Jin, F, Li, Y, Dixon, JR, Selvaraj, S, Ye, Z, Lee, AY, Yen, CA, Schmitt, AD, Espinoza, CA, Ren, B. A high‐resolution map of the three‐dimensional chromatin interactome in human cells. Nature 2013, 503:290–294.
Kagey, MH, Newman, JJ, Bilodeau, S, Zhan, Y, Orlando, DA, van Berkum, NL, Ebmeier, CC, Goossens, J, Rahl, PB, Levine, SS et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010, 467:430–435.
Pope, BD, Ryba, T, Dileep, V, Yue, F, Wu, W, Denas, O, Vera, DL, Wang, Y, Hansen, RS, Canfield, TK et al. Topologically associating domains are stable units of replication‐timing regulation. Nature 2014, 515:402–405.
Sanyal, A, Lajoie, BR, Jain, G, Dekker, J. The long‐range interaction landscape of gene promoters. Nature 2012, 489:109–113.
Sofueva, S, Yaffe, E, Chan, WC, Georgopoulou, D, Vietri Rudan, M, Mira‐Bontenbal, H, Pollard, SM, Schroth, GP, Tanay, A, Hadjur, S. Cohesin‐mediated interactions organize chromosomal domain architecture. EMBO J 2013, 32:3119–3129.
Gibcus, JH, Dekker, J. The hierarchy of the 3D genome. Mol Cell 2013, 49:773–782.
Dostie, J, Richmond, TA, Arnaout, RA, Selzer, RR, Lee, WL, Honan, TA, Rubio, ED, Krumm, A, Lamb, J, Nusbaum, C et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 2006, 16:1299–1309.
Dixon, JR, Jung, I, Selvaraj, S, Shen, Y, Antosiewicz‐Bourget, JE, Lee, AY, Ye, Z, Kim, A, Rajagopal, N, Xie, W et al. Chromatin architecture reorganization during stem cell differentiation. Nature 2015, 518:331–336.
Dixon, JR, Selvaraj, S, Yue, F, Kim, A, Li, Y, Shen, Y, Hu, M, Liu, JS, Ren, B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376–380.
Rao, SS, Huntley, MH, Durand, NC, Stamenova, EK, Bochkov, ID, Robinson, JT, Sanborn, AL, Machol, I, Omer, AD, Lander, ES et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014, 159:1665–1680.
Lieberman‐Aiden, E, van Berkum, NL, Williams, L, Imakaev, M, Ragoczy, T, Telling, A, Amit, I, Lajoie, BR, Sabo, PJ, Dorschner, MO et al. Comprehensive mapping of long‐range interactions reveals folding principles of the human genome. Science 2009, 326:289–293.
Phillips‐Cremins, JE, Sauria, ME, Sanyal, A, Gerasimova, TI, Lajoie, BR, Bell, JS, Ong, CT, Hookway, TA, Guo, C, Sun, Y et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 2013, 153:1281–1295.
de Laat, W, Dekker, J. 3C‐based technologies to study the shape of the genome. Methods 2012, 58:189–191.
de Wit, E, de Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev 2012, 26:11–24.
Wolffe, AP, Guschin, D. Review: chromatin structural features and targets that regulate transcription. J Struct Biol 2000, 129:102–122.
Cremer, T, Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001, 2:292–301.
Mirny, LA. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 2011, 19:37–51.
Gondor, A, Ohlsson, R. Transcription in the loop. Nat Genet 2006, 38:1229–1230.
O`Sullivan, JM, Tan‐Wong, SM, Morillon, A, Lee, B, Coles, J, Mellor, J, Proudfoot, NJ. Gene loops juxtapose promoters and terminators in yeast. Nat Genet 2004, 36:1014–1018.
Sexton, T, Bantignies, F, Cavalli, G. Genomic interactions: chromatin loops and gene meeting points in transcriptional regulation. Semin Cell Dev Biol 2009, 20:849–855.
Tolhuis, B, Palstra, RJ, Splinter, E, Grosveld, F, de Laat, W. Looping and interaction between hypersensitive sites in the active beta‐globin locus. Mol Cell 2002, 10:1453–1465.
Doyle, B, Fudenberg, G, Imakaev, M, Mirny, LA. Chromatin loops as allosteric modulators of enhancer‐promoter interactions. PLoS Comput Biol 2014, 10:e1003867.
Nora, EP, Lajoie, BR, Schulz, EG, Giorgetti, L, Okamoto, I, Servant, N, Piolot, T, van Berkum, NL, Meisig, J, Sedat, J et al. Spatial partitioning of the regulatory landscape of the X‐inactivation centre. Nature 2012, 485:381–385.
Sexton, T, Yaffe, E, Kenigsberg, E, Bantignies, F, Leblanc, B, Hoichman, M, Parrinello, H, Tanay, A, Cavalli, G. Three‐dimensional folding and functional organization principles of the Drosophila genome. Cell 2012, 148:458–472.
Wood, AM, Van Bortle, K, Ramos, E, Takenaka, N, Rohrbaugh, M, Jones, BC, Jones, KC, Corces, VG. Regulation of chromatin organization and inducible gene expression by a Drosophila insulator. Mol Cell 2011, 44:29–38.
