Lacker, H. Regulation of ovulation number in mammals: a follicle interaction law that controls maturation. Biophys J 1981, 35:433–454. doi:10.1016/S0006-3495(81)84800-X.
Sarty, G, Pierson, R. An application of Lacker`s model for the prediction of ovarian response to superstimulation. Math Biosci 2005, 198:80–96. doi:10.1016/j.mbs.2005.07.008.
Soboleva, T, Peterson, A, Pleasants, A, McNatty, K, Rhodes, F. A model of follicular development and ovulation in sheep and cattle. Anim Reprod Sci 2000, 58:45–57. doi:10.1016/S0378-4320(99)00086-X.
Byatt‐Smith, J, Leese, H, Gosden, R. An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum Reprod 1991, 6:52–57.
Clark, A, Stokes, Y. Follicle structure influences the availability of oxygen to the oocyte in antral follicles. Comput Math Method Med 2011, 2011:287186. doi:10.1155/2011/287186.
Clark, A, Stokes, Y, Lane, M, Thompson, J. Mathematical modelling of oxygen concentration in bovine and murine cumulus‐oocyte complexes. Reproduction 2006, 131:999–1006. doi:10.1530/rep.1.00974.
Clark, A, Stokes, Y, Thompson, J. Estimation of glucose uptake by ovarian follicular cells. Ann Biomed Eng 2011, 39:2654–2667. doi:10.1007/s10439-011-0353-y.
Gosden, R, Byatt‐Smith, J. Oxygen concentration gradient across the ovarian follicular epithelium: model, predictions and implications. Hum Reprod 1986, 1:65–68.
Redding, G, Bronlund, J, Hart, A. Mathematical modelling of oxygen transport limited follicle growth. Reproduction 2007, 133:1095–1106. doi:10.1530/REP-06-0171.
Redding, G, Bronlund, J, Hart, A. Theoretical investigation into dissolved oxygen levels in follicular fluid of the developing human follicle using mathematical modelling. Reprod Fertil Dev 2008, 20:408–417. doi:10.1071/RD07190.
Byrne, HM, Chaplain, MA, Pettet, GJ, McElwain, DS. An analysis of a mathematical model of trophoblast invasion. Appl Math Lett 2001, 14:1005–1010. doi:10.1016/S0893-9659(01)00079-9.
Byrne, M, Chaplain, M, Pettet, G, McElwain, D. A mathematical model of trophoblast invasion. Comput Math Method Med 1999, 1:275–286. doi:10.1080/10273669908833026.
Rejniak, K, Kliman, H, Fauci, L. A computational model of the mechanics of growth of the villous trophoblast layer. Bull Math Biol 2004, 66:199–232. doi:10.1016/j.bulm.2003.06.001.
Aslanidi, O, Atia, J, Benson, A, van den Berg, H, Blanks, A, Choi, C, Gilbert, S, Goryanin, I, Hayes‐Gill, B, Holden, A, et al. Towards a computational reconstruction of the electrodynamics of premature and full term human labour. Prog Biophys Mol Biol 2011, 107:183–192. doi:10.1016/j.pbiomolbio.2011.07.004.
La Rosa, PS, Eswaran, H, Preissl, H, Nehorai, A. Multiscale forward electromagnetic model of uterine contractions during pregnancy. BMC Med Phys 2012, 12:4. doi:10.1186/1756-6649-12-4.
Laforet, J, Rabotti, C, Terrien, J, Mischi, M, Marque, C. Toward a multiscale model of the uterine electrical activity. IEEE Trans Biomed Eng 2011, 58:3487–3490. doi:10.1109/TBME.2011.2167970.
Buttin, R, Zara, F, Shariat, B, Redarce, T, Grangé, G. Biomechanical simulation of the fetal descent without imposed theoretical trajectory. Comput Methods Programs Biomed 2013, 111:389–401. doi:10.1016/j.cmpb.2013.04.005.
Jing, D, Ashton‐Miller, JA, DeLancey, JO. A subject‐specific anisotropic visco‐hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech 2012, 45:455–460. doi:10.1016/j.jbiomech.2011.12.002.
