Balkwill, F, Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 2001, 357:539–45.
Hagemann, T, Balkwill, F, Lawrence, T. Inflammation and cancer: a double‐edged sword. Cancer Cell 2007, 12:300–1.
Li, N, Grivennikov, SI, Karin, M. The unholy trinity: inflammation, cytokines, and STAT3 shape the cancer microenvironment. Cancer Cell 2011, 19:429–31.
Mantovani, A. Cancer: inflammation by remote control. Nature 2005, 435:752–3.
Mantovani, A, Allavena, P, Sica, A, Balkwill, F. Cancer‐related inflammation. Nature 2008, 454:436–44.
Marx, J. Cancer research. Inflammation and cancer: the link grows stronger. Science 2004, 306:966–8.
Pyne, NJ, Pyne, S. Sphingosine 1‐phosphate is a missing link between chronic inflammation and colon cancer. Cancer Cell 2013, 23:5–7.
Sethi, G, Sung, B, Aggarwal, BB. TNF: a master switch for inflammation to cancer. Front Biosci 2008, 13:5094–107.
Yu, H, Pardoll, D, Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009, 9:798–809.
Bhatelia, K, Singh, K, Singh, R. TLRs: linking inflammation and breast cancer. Cell Signal 2014, 26:2350–7.
Bonomi, M, Patsias, A, Posner, M, Sikora, A. The role of inflammation in head and neck cancer. Adv Exp Med Biol 2014, 816:107–27.
Deng, T, Lyon, CJ, Bergin, S, Caligiuri, MA, Hsueh, WA. Obesity, Inflammation, and Cancer. Annu Rev Pathol 2016, 11:421–49.
Kwon, OJ, Zhang, L, Ittmann, MM, Xin, L. Prostatic inflammation enhances basal‐to‐luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc Natl Acad Sci USA 2014, 111:E592–600.
Li, G, Wang, Z, Ye, J, Zhang, X, Wu, H, Peng, J, Song, W, Chen, C, Cai, S, He, Y, et al. Uncontrolled inflammation induced by AEG‐1 promotes gastric cancer and poor prognosis. Cancer Res 2014, 74:5541–52.
Ness, RB, Cottreau, C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst 1999, 91:1459–67.
Philip, M, Rowley, DA, Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 2004, 14:433–9.
Pikarsky, E, Porat, RM, Stein, I, Abramovitch, R, Amit, S, Kasem, S, Gutkovich‐Pyest, E, Urieli‐Shoval, S, Galun, E, Ben‐Neriah, Y. NF‐κB functions as a tumour promoter in inflammation‐associated cancer. Nature 2004, 431:461–6.
Balkwill, FR, Mantovani, A. Cancer‐related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 2012, 22:33–40.
Caronni, N, Savino, B, Bonecchi, R. Myeloid cells in cancer‐related inflammation. Immunobiology 2015, 220:249–53.
Sica, A, Allavena, P, Mantovani, A. Cancer related inflammation: the macrophage connection. Cancer Lett 2008, 267:204–15.
Colombo, MP, Mantovani, A. Targeting myelomonocytic cells to revert inflammation‐dependent cancer promotion. Cancer Res 2005, 65:9113–6.
Huang, Y, Snuderl, M, Jain, RK. Polarization of tumor‐associated macrophages: a novel strategy for vascular normalization and antitumor immunity. Cancer Cell 2011, 19:1–2.
Huang, Y, Yuan, J, Righi, E, Kamoun, WS, Ancukiewicz, M, Nezivar, J, Santosuosso, M, Martin, JD, Martin, MR, Vianello, F, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 2012, 109:17561–6.
Postow, MA, Chesney, J, Pavlick, AC, Robert, C, Grossmann, K, McDermott, D, Linette, GP, Meyer, N, Giguere, JK, Agarwala, SS, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015, 372:2006–17.
Weber, JS, Gibney, G, Sullivan, RJ, Sosman, JA, Slingluff, CL Jr, Lawrence, DP, Logan, TF, Schuchter, LM, Nair, S, Fecher, L, et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open‐label, randomised, phase 2 trial. Lancet Oncol 2016, 17:943–55.
