Frey, TG, Mannella, CA. The internal structure of mitochondria. Trends Biochem Sci 2000, 25:319–324.
Wolstenholme, DR. Animal mitochondrial‐DNA—structure and evolution. Int Rev Cytol 1992, 141:173–216.
Clayton, DA. Replication of animal mitochondrial‐DNA. Cell 1982, 28:693–705.
Gray, MW, Burger, G, Lang, BF. Mitochondrial evolution. Science 1999, 283:1476–1481.
Taanman, JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999, 1410:103–123.
Schon, EA, DiMauro, S, Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 2012, 13:878–890.
Hixson, JE, Brown, WM. A comparison of the small ribosomal‐RNA genes from the mitochondrial‐DNA of the great apes and humans—sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol 1986, 3:1–18.
Anderson, S, Bankier, AT, Barrell, BG, Debruijn, MHL, Coulson, AR, Drouin, J, Eperon, IC, Nierlich, DP, Roe, BA, Sanger, F, et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290:457–465.
Ro, S, Ma, HY, Park, C, Ortogero, N, Song, R, Hennig, GW, Zheng, HL, Lin, YM, Moro, L, Hsieh, JT, et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res 2013, 23:759–774.
Sripada, L, Tomar, D, Prajapati, P, Singh, R, Singh, AK, Singh, R. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One 2012, 7:e44873. doi:10.1371/journal.pone.0044873.
Rackham, O, Shearwood, AMJ, Mercer, TR, Davies, SMK, Mattick, JS, Filipovska, A. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear‐encoded proteins. RNA 2011, 17:2085–2093.
Attardi, G, Schatz, G. Biogenesis of mitochondria. Annu Rev Cell Biol 1988, 4:289–333.
Lill, R, Hoffmann, B, Molik, S, Pierik, AJ, Rietzschel, N, Stehling, O, Uzarska, MA, Webert, H, Wilbrecht, C, Muhlenhoff, U. The role of mitochondria in cellular iron‐sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 2012, 1823:1491–1508.
Nelson, DL, Lehninger, AL, Cox, MM. Lehninger Principles of Biochemistry. 5th ed. New York: W.H. Freeman; 2008.
Fukuda, H, Casas, A, Batlle, A. Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. Int J Biochem Cell Biol 2005, 37:272–276.
Kohlhaw, GB. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 2003, 67:1–15.
Lange, H, Kispal, G, Lill, R. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J Biol Chem 1999, 274:18989–18996.
Marquet, A, Bui, BTS, Florentin, D. Biosynthesis of biotin and lipoic acid. Vitam Horm 2001, 61:51–101.
Neuburger, M, Rebeille, F, Jourdain, A, Nakamura, S, Douce, R. Mitochondria are a major site for folate and thymidylate synthesis in plants. J Biol Chem 1996, 271:9466–9472.
Schonauer, MS, Kastaniotis, AJ, Kursu, VAS, Hiltunen, JK, Dieckmann, CL. Lipoic acid synthesis and attachment in yeast mitochondria. J Biol Chem 2009, 284:23234–23242.
McBride, HM, Neuspiel, M, Wasiak, S. Mitochondria: more than just a powerhouse. Curr Biol 2006, 16:R551–R560.
Butow, RA, Avadhani, NG. Mitochondrial signaling: the retrograde response. Mol Cell 2004, 14:1–15.
Le Bras, M, Clement, MV, Pervaiz, S, Brenner, C. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 2005, 20:205–219.
Joza, N, Susin, SA, Daugas, E, Stanford, WL, Cho, SK, Li, CYJ, Sasaki, T, Elia, AJ, Cheng, HYM, Ravagnan, L, et al. Essential role of the mitochondrial apoptosis‐inducing factor in programmed cell death. Nature 2001, 410:549–554.
Green, DR, Reed, JC. Mitochondria and apoptosis. Science 1998, 281:1309–1312.
Kluck, RM, BossyWetzel, E, Green, DR, Newmeyer, DD. The release of cytochrome c from mitochondria: a primary site for Bcl‐2 regulation of apoptosis. Science 1997, 275:1132–1136.
Dorn, GW, Vega, RB, Kelly, DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 2015, 29:1981–1991.
Sanchis‐Gomar, F, Garcia‐Gimenez, JL, Gomez‐Cabrera, MC, Pallardo, FV. Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr Pharm Des 2014, 20:5619–5633.
Weinberg, SE, Chandel, NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 2015, 11:9–15.