Li, X, Kruger, JA, Nash, MP, Nielsen, PM. Effects of fetal head motion on pelvic floor mechanics. In Computational Biomechanics for Medicine. New York: Springer; 2010, 129–137.
Parente, MP, Natal Jorge, RM, Mascarenhas, T, Fernandes, AA, Silva‐Filho, AL. Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am J Obstet Gynecol 2010, 203:217.e211–217.e216. doi:10.1016/j.ajog.2010.03.038.
Sutton, M, Gilchrist, R, Thompson, J. Effects of in‐vivo and in‐vitro environments on the metabolism of the cumulus‐oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update 2003, 9:35–48. doi:10.1093/humupd/dmg009.
Smitz, J, Thompson, J, Gilchrist, R. The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med 2011, 29:24–37. doi:10.1055/s-0030-1268701.
Van Blerkom, J, Antzczak, M, Schrader, R. The development potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod 1997, 12:1047–1055. doi:10.1093/humrep/12.5.1047.
Redding, G, Bronlund, J, Hart, A. The effects of IVF aspiration on the temperature, dissolved oxygen levels, and pH of follicular fluid. J Assist Reprod Gen 2006, 23:37–40. doi:10.1007/s10815-005-9011-3.
Thompson, J, Brown, H, Kind, K, Russel, D. The ovarian antral follicle: living on the edge of hypoxia or not? Biol Reprod 2015, 92:1–6. doi:10.1095/biolreprod.115.128660.
Neeman, M, Abramovitch, R, Schiffenbauer, Y, Tempel, C. Regulation of angiogenesis by hypoxic stress: from solid tumours to the ovarian follicle. Int J Exp Pathol 1997, 78:57–70. doi:10.1046/j.1365-2613.1997.d01-247.x.
Araujo, R, McElwain, D. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 2004, 66:1039–1091. doi:10.1016/j.bulm.2003.11.002.
Enderling, H, Chaplain, M. Mathematical modeling of tumor growth and treatment. Curr Pharm Des 2014, 20:4934–4940. doi:10.1007/88-470-0396-2_3.
Hashimoto, S, Minami, N, Takakura, R, Yamada, M, Imai, H, Kashima, N. Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus‐oocyte complexes. Reprod Dev 2000, 57:353–360.
Banwell, K, Lane, M, Russel, D, Kind, K, Thompson, J. Oxygen concentration during mouse oocyte in vitro maturation affects embryo and fetal development. Hum Reprod 2007, 22:2768–2775. doi:10.1093/humrep/dem203.
Stokes, Y, Clark, A, Thompson, J. Mathematical modeling of glucose supply toward successful in vitro maturation of mammalian oocytes. Tissue Eng 2008, 14:1539–1547 10.1089/ten.tea.2008.0036.
Li, D, Redding, G, Bronlund, J. Oxygen consumption by bovine granulosa cells with prediction of oxygen transport in preantral follicles. Reprod Fertil Dev 2013, 25:1158–1164. doi:10.1071/RD12283.
Vetharaniam, I, Peterson, A, McNatty, K, Soboleva, T. Modelling female reproductive function in farmed animals. Anim Reprod Sci 2010, 122:164–173. doi:10.1016/j.anireprosci.2010.08.015.
Faddy, M, Gosden, R. A model conforming the decline in follicle numbers to the age of menopause in women. Hum Reprod 1996, 11:1484–1486.
Franks, S, Stark, J, Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Biophys J 2008, 14:367–378. doi:10.1093/humupd/dmn015.
Singh, J, Adams, G, Pierson, R. Promise of new imaging technologies to assess ovarian function. Anim Reprod Sci 2003, 78:371–399. doi:10.1016/S0378-4320(03)00100-3.
Faddy, M, Jones, E, Edwards, R. An analytical model of ovarian follicle dynamics. J Exp Zool 1976, 197:173–186.
Thilagam, A. Mathematical modelling of decline in follicle pool during female reproductive aging. Math Med Biol 2015, 33:107–121. doi:10.1093/imammb/dqv006.