Wolchok, JD, Kluger, H, Callahan, MK, Postow, MA, Rizvi, NA, Lesokhin, AM, Segal, NH, Ariyan, CE, Gordon, RA, Reed, K, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013, 369:122–33.
Chen, K, Huang, J, Gong, W, Iribarren, P, Dunlop, NM, Wang, JM. Toll‐like receptors in inflammation, infection and cancer. Int Immunopharmacol 2007, 7:1271–85.
Helm, CL, Fleury, ME, Zisch, AH, Boschetti, F, Swartz, MA. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 2005, 102:15779–84.
Shi, ZD, Tarbell, JM. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann Biomed Eng 2011, 39:1608–19.
Song, JW, Munn, LL. Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 2011, 108:15342–7.
Swartz, MA, Fleury, ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 2007, 9:229–56.
Sundd, P, Pospieszalska, MK, Cheung, LS, Konstantopoulos, K, Ley, K. Biomechanics of leukocyte rolling. Biorheology 2011, 48:1–35.
Sun, C, Jain, RK, Munn, LL. Non‐uniform plasma leakage affects local hematocrit and blood flow: implications for inflammation and tumor perfusion. Ann Biomed Eng 2007, 35:2121–9.
Melder, RJ, Koenig, GC, Witwer, BP, Safabakhsh, N, Munn, LL, Jain, RK. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 1996, 2:992–7.
Migliorini, C, Qian, Y, Chen, H, Brown, EB, Jain, RK, Munn, LL. Red blood cells augment leukocyte rolling in a virtual blood vessel. Biophys J 2002, 83:1834–41.
Munn, LL, Dupin, MM. Blood cell interactions and segregation in flow. Ann Biomed Eng 2008, 36:534–44.
Sun, C, Migliorini, C, Munn, LL. Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys J 2003, 85:208–22.
De Caterina, R, Libby, P, Peng, HB, Thannickal, VJ, Rajavashisth, TB, Gimbrone, MA Jr, Shin, WS, Liao, JK. Nitric oxide decreases cytokine‐induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995, 96:60–8.
Khan, BV, Harrison, DG, Olbrych, MT, Alexander, RW, Medford, RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox‐sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 1996, 93:9114–9.
Melder, RJ, Munn, LL, Yamada, S, Ohkubo, C, Jain, RK. Selectin‐ and integrin‐mediated T‐lymphocyte rolling and arrest on TNF‐α‐activated endothelium: augmentation by erythrocytes. Biophys J 1995, 69:2131–8.
Spiecker, M, Darius, H, Kaboth, K, Hubner, F, Liao, JK. Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J Leukoc Biol 1998, 63:732–9.
Verbeke, H, Geboes, K, Van Damme, J, Struyf, S. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta 2012, 1825:117–29.
Pold, M, Zhu, LX, Sharma, S, Burdick, MD, Lin, Y, Lee, PP, Pold, A, Luo, J, Krysan, K, Dohadwala, M, et al. Cyclooxygenase‐2‐dependent expression of angiogenic CXC chemokines ENA‐78/CXC Ligand (CXCL) 5 and interleukin‐8/CXCL8 in human non‐small cell lung cancer. Cancer Res 2004, 64:1853–60.
Schenk, BI, Petersen, F, Flad, HD, Brandt, E. Platelet‐derived chemokines CXC chemokine ligand (CXCL)7, connective tissue‐activating peptide III, and CXCL4 differentially affect and cross‐regulate neutrophil adhesion and transendothelial migration. J Immunol 2002, 169:2602–10.
Klintrup, K, Makinen, JM, Kauppila, S, Vare, PO, Melkko, J, Tuominen, H, Tuppurainen, K, Makela, J, Karttunen, TJ, Makinen, MJ. Inflammation and prognosis in colorectal cancer. Eur J Cancer 2005, 41:2645–54.
Hakkim, A, Fuchs, TA, Martinez, NE, Hess, S, Prinz, H, Zychlinsky, A, Waldmann, H. Activation of the Raf‐MEK‐ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 2011, 7:75–7.