Kelley, DE, He, J, Menshikova, EV, Ritov, VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002, 51:2944–2950.
Schaefer, AM, McFarland, R, Blakely, EL, He, L, Whittaker, RG, Taylor, RW, Chinnery, PF, Turnbull, DM. Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008, 63:35–39.
Barends, M, Verschuren, L, Morava, E, Nesbitt, V, Turnbull, D, McFarland, R. Causes of death in adults with mitochondrial disease. JIMD Rep 2016, 26:103–113.
Rahman, S. Emerging aspects of treatment in mitochondrial disorders. J Inherit Metab Dis 2015, 38:641–653.
Amato, P, Tachibana, M, Sparman, M, Mitalipov, S. Three‐parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases. Fertil Steril 2014, 101:31–35.
McCully, JD, Levitsky, S, Nido, PJ, Cowan, DB. Mitochondrial transplantation for therapeutic use. Clin Transl Med 2016, 5:1.
Altmann, K, Dürr, M, Westermann, B. Saccharomyces cerevisiae as a model organism to study mitochondrial biology: general considerations and basic procedures. Methods Mol. Biol. 2007, 372:81–90.
Lasserre, JP, Dautant, A, Aiyar, RS, Kucharczyk, R, Glatigny, A, Tribouillard‐Tanvier, D, Rytka, J, Blondel, M, Skoczen, N, Reynier, P, et al. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 2015, 8:509–526.
Kuroiwa, T. The primitive red algae Cyanidium caldarium and Cyanidioschyzon merolae as model system for investigating the dividing apparatus of mitochondria and plastids. Bioessays 1998, 20:344–354.
Harris, EH. Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 2001, 52:363–406.
Addo, MG, Cossard, R, Pichard, D, Obiri‐Danso, K, Rotig, A, Delahodde, A. Caenorhabditis elegans, a pluricellular model organism to screen new genes involved in mitochondrial genome maintenance. Biochim Biophys Acta 2010, 1802:765–773.
Maglioni, S, Ventura, N. C. elegans as a model organism for human mitochondrial associated disorders. Mitochondrion 2016, 30:117–125.
Nargang, FE, Rapaport, D. Neurospora crassa as a model organism for mitochondrial biogenesis. In: Leister DL, Herrmann J, eds. Mitochondria: Practical Protocols. Totowa, NJ: Humana Press; 2007, 107–123.
Lam, E, Kato, N, Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 2001, 411:848–853.
Moller, IM. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 2001, 52:561–591.
Steele, SL, Prykhozhij, SV, Berman, JN. Zebrafish as a model system for mitochondrial biology and diseases. Transl Res 2014, 163:79–98.
Graham, BH, Waymire, KG, Cottrell, B, Trounce, IA, MacGregor, GR, Wallace, DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 1997, 16:226–234.
Chance, B, Williams, GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 1955, 217:409–427.
Rogers, GW, Brand, MD, Petrosyan, S, Ashok, D, Elorza, AA, Ferrick, DA, Murphy, AN. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 2011, 6:e21746. doi:10.1371/journal.pone.0021746.
Beeson, CC, Beeson, GC, Schnellmann, RG. A high‐throughput respirometric assay for mitochondrial biogenesis and toxicity. Anal Biochem 2010, 404:75–81.
Pesta, D, Gnaiger, E. High‐resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. In: Palmeira C, Moreno A, eds. Mitochondrial Bioenergetics: Methods and Protocols, vol. 810. New York, NY: Humana Press; 2012, 25–58.
Gnaiger, E. Polarographic oxygen sensors, the oxygraph and high‐resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y, eds. Mitochondrial dysfunction in drug‐induced toxicity. Hoboken, NJ: John Wiley & Sons; 2008, 327352.
Walker, D. The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. Sheffield, UK: Research Institute for Photosynthesis, University of Sheffield; 1987.
Lee, YH, Tsao, GT. Dissolved oxygen electrodes. In: Ghose TK, Fiechter A, Blackborough N, eds. Advances in Biochemical Engineering, vol. 13. Berlin: Springer‐Verlag; 1979, 35–86.
Gerencser, AA, Neilson, A, Choi, SW, Edman, U, Yadava, N, Oh, RJ, Ferrick, DA, Nicholls, DG, Brand, MD. Quantitative microplate‐based respirometry with correction for oxygen diffusion. Anal Chem 2009, 81:6868–6878.
Divakaruni, AS, Rogers, GW, Murphy, AN. Measuring mitochondrial function in permeabilized cells using the seahorse XF analyzer or a Clark‐type oxygen electrode. Curr Protoc Toxicol 2014, 60:25.2.1–25.2.16.