Lacker, H, Beers, W, Mueli, L, Akin, E. A theory of follicle selection. I: hypotheses and examples. Biol Reprod 1987, 37:570–580. doi:10.1095/biolreprod37.3.570.
Mariana, J, Corpet, F, Chevalet, C. Lacker`s model: control of follicular growth and ovulation in domestic species. Acta Biotheor 1994, 42:245–262. doi:10.1007/BF00707391.
Clement, F, Gruet, M, Monget, P, Terqui, M, Jolivet, E, Monniaux, D. Growth kinetics of the granulosa cell population in ovarian follicles by mathematical modelling. Cell Prolif 1997, 30:255–270. doi:10.1111/j.1365-2184.1997.tb00939.x.
Clement, F. Optimal control of the cell dynamics in the granulosa of preovulatory follicles. Math Biosci 1998, 152:123. doi:10.1016/S0025-5564(98)10026-3.
Echenim, N, Monniaux, D, Sorine, M, Clement, F. Multiscale modeling of the follicle selection process in the ovary. Math Biosci 2005, 198:57–79. doi:10.1016/j.mbs.2005.05.003.
Clement, F, Monniaux, D, Stark, J, Hardy, K, Thalabard, J, Franks, S, Claude, D. Mathematical model of FSH induced cAMP production in ovarian follicles. Am J Physiol Endocrinol Metab 2001, 2S1:E35–E53.
Clement, F, Coron, J‐M, Shang, P. Optimal control of cell mass and maturity in a model of follicular ovulation. SIAM J Control Optim 2013, 51:824–847. doi:10.1137/120862247.
Iber, D, De Geyter, C. Computational modeling of bovine ovarian follicle development. BMC Syst Biol 2013, 7:60. doi:10.1186/1752-0509-7-60.
Reinecke, I, Deufflhard, P. A complex mathematical model of the human menstrual cycle. J Theor Biol 2007, 247:303–330. doi:10.1016/j.jtbi.2007.03.011.
Niakan, K, Han, J, Peterson, R, Simon, C, Reijopera, R. Human preimplantation embryo development. Development 2012, 139:829–841. doi:10.1242/dev.060426.
Gaffney, E, Gadelha, H, Smith, D, Blake, J, Kirkman‐Brown, J. Mammalian spem motility: observation and theory. Annu Rev Fluid Mech 2011, 43:501–528. doi:10.1146/annurev-fluid-121108-145442.
Koh, J. The study of spermatazoa and sorting in relation to human reproduction. Microfluid Nanofluid 2015, 18:755–774. doi:10.1007/s10404-014-1520-x.
Verdugo, P, Lee, W, Halbert, S, Blandau, R, Tam, P. A stochastic model for oviductal egg transport. Biophys J 1980, 29:257–270. doi:10.1016/S0006-3495(80)85130-7.
Blake, J, Vann, P. A model of ovum transport. J Theor Biol 1983, 102:145–166. doi:10.1016/0022-5193(83)90267-9.
Halbert, S, Becker, D, Szal, S. Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod 1989, 40:1131–1136. doi:10.1095/biolreprod40.6.1131.
Halbert, S, Patton, D, Zarutskie, P, Soules, M. Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener`s syndrome. Hum Reprod 1997, 12:55–58. doi:10.1093/humrep/12.1.55.
Hardy, K, Spanos, S, Becker, D, Iannelli, P, Winston, R, Stark, J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci USA 2001, 98:1655–1660. doi:10.1073/pnas.98.4.1655.
Lighten, A, Moore, G, Winston, R, Hardy, K. Routine addition of human insulin‐like growth factor‐I ligand could benefit clinical in‐vitro fertilization culture. Hum Reprod 1998, 13:3144–3150. doi:10.1093/humrep/13.11.3144.
Cha, J, Sun, X, Sudhanso, D. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012, 18:1754–1767. doi:10.1038/nm.3012.
Norwitz, E, Schust, D, Fisher, S. Implantation and the survival of early pregnancy. N Engl J Med 2001, 345:1400–1408. doi:10.1056/NEJMra000763.