Hu, SC, Yu, HS, Yen, FL, Lin, CL, Chen, GS, Lan, CC. Neutrophil extracellular trap formation is increased in psoriasis and induces human β‐defensin‐2 production in epidermal keratinocytes. Sci Rep 2016, 6:31119.
Shan, Q, Dwyer, M, Rahman, S, Gadjeva, M. Distinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap‐mediated immunity. Infect Immun 2014, 82:4135–43.
Tamarozzi, F, Turner, JD, Pionnier, N, Midgley, A, Guimaraes, AF, Johnston, KL, Edwards, SW, Taylor, MJ. Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis. Sci Rep 2016, 6:35559.
Khatami, M. Chronic inflammation: synergistic interactions of recruiting macrophages (TAMs) and eosinophils (Eos) with host mast cells (MCs) and tumorigenesis in CALTs. M‐CSF, suitable biomarker for cancer diagnosis!. Cancers (Basel) 2014, 6:297–322.
Lin, WW, Karin, M. A cytokine‐mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007, 117:1175–83.
Wang, K, Karin, M. Tumor‐elicited inflammation and colorectal cancer. Adv Cancer Res 2015, 128:173–96.
Wang, TC, Goldenring, JR. Inflammation intersection: gp130 balances gut irritation and stomach cancer. Nat Med 2002, 8:1080–2.
Watanabe, M, Kato, J, Inoue, I, Yoshimura, N, Yoshida, T, Mukoubayashi, C, Deguchi, H, Enomoto, S, Ueda, K, Maekita, T, et al. Development of gastric cancer in nonatrophic stomach with highly active inflammation identified by serum levels of pepsinogen and Helicobacter pylori antibody together with endoscopic rugal hyperplastic gastritis. Int J Cancer 2012, 131:2632–42.
Bromberg, J, Wang, TC. Inflammation and cancer: IL‐6 and STAT3 complete the link. Cancer Cell 2009, 15:79–80.
Fazio, C, Piazzi, G, Vitaglione, P, Fogliano, V, Munarini, A, Prossomariti, A, Milazzo, M, D`Angelo, L, Napolitano, M, Chieco, P, et al. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by eicosapentaenoic acid‐free fatty acid in colon cancer cells. Sci Rep 2016, 6:20670.
Liang, J, Nagahashi, M, Kim, EY, Harikumar, KB, Yamada, A, Huang, WC, Hait, NC, Allegood, JC, Price, MM, Avni, D, et al. Sphingosine‐1‐phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis‐associated cancer. Cancer Cell 2013, 23:107–20.
Alam, M, Khan, M, Veledar, E, Pongprutthipan, M, Flores, A, Dubina, M, Nodzenski, M, Yoo, SS. Correlation of inflammation in frozen sections with site of nonmelanoma skin cancer. JAMA Dermatol 2016, 152:173–6.
Lund, AW, Medler, TR, Leachman, SA, Coussens, LM. Lymphatic vessels, inflammation, and immunity in skin cancer. Cancer Discov 2016, 6:22–35.
Perez‐Moreno, M, Song, W, Pasolli, HA, Williams, SE, Fuchs, E. Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer. Proc Natl Acad Sci USA 2008, 105:15399–404.
Zhang, J, Chen, L, Xiao, M, Wang, C, Qin, Z. FSP1+ fibroblasts promote skin carcinogenesis by maintaining MCP‐1‐mediated macrophage infiltration and chronic inflammation. Am J Pathol 2011, 178:382–90.
Zheng, D, Bode, AM, Zhao, Q, Cho, YY, Zhu, F, Ma, WY, Dong, Z. The cannabinoid receptors are required for ultraviolet‐induced inflammation and skin cancer development. Cancer Res 2008, 68:3992–8.
Alderton, GK. Inflammation: the gut takes a toll on liver cancer. Nat Rev Cancer 2012, 12:379.
Barash, H, Gross, RE, Edrei, Y, Ella, E, Israel, A, Cohen, I, Corchia, N, Ben‐Moshe, T, Pappo, O, Pikarsky, E, et al. Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation‐induced double‐strand DNA breaks. Proc Natl Acad Sci USA 2010, 107:2207–12.
