na,K‐ATPase in the nuclear envelope regulates Na+: K+ gradients in hepatocyte nuclei. J Membr Biol 2002, 187:97–115.
Ljubojevic, S, Walther, S, Asgarzoei, M, Sedej, S, Pieske, B, Kockskamper, J. In situ calibration of nucleoplasmic versus cytoplasmic Ca(2)+ concentration in adult cardiomyocytes. Biophys J 2011, 100:2356–2366.
Zima, AV, Bare, DJ, Mignery, GA, Blatter, LA. IP3‐dependent nuclear Ca2+ signalling in the mammalian heart. J Physiol 2007, 584:601–611.
Rusnak, F, Mertz, P. Calcineurin: form and function. Physiol Rev 2000, 80:1483–1521.
Shannon, TR, Wang, F, Puglisi, J, Weber, C, Bers, DM. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys J 2004, 87:3351–3371.
Tomida, T, Hirose, K, Takizawa, A, Shibasaki, F, Iino, M. NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J 2003, 22:3825–3832.
Agabiti‐Rosei, E, Muiesan, ML, Romanelli, G, Beschi, M, Castellano, M, Muiesan, G. Reversal of cardiac hypertrophy by long‐term treatment with calcium antagonists in hypertensive patients. J Cardiovasc Pharmacol 1988, 12(suppl 6):S75–S78.
Wang, S, Ziman, B, Bodi, I, Rubio, M, Zhou, YY, D`Souza, K, Bishopric, NH, Schwartz, A, Lakatta, EG. Dilated cardiomyopathy with increased SR Ca2+ loading preceded by a hypercontractile state and diastolic failure in the α(1C)TG mouse. PLoS One 2009, 4:e4133.
Nakayama, H, Chen, X, Baines, CP, Klevitsky, R, Zhang, X, Zhang, H, Jaleel, N, Chua, BHL, Hewett, TE, Robbins, J, et al. Ca2+‐ and mitochondrial‐dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 2007, 117:2431–2444.
Beetz, N, Hein, L, Meszaros, J, Gilsbach, R, Barreto, F, Meissner, M, Hoppe, UC, Schwartz, A, Herzig, S, Matthes, J. Transgenic simulation of human heart failure‐like L‐type Ca2+‐channels: implications for fibrosis and heart rate in mice. Cardiovasc Res 2009, 84:396–406.
Lipskaia, L, Chemaly, ER, Hadri, L, Lompre, AM, Hajjar, RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther 2010, 10:29–41.
Wu, X, Zhang, T, Bossuyt, J, Li, X, McKinsey, TA, Dedman, JR, Olson, EN, Chen, J, Brown, JH, Bers, DM. Local InsP3‐dependent perinuclear Ca2+ signaling in cardiac myocyte excitation‐transcription coupling. J Clin Invest 2006, 116:675–682.
Grozinger, CM, Schreiber, SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14‐3‐3‐dependent cellular localization. Proc Natl Acad Sci USA 2000, 97:7835–7840.
Bare, DJ, Kettlun, CS, Liang, M, Bers, DM, Mignery, GA. Cardiac type 2 inositol 1,4,5‐trisphosphate receptor: interaction and modulation by calcium/calmodulin‐dependent protein kinase II. J Biol Chem 2005, 280:15912–15920.
Escobar, M, Cardenas, C, Colavita, K, Petrenko, NB, Franzini‐Armstrong, C. Structural evidence for perinuclear calcium microdomains in cardiac myocytes. J Mol Cell Cardiol 2011, 50:451–459.
Ibarra, C, Vicencio, JM, Estrada, M, Lin, Y, Rocco, P, Rebellato, P, Munoz, JP, Garcia‐Prieto, J, Quest, AF, Chiong, M, et al. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin‐like growth factor 1 receptors. Circ Res 2013, 112:236–245.
Menick, DR, Li, MS, Chernysh, O, Renaud, L, Kimbrough, D, Kasiganesan, H, Mani, SK. Transcriptional pathways and potential therapeutic targets in the regulation of Ncx1 expression in cardiac hypertrophy and failure. Adv Exp Med Biol 2013, 961:125–135.
Xiao, L, Coutu, P, Villeneuve, LR, Tadevosyan, A, Maguy, A, Le Bouter, S, Allen, BG, Nattel, S. Mechanisms underlying rate‐dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circ Res 2008, 103:733–742.
Greenstein, JL, Wu, R, Po, S, Tomaselli, GF, Winslow, RL. Role of the calcium‐independent transient outward current I(to1) in shaping action potential morphology and duration. Circ Res 2000, 87:1026–1033.
Kuriyan, J, Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 2007, 450:983–990.
Wong, W, Scott, JD. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 2004, 5:959–970.
Hinch, R, Greenstein, JL, Tanskanen, AJ, Xu, L, Winslow, RL. A simplified local control model of calcium‐induced calcium release in cardiac ventricular myocytes. Biophys J 2004, 87:3723–3736.
Hinch, R, Greenstein, JL, Winslow, RL. Multi‐scale models of local control of calcium induced calcium release. Prog Biophys Mol Biol 2006, 90:136–150.
van Breemen, C, Fameli, N, Evans, AM. Pan‐junctional sarcoplasmic reticulum in vascular smooth muscle: nanospace Ca2+ transport for site‐ and function‐specific Ca2+ signalling. J Physiol 2013, 591:2043–2054.
Fakler, B, Adelman, JP. Control of K(Ca) channels by calcium nano/microdomains. Neuron 2008, 59:873–881.
Berridge, MJ. Neuronal calcium signaling. Neuron 1998, 21:13–26.
Higley, MJ, Sabatini, BL. Calcium signaling in dendritic spines. Cold Spring Harb Perspect Biol 2012, 4:a005686.
Fuchs, PA, Lehar, M, Hiel, H. Ultrastructure of cisternal synapses on outer hair cells of the mouse cochlea. J Comp Neurol 2014, 522:717–729.