Dmitriev, RI, Papkovsky, DB. Optical probes and techniques for O2 measurement in live cells and tissue. Cell Mol Life Sci 2012, 69:2025–2039.
Hughey, CC, Hittel, DS, Johnsen, VL, Shearer, J. Respirometric oxidative phosphorylation assessment in saponin‐permeabilized cardiac fibers. J Vis Exp 2011, 48:2431. doi: 10.3791/2431.
Krumschnabel, G, Eigentler, A, Fasching, M, Gnaiger, E. Use of safranin for the assessment of mitochondrial membrane potential by high‐resolution respirometry and fluorometry. Methods Enzymol 2014, 542:163–181.
Ojuka, E, Andrew, B, Bezuidenhout, N, George, S, Maarman, G, Madlala, HP, Mendham, A, Osiki, PO. Measurement of β‐oxidation capacity of biological samples by respirometry: a review of principles and substrates. Am J Physiol Endocrinol Metab 2016, 310:E715–E723.
Divakaruni, AS, Wiley, SE, Rogers, GW, Andreyev, AY, Petrosyan, S, Loviscach, M, Wall, EA, Yadava, N, Heuck, AP, Ferrick, DA, et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci USA 2013, 110:5422–5427.
Vacanti, NM, Divakaruni, AS, Green, CR, Parker, SJ, Henry, RR, Ciaraldi, TP, Murphy, AN, Metallo, CM. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol Cell 2014, 56:425–435.
Green, CR, Wallace, M, Divakaruni, AS, Phillips, SA, Murphy, AN, Ciaraldi, TP, Metallo, CM. Branched‐chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol 2016, 12:15–21.
Jiang, L, Shestov, AA, Swain, P, Yang, CD, Parker, SJ, Wang, QA, Terada, LS, Adams, ND, McCabe, MT, Pietrak, B, et al. Reductive carboxylation supports redox homeostasis during anchorage‐independent growth. Nature 2016, 532:255–258.
Ehrenberg, B, Montana, V, Wei, MD, Wuskell, JP, Loew, LM. Membrane‐potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 1988, 53:785–794.
Kamo, N, Muratsugu, M, Hongoh, R, Kobatake, Y. Membrane‐potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady‐state. J Membr Biol 1979, 49:105–121.
Lemasters, JJ, Ramshesh, VK. Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods Cell Biol 2007, 80:283–295.
Johnson, LV, Walsh, ML, Bockus, BJ, Chen, LB. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 1981, 88:526–535.
Nicholls, DG, Ward, MW. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 2000, 23:166–174.
Perry, SW, Norman, JP, Barbieri, J, Brown, EB, Gelbard, HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 2011, 50:98–115.
Gerencser, AA, Chinopoulos, C, Birket, MJ, Jastroch, M, Vitelli, C, Nicholls, DG, Brand, MD. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium‐induced de‐ and hyperpolarization of neuronal mitochondria. J Physiol 2012, 590:2845–2871.
Rolfe, DFS, Hulbert, AJ, Brand, MD. Characteristics of mitochondrial proton leak and control of oxidative‐phosphorylation in the major oxygen‐consuming tissues of the rat. Biochim Biophys Acta 1994, 1188:405–416.
Huang, M, Camara, AK, Stowe, DF, Qi, F, Beard, DA. Mitochondrial inner membrane electrophysiology assessed by rhodamine‐123 transport and fluorescence. Ann Biomed Eng 2007, 35:1276–1285.
Ward, MW, Rego, AC, Frenguelli, BG, Nicholls, DG. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 2000, 20:7208–7219.
Scaduto, RC, Grotyohann, LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 1999, 76:469–477.
Martinez‐Reyes, I, Diebold, LP, Kong, H, Schieber, M, Huang, H, Hensley, CT, Mehta, MM, Wang, T, Santos, JH, Woychik, R, et al. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 2016, 61:199–209.
Petit, PX, O`Connor, JE, Grunwald, D, Brown, SC. Analysis of the membrane potential of rat‐ and mouse‐liver mitochondria by flow cytometry and possible applications. Eur J Biochem 1990, 194:389–397.
Zamzami, N, Marchetti, P, Castedo, M, Decaudin, D, Macho, A, Hirsch, T, Susin, SA, Petit, PX, Mignotte, B, Kroemer, G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995, 182:367–377.