He, G, Karin, M. NF‐κB and STAT3 ‐ key players in liver inflammation and cancer. Cell Res 2011, 21:159–68.
Al Murri, AM, Bartlett, JM, Canney, PA, Doughty, JC, Wilson, C, McMillan, DC. Evaluation of an inflammation‐based prognostic score (GPS) in patients with metastatic breast cancer. Br J Cancer 2006, 94:227–30.
Cohen, EN, Gao, H, Anfossi, S, Mego, M, Reddy, NG, Debeb, B, Giordano, A, Tin, S, Wu, Q, Garza, RJ, et al. Inflammation mediated metastasis: immune induced epithelial‐to‐mesenchymal transition in inflammatory breast cancer cells. PLoS ONE 2015, 10:e0132710.
HunJ, RJ, Ulrich, CM, Goode, EL, Brhane, Y, Muir, K, Chan, AT, Marchand, LL, Schildkraut, J, Witte, JS, Eeles, R, et al. Cross cancer genomic investigation of inflammation pathway for five common cancers: lung, ovary, prostate, breast, and colorectal cancer. J Natl Cancer Inst 2015, 107:djv246. doi: 10.1093/jnci/djv246.
Engels, EA, Wu, X, Gu, J, Dong, Q, Liu, J, Spitz, MR. Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Res 2007, 67:6520–7.
Spitz, MR, Gorlov, IP, Amos, CI, Dong, Q, Chen, W, Etzel, CJ, Gorlova, OY, Chang, DW, Pu, X, Zhang, D, et al. Variants in inflammation genes are implicated in risk of lung cancer in never smokers exposed to second‐hand smoke. Cancer Discov 2011, 1:420–9.
Bian, Y, Hall, B, Sun, ZJ, Molinolo, A, Chen, W, Gutkind, JS, Waes, CV, Kulkarni, AB. Loss of TGF‐ββ signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer‐related inflammation. Oncogene 2012, 31:3322–32.
Bornstein, S, White, R, Malkoski, S, Oka, M, Han, G, Cleaver, T, Reh, D, Andersen, P, Gross, N, Olson, S, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 2009, 119:3408–19.
Schetter, AJ, Heegaard, NH, Harris, CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 2010, 31:37–49.
Taniguchi, K, Karin, M. IL‐6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014, 26:54–74.
Dmitrieva, OS, Shilovskiy, IP, Khaitov, MR, Grivennikov, SI. Interleukins 1 and 6 as Main Mediators of Inflammation and Cancer. Biochemistry (Mosc) 2016, 81:80–90.
Yang, Y, Guo, Y, Tan, S, Ke, B, Tao, J, Liu, H, Jiang, J, Chen, J, Chen, G, Wu, B. β‐Arrestin1 enhances hepatocellular carcinogenesis through inflammation‐mediated Akt signalling. Nat Commun 2015, 6:7369.
Sangaletti, S, Tripodo, C, Ratti, C, Piconese, S, Porcasi, R, Salcedo, R, Trinchieri, G, Colombo, MP, Chiodoni, C. Oncogene‐driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res 2010, 70:7764–75.
Xu, L, Yi, HG, Wu, Z, Han, W, Chen, K, Zang, M, Wang, D, Zhao, X, Wang, H, Qu, C. Activation of mucosal mast cells promotes inflammation‐related colon cancer development through recruiting and modulating inflammatory CD11b(+)Gr1(+) cells. Cancer Lett 2015, 364:173–80.
Wimberly, AL, Forsyth, CB, Khan, MW, Pemberton, A, Khazaie, K, Keshavarzian, A. Ethanol‐induced mast cell‐mediated inflammation leads to increased susceptibility of intestinal tumorigenesis in the APC Delta468 min mouse model of colon cancer. Alcohol Clin Exp Res 2013, 37 Suppl 1:E199–208.
Samraj, AN, Pearce, OM, Laubli, H, Crittenden, AN, Bergfeld, AK, Banda, K, Gregg, CJ, Bingman, AE, Secrest, P, Diaz, SL, et al. A red meat‐derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci USA 2015, 112:542–7.