Nagano, T, Lubling, Y, Stevens, TJ, Schoenfelder, S, Yaffe, E, Dean, W, Laue, ED, Tanay, A, Fraser, P. Single‐cell Hi‐C reveals cell‐to‐cell variability in chromosome structure. Nature 2013, 502:59–64.
Fraser, P, Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature 2007, 447:413–417.
Guelen, L, Pagie, L, Brasset, E, Meuleman, W, Faza, MB, Talhout, W, Eussen, BH, de Klein, A, Wessels, L, de Laat, W et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 2008, 453:948–951.
Zhang, Y, McCord, RP, Ho, YJ, Lajoie, BR, Hildebrand, DG, Simon, AC, Becker, MS, Alt, FW, Dekker, J. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 2012, 148:908–921.
Kind, J, Pagie, L, de Vries, SS, Nahidiazar, L, Dey, SS, Bienko, M, Zhan, Y, Lajoie, B, de Graaf, CA, Amendola, M et al. Genome‐wide maps of nuclear lamina interactions in single human cells. Cell 2015, 163:134–147.
Dekker, J, Marti‐Renom, MA, Mirny, LA. Exploring the three‐dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 2013, 14:390–403.
Vietri Rudan, M, Barrington, C, Henderson, S, Ernst, C, Odom, DT, Tanay, A, Hadjur, S. Comparative Hi‐C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 2015, 10:1297–1309.
Yaffe, E, Tanay, A. Probabilistic modeling of Hi‐C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 2011, 43:1059–1065.
Hou, C, Li, L, Qin, ZS, Corces, VG. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol Cell 2012, 48:471–484.
Smith, EM, Lajoie, BR, Jain, G, Dekker, J. Invariant TAD boundaries constrain cell‐type‐specific looping interactions between promoters and distal elements around the CFTR locus. Am J Hum Genet 2016, 98:185–201.
Ohlsson, R, Renkawitz, R, Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 2001, 17:520–527.
Filippova, GN, Fagerlie, S, Klenova, EM, Myers, C, Dehner, Y, Goodwin, G, Neiman, PE, Collins, SJ, Lobanenkov, VV. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c‐myc oncogenes. Mol Cell Biol 1996, 16:2802–2813.
Phillips, JE, Corces, VG. CTCF: master weaver of the genome. Cell 2009, 137:1194–1211.
Hadjur, S, Williams, LM, Ryan, NK, Cobb, BS, Sexton, T, Fraser, P, Fisher, AG, Merkenschlager, M. Cohesins form chromosomal cis‐interactions at the developmentally regulated IFNG locus. Nature 2009, 460:410–413.
Kurukuti, S, Tiwari, VK, Tavoosidana, G, Pugacheva, E, Murrell, A, Zhao, Z, Lobanenkov, V, Reik, W, Ohlsson, R. CTCF binding at the H19 imprinting control region mediates maternally inherited higher‐order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA 2006, 103:10684–10689.
Splinter, E, Heath, H, Kooren, J, Palstra, RJ, Klous, P, Grosveld, F, Galjart, N, de Laat, W. CTCF mediates long‐range chromatin looping and local histone modification in the beta‐globin locus. Genes Dev 2006, 20:2349–2354.
Handoko, L, Xu, H, Li, G, Ngan, CY, Chew, E, Schnapp, M, Lee, CW, Ye, C, Ping, JL, Mulawadi, F et al. CTCF‐mediated functional chromatin interactome in pluripotent cells. Nat Genet 2011, 43:630–638.
Zuin, J, Dixon, JR, van der Reijden, MI, Ye, Z, Kolovos, P, Brouwer, RW, van de Corput, MP, van de Werken, HJ, Knoch, TA, van, IWF et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA 2014, 111:996–1001.
Kim, TH, Abdullaev, ZK, Smith, AD, Ching, KA, Loukinov, DI, Green, RD, Zhang, MQ, Lobanenkov, VV, Ren, B. Analysis of the vertebrate insulator protein CTCF‐binding sites in the human genome. Cell 2007, 128:1231–1245.
Barski, A, Cuddapah, S, Cui, K, Roh, TY, Schones, DE, Wang, Z, Wei, G, Chepelev, I, Zhao, K. High‐resolution profiling of histone methylations in the human genome. Cell 2007, 129:823–837.
Cuddapah, S, Jothi, R, Schones, DE, Roh, TY, Cui, K, Zhao, K. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 2009, 19:24–32.
Jothi, R, Cuddapah, S, Barski, A, Cui, K, Zhao, K. Genome‐wide identification of in vivo protein‐DNA binding sites from ChIP‐Seq data. Nucleic Acids Res 2008, 36:5221–5231.
Chen, H, Tian, Y, Shu, W, Bo, X, Wang, S. Comprehensive identification and annotation of cell type‐specific and ubiquitous CTCF‐binding sites in the human genome. PLoS One 2012, 7:e41374.