James, J, Carter, A, Chamley, L. Human placentation from nidation to 5 weeks of gestation. Part II: tools to model the crucial first days. Placenta 2012, 33:335–342. doi:10.1016/j.placenta.2012.01.019.
Chen, Q, Zhang, Y, Elad, D, Jaffa, A, Cao, Y, Ye, X, Duan, E. Navigating the site for embryo implantation: biomechanical and molecular regulation of intrauterine embryo distribution. Mol Aspects Med 2013, 34:1024–1042. doi:10.1016/j.mam.2012.07.017.
Eytan, O, Elad, D. Analysis of intra‐uterine fluid motion induced by uterine contractions. Bull Math Biol 1999, 61:221–238. doi:10.1006/bulm.1998.0069.
de Vries, KL, Lyons, EA, Ballard, G, Levi, C, Lindsay, D. Contractions of the inner third of the myometrium. Am J Obstet Gynecol 1990, 162:679–682. doi:10.1016/0002-9378(90)90983-E.
Fancin, R, Ayoubi, J‐M, Olivennes, F, Righini, C, de Ziegler, D, Frydman, R. Hormonal influence on the uterine contractility during ovarian stimulation. Hum Reprod 2000, 15:90–1000. doi:10.1093/humrep/15.suppl_1.90.
Eytan, O, Azem, F, Gull, I, Wolman, I, Elad, D, Jaffa, AJ. The mechanism of hydrosalpinx in embryo implantation. Hum Reprod 2001, 16:2662–2667. doi:10.1093/humrep/16.12.2662.
Eytan, O, Elad, D, Jaffa, A. Bioengineering studies of the embryo transfer procedure. Ann N Y Acad Sci 2007, 1101:21–37. doi:10.1196/annals.1389.028.
Yaniv, S, Elad, D, Jaffa, A, Eytan, O. Biofluid aspects of embryo transfer. Ann Biomed Eng 2003, 31:1255–1262. doi:10.1114/1.1615575.
Eytan, O, Jaffa, A, Elad, D. Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med Eng Phys 2001, 23:475–484. doi:10.1016/S1350-4533(01)00078-9.
Khong, T, de Wolf, F, Robertson, W, Brosens, I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre‐eclampsia and small‐for‐gestational‐age infants. Br J Obstet Gynaecol 1986, 93:1049–1059. doi:10.1111/j.1471-0528.1986.tb07830.x.
Bischof, P, Campana, A. A model for implantation of the human blastocyst and early placentation. Hum Reprod Update 1996, 2:262–270. doi:10.1093/humupd/2.3.262.
Zhu, Y, Sprague, B, Phernetton, T, Magness, R, Chesler, N. Transmission line models to simulate the impedance of the uterine vasculature during the ovarian cycle and pregnancy. Eur J Obstet Gynecol Reprod Biol 2009, 144:S184–S191. doi:10.1016/j.ejogrb.2009.02.030.
Pennati, G, Socci, L, Rigano, S, Boito, S, Ferrazzi, E. Computational patient‐specific models based on 3‐D ultrasound data to quantify uterine arterial flow during pregnancy. IEEE Trans Med Imaging 2008, 27:1715–1722. doi:10.1109/TMI.2008.924642.
Mo, Y, Bascom, P, Ritchie, K, McCowan, L. A transmission line modelling approach to the interpretation of uterine Doppler waveforms. Ultrasound Med Biol 1988, 14:365–376. doi:10.1016/0301-5629(88)90072-5.
Burton, G, Woods, A, Jauniaux, E, Kingdom, J. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009, 30:473–482.
Gordon, Z, Eytan, O, Jaffa, AJ, Elad, D. Fetal blood flow in branching models of the chorionic arterial vasculature. Ann N Y Acad Sci 2007, 1101:250–265. doi:10.1196/annals.1389.037.
Clark, A, Lin, M, Tawhai, M, Saghian, R, James, J. Multiscale modelling of the feto–placental vasculature. Interface focus 2015, 5:20140078. doi:10.1098/rsfs.2014.0078.