Meira, LB, Bugni, JM, Green, SL, Lee, CW, Pang, B, Borenshtein, D, Rickman, BH, Rogers, AB, Moroski‐Erkul, CA, McFaline, JL, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 2008, 118:2516–25.
Erdman, SE, Rao, VP, Poutahidis, T, Rogers, AB, Taylor, CL, Jackson, EA, Ge, Z, Lee, CW, Schauer, DB, Wogan, GN, et al. Nitric oxide and TNF‐α trigger colonic inflammation and carcinogenesis in Helicobacter hepaticus‐infected, Rag2‐deficient mice. Proc Natl Acad Sci USA 2009, 106:1027–32.
Arthur, JC, Perez‐Chanona, E, Muhlbauer, M, Tomkovich, S, Uronis, JM, Fan, TJ, Campbell, BJ, Abujamel, T, Dogan, B, Rogers, AB, et al. Intestinal inflammation targets cancer‐inducing activity of the microbiota. Science 2012, 338:120–3.
Suzuki, N, Murata‐Kamiya, N, Yanagiya, K, Suda, W, Hattori, M, Kanda, H, Bingo, A, Fujii, Y, Maeda, S, Koike, K, et al. Mutual reinforcement of inflammation and carcinogenesis by the Helicobacter pylori CagA oncoprotein. Sci Rep 2015, 5:10024.
Echizen, K, Hirose, O, Maeda, Y, Oshima, M. Inflammation in gastric cancer: Interplay of the COX‐2/prostaglandin E2 and Toll‐like receptor/MyD88 pathways. Cancer Sci 2016, 107:391–7.
Abu‐Remaileh, M, Bender, S, Raddatz, G, Ansari, I, Cohen, D, Gutekunst, J, Musch, T, Linhart, H, Breiling, A, Pikarsky, E, et al. Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer. Cancer Res 2015, 75:2120–30.
Belkina, AC, Denis, GV. BET domain co‐regulators in obesity, inflammation and cancer. Nat Rev Cancer 2012, 12:465–77.
Fukumura, D, Incio, J, Shankaraiah, RC, Jain, RK. Obesity and cancer: an angiogenic and inflammatory link. Microcirculation 2016, 23:191–206.
Howe, LR, Subbaramaiah, K, Hudis, CA, Dannenberg, AJ. Molecular pathways: adipose inflammation as a mediator of obesity‐associated cancer. Clin Cancer Res 2013, 19:6074–83.
Iyengar, NM, Zhou, XK, Gucalp, A, Morris, PG, Howe, LR, Giri, DD, Morrow, M, Wang, H, Pollak, M, Jones, LW, et al. Systemic correlates of white adipose tissue inflammation in early‐stage breast cancer. Clin Cancer Res 2016, 22:2283–9.
Trinchieri, G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 2012, 30:677–706.
Incio, J, Liu, H, Suboj, P, Chin, SM, Chen, IX, Pinter, M, Ng, MR, Nia, HT, Grahovac, J, Kao, S, et al. Obesity‐induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. In press. doi: 10.1158/2159-8290.CD-15-1177.
Incio, J, Tam, J, Rahbari, NN, Suboj, P, McManus, DT, Chin, SM, Vardam, TD, Batista, A, Babykutty, S, Jung, K, et al. PlGF/VEGFR‐1 signaling promotes macrophage polarization and accelerated tumor progression in obesity. Clin Cancer Res. In press. doi: 10.1158/1078-0432.CCR-15-1839.
De Marzo, AM, Platz, EA, Sutcliffe, S, Xu, J, Gronberg, H, Drake, CG, Nakai, Y, Isaacs, WB, Nelson, WG. Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007, 7:256–69.
Taverna, G, Pedretti, E, Di Caro, G, Borroni, EM, Marchesi, F, Grizzi, F. Inflammation and prostate cancer: friends or foe? Inflamm Res 2015, 64:275–86.
Moreira, DM, Nickel, JC, Andriole, GL, Castro‐Santamaria, R, Freedland, SJ. Chronic baseline prostate inflammation is associated with lower tumor volume in men with prostate cancer on repeat biopsy: results from the REDUCE study. Prostate 2015, 75:1492–8.