Troiano, L, Ferraresi, R, Lugli, E, Nemes, E, Roat, E, Nasi, M, Pinti, M, Cossarizza, A. Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat Protoc 2007, 2:2719–2727.
Mathur, A, Hong, Y, Kemp, BK, Barrientos, AA, Erusalimsky, JD. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res 2000, 46:126–138.
Shapiro, HM, Natale, PJ, Kamentsky, LA. Estimation of membrane‐potentials of individual lymphocytes by flow cytometry. Proc Natl Acad Sci USA 1979, 76:5728–5730.
Chen, LB, Summerhayes, IC, Johnson, LV, Walsh, ML, Bernal, SD, Lampidis, TJ. Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol 1982, 46 (Part 1):141–155.
Emaus, RK, Grunwald, R, Lemasters, JJ. Rhodamine‐123 as a probe of transmembrane potential in isolated rat‐liver mitochondria—spectral and metabolic properties. Biochim Biophys Acta 1986, 850:436–448.
Fink, C, Morgan, F, Loew, LM. Intracellular fluorescent probe concentrations by confocal microscopy. Biophys J 1998, 75:1648–1658.
Schieke, SM, Phillips, D, Mccoy, JP, Aponte, AM, Shen, RF, Balaban, RS, Finkel, T. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006, 281:27643–27652.
Norman, JP, Perry, SW, Kasischke, KA, Volsky, DJ, Gelbard, HA. HIV‐1 trans activator of transcription protein elicits mitochondrial hyperpolarization and respiratory deficit, with dysregulation of complex IV and nicotinamide adenine dinucleotide homeostasis in cortical neurons. J Immunol 2007, 178:869–876.
Jekabsons, MB, Nicholls, DG. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem 2004, 279:32989–33000.
Zorov, DB, Juhaszova, M, Sollott, SJ. Mitochondrial ROS‐induced ROS release: an update and review. Biochim Biophys Acta 2006, 1757:509–517.
Kim, JS, Jin, YG, Lemasters, JJ. Reactive oxygen species, but not Ca2+ overloading, trigger pH‐ and mitochondrial permeability transition‐dependent death of adult rat myocytes after ischemia‐reperfusion. Am J Physiol Heart Circ Physiol 2006, 290:H2024–H2034.
Votyakova, TV, Reynolds, IJ. Ca2+‐induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I. J Neurochem 2005, 93:526–537.
Sensi, SL, Yin, HZ, Weiss, JH. AMPA/kainate receptor‐triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur J Neurosci 2000, 12:3813–3818.
Cortassa, S, Aon, MA, Winslow, RL, O`Rourke, B. A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 2004, 87:2060–2073.
Lee, JH, Ha, JM, Leem, CH. A novel nicotinamide adenine dinucleotide correction method for mitochondrial Ca2+ measurement with FURA‐2‐FF in single permeabilized ventricular myocytes of rat. Korean J Physiol Pharmacol 2015, 19:373–382.
Hall, AM, Rhodes, GJ, Sandoval, RM, Corridon, PR, Molitoris, BA. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 2013, 83:72–83.
Loew, LM, Tuft, RA, Carrington, W, Fay, FS. Imaging in five dimensions: time‐dependent membrane potentials in individual mitochondria. Biophys J 1993, 65:2396–2407.
Chouchani, ET, Pell, VR, Gaude, E, Aksentijevic, D, Sundier, SY, Robb, EL, Logan, A, Nadtochiy, SM, Ord, ENJ, Smith, AC, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515:431–435.
Blattner, JR, He, LH, Lemasters, JJ. Screening assays for the mitochondrial permeability transition using a fluorescence multiwell plate reader. Anal Biochem 2001, 295:220–226.
Ghosh, JC, Dohi, T, Kang, BH, Altieri, DC. Hsp60 regulation of tumor cell apoptosis. J Biol Chem 2008, 283:5188–5194.
Smiley, ST, Reers, M, Mottolahartshorn, C, Lin, M, Chen, A, Smith, TW, Steele, GD, Chen, LB. Intracellular heterogeneity in mitochondrial‐membrane potentials revealed by a J‐aggregate‐forming lipophilic cation Jc‐1. Proc Natl Acad Sci USA 1991, 88:3671–3675.
Cossarizza, A, Baccaranicontri, M, Kalashnikova, G, Franceschi, C. A new method for the cytofluorometric analysis of mitochondrial‐membrane potential using the J‐aggregate forming lipophilic cation 5,5`,6,6`‐tetrachloro‐1,1`,3,3`‐tetraethylbenzimidazolcarbocyanine iodide (Jc‐1). Biochem Biophys Res Commun 1993, 197:40–45.