Haeussner, E, Schmitz, C, Frank, H‐G, Edler von Koch, F. Novel 3D light microscopic analysis of IUGR placentas points to a morphological correlate of compensated ischemic placental disease in humans. Sci Rep 2016, 6:24004.
Plutman Mayo, R, Charnock‐Jones, D, Burton, G, Oyen, M. Three‐dimensional modeling of human placental term villi. Placenta 2016, 43:54–60.
Lecarpentier, E, Bhatt, M, Bertin, G, Deloison, BS, Salomon, LJ, Fournier, T, Barakat, A, Tsatsaris, V. Computational fluid dynamic simulations of maternal circulation: wall shear stress in the human placenta and its biological implications. PLOS One 2016, 11:e0147262.
Cotter, S, Klika, K, Kimpton, L, Collins, S, Heazell, A. A stochastic model for early placental development. J R Soc Interface 2014, 11:20140149. doi:10.1098/rsif.2014.0149.
Chernyavsky, I, Leach, L, Dryden, I, Jensen, O. A mathematical model of intervillous blood flow in the human placentone. Placenta 2010, 31:44–52. doi:10.1016/j.placenta.2009.11.003.
Hill, E, Power, G, Longo, L. A mathematical model of placental O2 transfer with consideration of hemoglobin rates. Am J Physiol 1972, 222:721–729.
Serov, A, Salafia, C, Filoche, M, Grebenkov, D. Analytical theory of oxygen transport in the human placenta. J Theor Biol 2015, 368:134–144. doi:10.1016/j.jtbi.2014.12.016.
Guttmacher, A, Maddox, Y, Spong, C. The human Placenta project: placental, structure,development and function in real time. Placenta 2014, 35:303–304. doi:10.1016/j.placenta.2014.02.012.
Taggart, M, Blanks, A, Kharche, S, Holden, A, Wang, B, Zhang, H. Towards understanding the myometrial physiome: approaches for the construction of a virtual physiological uterus. BMC Pregnancy Childbirth 2007, 7:S3. doi:10.1186/1471-2393-7-S1-S3.
Tong, W‐C, Choi, C, Kharche, S, Holden, A, Zhang, H, Taggart, M. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS One 2011, 6:e18685. doi:10.1371/journal.pone.0018685.
Bursztyn, L, Eytan, O, Jaffa, A, Elad, D. Modeling myometrial smooth muscle contraction. Ann N Y Acad Sci 2007, 1101:110–138. doi:10.1196/annals.1389.025.
Tong, W‐C, Ghouri, I, Taggart, M. Computational modeling of inhibition of voltage‐gated Ca channels: identification of different effects on uterine and cardiac action potentials. Front Physiol 2014, 5:399. doi:10.3389/fphys.2014.00399.
Tong, W‐C, Tribe, R, Smith, R, Taggart, M. Computational modeling reveals key contributions of KCNQ and hERG currents to the malleability of uterine action potentials underpinning labour. PLoS One 2014, 9:e114034.
Xu, J, Menon, S, Singh, R, Garnier, N, Sinha, A, Pumir, A. The role of cellular coupling in the spontaneous generation of electrical activity in uterine tissue. PLoS One 2015, 10:e0118443.
Barclay, M, Andersen, H, Simon, C. Emergent behaviors in a deterministic model of the human uterus. Reprod Sci 2010, 17:948–954. doi:10.1177/1933719110376544.
Bastos, LF, Van Meurs, W, Ayres‐de‐Campos, D. A model for educational simulation of the evolution of uterine contractions during labor. Comput Methods Programs Biomed 2012, 107:242–247. doi:10.1016/j.cmpb.2011.09.016.
Sharp, G, Saunders, P, Norman, J. Computer models to study uterine activation at labour. Mol Hum Reprod 2013, 19:711–717. doi:10.1093/molehr/gat043.
Baker, NP, Kenny, LC. Obstetrics by Ten Teachers. 19th ed. Boca Raton, FL: CRC Press, Taylor and Francis Group; 2013, 19–27. Available at: https://online.vitalsource.com/#/books/9781482212839/.