Dubey, S, Vanveldhuizen, P, Holzbeierlein, J, Tawfik, O, Thrasher, JB, Karan, D. Inflammation‐associated regulation of the macrophage inhibitory cytokine (MIC‐1) gene in prostate cancer. Oncol Lett 2012, 3:1166–70.
Karan, D, Holzbeierlein, J, Thrasher, JB. Macrophage inhibitory cytokine‐1: possible bridge molecule of inflammation and prostate cancer. Cancer Res 2009, 69:2–5.
Shiels, MS, Katki, HA, Hildesheim, A, Pfeiffer, RM, Engels, EA, Williams, M, Kemp, TJ, Caporaso, NE, Pinto, LA, Chaturvedi, AK. Circulating inflammation markers, risk of lung cancer, and utility for risk stratification. J Natl Cancer Inst 2015, 107:djv199. doi: 10.1093/jnci/djv199.
Wang, YQ, Jin, C, Zheng, HM, Zhou, K, Shi, BB, Zhang, Q, Zheng, FY, Lin, F. A novel prognostic inflammation score predicts outcomes in patients with ovarian cancer. Clin Chim Acta 2016, 456:163–9.
Zheng, RR, Huang, M, Jin, C, Wang, HC, Yu, JT, Zeng, LC, Zheng, FY, Lin, F. Cervical cancer systemic inflammation score: a novel predictor of prognosis. Oncotarget 2016, 7:15230–42.
Ericsson, AC, Myles, M, Davis, W, Ma, L, Lewis, M, Maggio‐Price, L, Franklin, C. Noninvasive detection of inflammation‐associated colon cancer in a mouse model. Neoplasia 2010, 12:1054–65.
Diakos, CI, Charles, KA, McMillan, DC, Clarke, SJ. Cancer‐related inflammation and treatment effectiveness. Lancet Oncol 2014, 15:e493–503.
Bonavita, E, Galdiero, MR, Jaillon, S, Mantovani, A. Phagocytes as corrupted policemen in cancer‐related inflammation. Adv Cancer Res 2015, 128:141–71.
Chauhan, VP, Martin, JD, Liu, H, Lacorre, DA, Jain, SR, Kozin, SV, Stylianopoulos, T, Mousa, AS, Han, X, Adstamongkonkul, P, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 2013, 4:2516.
Stylianopoulos, T, Martin, JD, Chauhan, VP, Jain, SR, Diop‐Frimpong, B, Bardeesy, N, Smith, BL, Ferrone, CR, Hornicek, FJ, Boucher, Y, et al. Causes, consequences, and remedies for growth‐induced solid stress in murine and human tumors. Proc Natl Acad Sci USA 2012, 109:15101–8.
Levental, KR, Yu, H, Kass, L, Lakins, JN, Egeblad, M, Erler, JT, Fong, SF, Csiszar, K, Giaccia, A, Weninger, W, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139:891–906.
Provenzano, PP, Inman, DR, Eliceiri, KW, Keely, PJ. Matrix density‐induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK‐ERK linkage. Oncogene 2009, 28:4326–43.
Conklin, MW, Eickhoff, JC, Riching, KM, Pehlke, CA, Eliceiri, KW, Provenzano, PP, Friedl, A, Keely, PJ. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 2011, 178:1221–32.
Pickup, MW, Laklai, H, Acerbi, I, Owens, P, Gorska, AE, Chytil, A, Aakre, M, Weaver, VM, Moses, HL. Stromally derived lysyl oxidase promotes metastasis of transforming growth factor‐β‐deficient mouse mammary carcinomas. Cancer Res 2013, 73:5336–46.
Chauhan, VP, Lanning, RM, Diop‐Frimpong, B, Mok, W, Brown, EB, Padera, TP, Boucher, Y, Jain, RK. Multiscale measurements distinguish cellular and interstitial hindrances to diffusion in vivo. Biophys J 2009, 97:330–6.
Misra, S, Hascall, VC, Markwald, RR, Ghatak, S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 2015, 6:201.
Schwertfeger, KL, Cowman, MK, Telmer, PG, Turley, EA, McCarthy, JB. Hyaluronan, inflammation, and breast cancer progression. Front Immunol 2015, 6:236.