Chazotte, B. Labeling mitochondria with JC‐1. Cold Spring Harb Protoc 2011, 2011:pii: pdb.prot065490. doi: 10.1101/pdb.prot065490.
Weinberg, JM, Venkatachalam, MA, Roeser, NF, Nissim, I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 2000, 97:2826–2831.
Chung, S, Dzeja, PP, Faustino, RS, Perez‐Terzic, C, Behfar, A, Terzic, A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 2007, 4:S60–S67.
Perocchi, F, Gohil, VM, Girgis, HS, Bao, XR, McCombs, JE, Palmer, AE, Mootha, VK. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 2010, 467:291–296.
Mallilankaraman, K, Doonan, P, Cardenas, C, Chandramoorthy, HC, Muller, M, Miller, R, Hoffman, NE, Gandhirajan, RK, Molgo, J, Birnbaum, MJ, et al. MICU1 Is an essential gatekeeper for MCU‐mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 2012, 151:630–644.
Bach, D, Pich, S, Soriano, FX, Vega, N, Baumgartner, B, Oriola, J, Daugaard, JR, Lloberas, J, Camps, M, Zierath, JR, et al. Mitofusin‐2 determines mitochondrial network architecture and mitochondrial metabolism—a novel regulatory mechanism altered in obesity. J Biol Chem 2003, 278:17190–17197.
Khalil, AS, Collins, JJ. Synthetic biology: applications come of age. Nat Rev Genet 2010, 11:367–379.
Frommer, WB, Davidson, MW, Campbell, RE. Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 2009, 38:2833–2841.
Filippin, L, Abad, MC, Gastaldello, S, Magalhaes, PJ, Sandona, D, Pozzan, T. Improved strategies for the delivery of GFP‐based Ca2+ sensors into the mitochondrial matrix. Cell Calcium 2005, 37:129–136.
Malinouski, M, Zhou, Y, Belousov, VV, Hatfield, DL, Gladyshev, VN. Hydrogen peroxide probes directed to different cellular compartments. PLoS One 2011, 6:e14564. doi:10.1371/journal.pone.0014564.
Kneen, M, Farinas, J, Li, Y, Verkman, A. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 1998, 74:1591–1599.
Llopis, J, McCaffery, JM, Miyawaki, A, Farquhar, MG, Tsien, RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 1998, 95:6803–6808.
Porcelli, AM, Ghelli, A, Zanna, C, Pinton, P, Rizzuto, R, Rugolo, M. pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 2005, 326:799–804.
Abad, MF, Di Benedetto, G, Magalhaes, PJ, Filippin, L, Pozzan, T. Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 2004, 279:11521–11529.
Tantama, M, Hung, YP, Yellen, G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc 2011, 133:10034–10037.
Poburko, D, Santo‐Domingo, J, Demaurex, N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 2011, 286:11672–11684.
Santo‐Domingo, J, Demaurex, N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. J Gen Physiol 2012, 139:415–423.
Wei‐LaPierre, L, Gong, G, Gerstner, BJ, Ducreux, S, Yule, DI, Pouvreau, S, Wang, X, Sheu, SS, Cheng, H, Dirksen, RT, et al. Respective contribution of mitochondrial superoxide and pH to mitochondria‐targeted circularly permuted yellow fluorescent protein (mt‐cpYFP) flash activity. J Biol Chem 2013, 288:10567–10577.
Schwarzlander, M, Murphy, MP, Duchen, MR, Logan, DC, Fricker, MD, Halestrap, AP, Muller, FL, Rizzuto, R, Dick, TP, Meyer, AJ, et al. Mitochondrial `flashes`: a radical concept repHined. Trends Cell Biol 2012, 22:503–508.
Quatresous, E, Legrand, C, Pouvreau, S. Mitochondria‐targeted cpYFP: pH or superoxide sensor? J Gen Physiol 2012, 140:567–570.
Schwarzländer, M, Logan, DC, Fricker, MD, Sweetlove, LJ. The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochem J 2011, 437:381–387.
Hanson, GT, Aggeler, R, Oglesbee, D, Cannon, M, Capaldi, RA, Tsien, RY, Remington, SJ. Investigating mitochondrial redox potential with redox‐sensitive green fluorescent protein indicators. J Biol Chem 2004, 279:13044–13053.