Wang, H, Maurano, MT, Qu, H, Varley, KE, Gertz, J, Pauli, F, Lee, K, Canfield, T, Weaver, M, Sandstrom, R et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 2012, 22:1680–1688.
Rubio, ED, Reiss, DJ, Welcsh, PL, Disteche, CM, Filippova, GN, Baliga, NS, Aebersold, R, Ranish, JA, Krumm, A. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA 2008, 105:8309–8314.
Renda, M, Baglivo, I, Burgess‐Beusse, B, Esposito, S, Fattorusso, R, Felsenfeld, G, Pedone, PV. Critical DNA binding interactions of the insulator protein CTCF: a small number of zinc fingers mediate strong binding, and a single finger‐DNA interaction controls binding at imprinted loci. J Biol Chem 2007, 282:33336–33345.
Nakahashi, H, Kwon, KR, Resch, W, Vian, L, Dose, M, Stavreva, D, Hakim, O, Pruett, N, Nelson, S, Yamane, A et al. A genome‐wide map of CTCF multivalency redefines the CTCF code. Cell Rep 2013, 3:1678–1689.
Rhee, HS, Pugh, BF. Comprehensive genome‐wide protein‐DNA interactions detected at single‐nucleotide resolution. Cell 2011, 147:1408–1419.
Schmidt, D, Schwalie, PC, Wilson, MD, Ballester, B, Goncalves, A, Kutter, C, Brown, GD, Marshall, A, Flicek, P, Odom, DT. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 2012, 148:335–348.
Guo, Y, Xu, Q, Canzio, D, Shou, J, Li, J, Gorkin, DU, Jung, I, Wu, H, Zhai, Y, Tang, Y et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 2015, 162:900–910.
de Wit, E, Vos, ES, Holwerda, SJ, Valdes‐Quezada, C, Verstegen, MJ, Teunissen, H, Splinter, E, Wijchers, PJ, Krijger, PH, de Laat, W. CTCF binding polarity determines chromatin looping. Mol Cell 2015, 60:676–684.
Tang, Z, Luo, OJ, Li, X, Zheng, M, Zhu, JJ, Szalaj, P, Trzaskoma, P, Magalska, A, Wlodarczyk, J, Ruszczycki, B et al. CTCF‐mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 2015, 163:1611–1627.
Dowen, JM, Fan, ZP, Hnisz, D, Ren, G, Abraham, BJ, Zhang, LN, Weintraub, AS, Schuijers, J, Lee, TI, Zhao, K et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 2014, 159:374–387.
Recillas‐Targa, F, Pikaart, MJ, Burgess‐Beusse, B, Bell, AC, Litt, MD, West, AG, Gaszner, M, Felsenfeld, G. Position‐effect protection and enhancer blocking by the chicken beta‐globin insulator are separable activities. Proc Natl Acad Sci USA 2002, 99:6883–6888.
Schwartz, YB, Linder‐Basso, D, Kharchenko, PV, Tolstorukov, MY, Kim, M, Li, HB, Gorchakov, AA, Minoda, A, Shanower, G, Alekseyenko, AA et al. Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res 2012, 22:2188–2198.
Van Bortle, K, Ramos, E, Takenaka, N, Yang, J, Wahi, JE, Corces, VG. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Genome Res 2012, 22:2176–2187.
Phillips‐Cremins, JE, Corces, VG. Chromatin insulators: linking genome organization to cellular function. Mol Cell 2013, 50:461–474.
Narendra, V, Rocha, PP, An, D, Raviram, R, Skok, JA, Mazzoni, EO, Reinberg, D. Transcription CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 2015, 347:1017–1021.
Lupianez, DG, Kraft, K, Heinrich, V, Krawitz, P, Brancati, F, Klopocki, E, Horn, D, Kayserili, H, Opitz, JM, Laxova, R et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene‐enhancer interactions. Cell 2015, 161:1012–1025.
Flavahan, WA, Drier, Y, Liau, BB, Gillespie, SM, Venteicher, AS, Stemmer‐Rachamimov, AO, Suva, ML, Bernstein, BE. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 2016, 529:110–114.
Alipour, E, Marko, JF. Self‐organization of domain structures by DNA‐loop‐extruding enzymes. Nucleic Acids Res 2012, 40:11202–11212.
Nichols, MH, Corces, VG. A CTCF code for 3D genome architecture. Cell 2015, 162:703–705.
Sanborn, AL, Rao, SS, Huang, SC, Durand, NC, Huntley, MH, Jewett, AI, Bochkov, ID, Chinnappan, D, Cutkosky, A, Li, J et al. Chromatin extrusion explains key features of loop and domain formation in wild‐type and engineered genomes. Proc Natl Acad Sci USA 2015, 112:E6456–6465.
Deng, W, Lee, J, Wang, H, Miller, J, Reik, A, Gregory, PD, Dean, A, Blobel, GA. Controlling long‐range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 2012, 149:1233–1244.
Deng, W, Rupon, JW, Krivega, I, Breda, L, Motta, I, Jahn, KS, Reik, A, Gregory, PD, Rivella, S, Dean, A et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 2014, 158:849–860.