Park, KR, Monsky, WL, Lee, CG, Song, CH, Kim, DH, Jain, RK, Fukumura, D. Mast cells contribute to radiation‐induced vascular hyperpermeability. Radiat Res 2016, 185:182–9.
Kozin, SV, Kamoun, WS, Huang, Y, Dawson, MR, Jain, RK, Duda, DG. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res 2010, 70:5679–85.
Crusz, SM, Balkwill, FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 2015, 12:584–96.
Wang, D, Dubois, RN. The role of COX‐2 in intestinal inflammation and colorectal cancer. Oncogene 2010, 29:781–8.
Wang, D, Dubois, RN, Richmond, A. The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol 2009, 9:688–96.
Gomes, M, Teixeira, AL, Coelho, A, Araujo, A, Medeiros, R. The role of inflammation in lung cancer. Adv Exp Med Biol 2014, 816:1–23.
Phillips, RK, Wallace, MH, Lynch, PM, Hawk, E, Gordon, GB, Saunders, BP, Wakabayashi, N, Shen, Y, Zimmerman, S, Godio, L, et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 2002, 50:857–60.
Gasparini, G, Meo, S, Comella, G, Stani, SC, Mariani, L, Gamucci, T, Avallone, A, Lo Vullo, S, Mansueto, G, Bonginelli, P, et al. The combination of the selective cyclooxygenase‐2 inhibitor celecoxib with weekly paclitaxel is a safe and active second‐line therapy for non‐small cell lung cancer: a phase II study with biological correlates. Cancer J 2005, 11:209–16.
Iwama, T, Akasu, T, Utsunomiya, J, Muto, T. Does a selective cyclooxygenase‐2 inhibitor (tiracoxib) induce clinically sufficient suppression of adenomas in patients with familial adenomatous polyposis? A randomized double‐blind placebo‐controlled clinical trial. Int J Clin Oncol 2006, 11:133–9.
Zhou, YY, Hu, ZG, Zeng, FJ, Han, J. Clinical profile of cyclooxygenase‐2 inhibitors in treating non‐small cell lung cancer: a meta‐analysis of nine randomized clinical trials. PLoS ONE 2016, 11:e0151939.
Smith, GR, Missailidis, S. Cancer, inflammation and the AT1 and AT2 receptors. J Inflamm (Lond) 2004, 1:3.
Incio, J, Suboj, P, Chin, SM, Vardam‐Kaur, T, Liu, H, Hato, T, Babykutty, S, Chen, I, Deshpande, V, Jain, RK, et al. Metformin reduces desmoplasia in pancreatic cancer by reprogramming stellate cells and tumor‐associated macrophages. PLoS ONE 2015, 10:e0141392.
Hingorani, SR, Harris, WP, Beck, JT, Berdov, BA, Wagner, SA, Pshevlotsky, EM, Tjulandin, SA, Gladkov, OA, Holcombe, RF, Korn, R, et al. Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res 2016, 22:2848–54.
Topalian, SL, Hodi, FS, Brahmer, JR, Gettinger, SN, Smith, DC, McDermott, DF, Powderly, JD, Carvajal, RD, Sosman, JA, Atkins, MB, et al. Safety, activity, and immune correlates of anti‐PD‐1 antibody in cancer. N Engl J Med 2012, 366:2443–54.
Bayne, LJ, Beatty, GL, Jhala, N, Clark, CE, Rhim, AD, Stanger, BZ, Vonderheide, RH. Tumor‐derived granulocyte‐macrophage colony‐stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012, 21:822–35.
Yu, GT, Bu, LL, Huang, CF, Zhang, WF, Chen, WJ, Gutkind, JS, Kulkarni, AB, Sun, ZJ. PD‐1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget 2015, 6:42067–80.
Zhang, Y, Velez‐Delgado, A, Mathew, E, Li, D, Mendez, FM, Flannagan, K, Rhim, AD, Simeone, DM, Beatty, GL, Pasca di Magliano, M. Myeloid cells are required for PD‐1/PD‐L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. In press. doi: 10.1136/gutjnl-2016-312078.