Roberts, A, Baskett, T, Calder, A, Arulkumaran, S. William Smellie and William Hunter: two great obstetricians and anatomists. J R Soc Med 2010, 103:205–206. doi:10.1258/jrsm.2010.100107.
Svabik, K, Shek, KL, Dietz, HP. How much does the levator hiatus have to stretch during childbirth? BJOG 2009, 116:1657–1662. doi:10.1111/j.1471-0528.2009.02321.x.
Dietz, HP, Lanzarone, V. Levator trauma after vaginal delivery. Obstet Gynecol 2005, 106:707–712. doi:10.1097/01.AOG.0000178779.62181.01.
Kearney, R, Miller, JM, Ashton‐Miller, JA, DeLancey, JO. Obstetric factors associated with levator ani muscle injury after vaginal birth. Obstet Gynecol 2006, 107:144–149. doi:10.1097/01.AOG.0000194063.63206.1c.
Vergeldt, TM, Weemhoff, M, IntHout, J, Kluivers, K. Risk factors for pelvic organ prolapse and its recurrence: a systematic review. Int Urogynecol J 2015, 26:1559–1573. doi:10.1007/s00192-015-2695-8.
Delancey, JO, Kane Low, L, Miller, JM, Patel, DA, Tumbarello, JA. Graphic integration of causal factors of pelvic floor disorders: an integrated life span model. Am J Obstet Gynecol 2008, 199:610.e611–610.e615. doi:10.1016/j.ajog.2008.04.001.
Li, X, Kruger, JA, Nash, MP, Nielsen, PM. Modeling childbirth: elucidating the mechanisms of labor. Wiley Interdiscip Rev Syst Biol Med 2010, 2:460–470. doi:10.1002/wsbm.65.
Yan, X, Kruger, JA, Nielsen, PM, Nash, MP. Effects of fetal head shape variation on the second stage of labour. J Biomech 2015, 48:1593–1599. doi:10.1016/j.jbiomech.2015.02.062.
Mitchell, B, Taggart, M. Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol 2009, 297:R525–R545. doi:10.1152/ajpregu.00153.2009.
Martin, R. Human reproduction: a comparative background for medical hypotheses. J Reprod Immunol 2003, 59:111–135. doi:10.1016/S0165-0378(03)00042-1.
Rosenberg, K, Tevathan, R. The evolution of human birth. Sci Am 2001, 285:61–65.
Yu, T, Lloyd, C, Nickerson, D, Cooling, M, Miller, A, Garney, A, Terkildsen, J, Lawson, J, Britten, R, Hunter, P, et al. The physiome model repository 2. Bioinformatics 2011, 27:743–744.
Ciliberto, A, Tyson, JJ. Mathematical model for early development of the sea urchin embryo. Bull Math Biol 2000, 62:37–59.
Calzone, L, Thieffry, D, Tyson, JJ, Novak, B. Dynamical modeling of syncytial mitotic cycles in Drosophila embryos. Mol Syst Biol 2007, 3:131.
Goldbeter, A, Gonze, D, Pourquié, O. Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev Dyn 2007, 236:1495–1508.
Ciliberto, A, Petrus, MJ, Tyson, JJ, Sible, JC. A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos. Biophys Chem 2003, 104:573–589.
Novak, B, Tyson, JJ. Numerical analysis of a comprehensive model of M‐phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 1993, 106:1153–1168.
McKenzie, A, Sneyd, J. On the formation and breakup of spiral waves of calcium. Int J Bifurcat Chaos 1998, 8:2003–2012.
Huang, C‐Y, Ferrell, JE. Ultrasensitivity in the mitogen‐activated protein kinase cascade. Proc Natl Acad Sci USA 1996, 93:10078–10083.
Faber, G, Rudy, Y. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J 2000, 78:2392–2404.
Egli, M, Bertram, R, Sellix, MT, Freeman, ME. Rhythmic secretion of prolactin in rats: action of oxytocin coordinated by vasoactive intestinal polypeptide of suprachiasmatic nucleus origin. Endocrinology 2004, 145:3386–3394.