Jiang, K, Schwarzer, C, Lally, E, Zhang, S, Ruzin, S, Machen, T, Remington, SJ, Feldman, L. Expression and characterization of a redox‐sensing green fluorescent protein (reduction‐oxidation‐sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 2006, 141:397–403.
Liu, Z, Celotto, AM, Romero, G, Wipf, P, Palladino, MJ. Genetically encoded redox sensor identifies the role of ROS in degenerative and mitochondrial disease pathogenesis. Neurobiol Dis 2012, 45:362–368.
Gutscher, M, Pauleau, AL, Marty, L, Brach, T, Wabnitz, GH, Samstag, Y, Meyer, AJ, Dick, TP. Real‐time imaging of the intracellular glutathione redox potential. Nat Methods 2008, 5:553–559.
Albrecht, SC, Sobotta, MC, Bausewein, D, Aller, I, Hell, R, Dick, TP, Meyer, AJ. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. J Biomol Screen 2014, 19:379–386.
San Martin, A, Ceballo, S, Baeza‐Lehnert, F, Lerchundi, R, Valdebenito, R, Contreras‐Baeza, Y, Alegria, K, Barros, LF. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS One 2014, 9:e85780.
Griesbeck, O, Baird, GS, Campbell, RE, Zacharias, DA, Tsien, RY. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 2001, 276:29188–29194.
Nagai, T, Sawano, A, Park, ES, Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 2001, 98:3197–3202.
Filippin, L, Magalhaes, PJ, Di Benedetto, G, Colella, M, Pozzan, T. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 2003, 278:39224–39234.
Park, YU, Jeong, J, Lee, H, Mun, JY, Kim, JH, Lee, JS, Nguyen, MD, Han, SS, Suh, PG, Park, SK. Disrupted‐in‐schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci USA 2010, 107:17785–17790.
Jean‐Quartier, C, Bondarenko, AI, Alam, MR, Trenker, M, Waldeck‐Weiermair, M, Malli, R, Graier, WF. Studying mitochondrial Ca2+ uptake—a revisit. Mol Cell Endocrinol 2012, 353:114–127.
Palmer, AE, Giacomello, M, Kortemme, T, Hires, SA, Lev‐Ram, V, Baker, D, Tsien, RY. Ca2+ indicators based on computationally redesigned calmodulin‐peptide pairs. Chem Biol 2006, 13:521–530.
Arnaudeau, S, Kelley, WL, Walsh, JV, Demaurex, N. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 2001, 276:29430–29439.
Giacomello, M, Drago, I, Bortolozzi, M, Scorzeto, M, Gianelle, A, Pizzo, P, Pozzan, T. Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store‐operated Ca2+ channels. Mol Cell 2010, 38:280–290.
Loro, G, Drago, I, Pozzan, T, Lo Schiavo, F, Zottini, M, Costa, A. Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. Plant J 2012, 71:1–13.
Alam, MR, Groschner, LN, Parichatikanond, W, Kuo, L, Bondarenko, AI, Rost, R, Waldeck‐Weiermair, M, Malli, R, Graier, WF. Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial Ca2+ uniporter (MCU) contribute to metabolism‐secretion coupling in clonal pancreatic β‐cells. J Biol Chem 2012, 287:34445–34454.
Imamura, H, Nhat, KP, Togawa, H, Saito, K, Iino, R, Kato‐Yamada, Y, Nagai, T, Noji, H. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer‐based genetically encoded indicators. Proc Natl Acad Sci USA 2009, 106:15651–15656.
Nakano, M, Imamura, H, Nagai, T, Noji, H. Ca2+ regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem Biol 2011, 6:709–715.
Zhao, YZ, Jin, J, Hu, QX, Zhou, HM, Yi, J, Yu, ZH, Xu, L, Wang, X, Yang, Y, Loscalzo, J. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 2011, 14:555–566.
Cambronne, XA, Stewart, ML, Kim, D, Jones‐Brunette, AM, Morgan, RK, Farrens, DL, Cohen, MS, Goodman, RH. Biosensor reveals multiple sources for mitochondrial NAD(+). Science 2016, 352:1474–1477.
Bilan, DS, Matlashov, ME, Gorokhovatsky, AY, Schultz, C, Enikolopov, G, Belousov, VV. Genetically encoded fluorescent indicator for imaging NAD(+)/NADH ratio changes in different cellular compartments. Biochim Biophys Acta 2014, 1840:951–957.
Lefkimmiatis, K, Leronni, D, Hofer, AM. The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J Cell Biol 2013, 202:453–462.
Di Benedetto, G, Scalzotto, E, Mongillo, M, Pozzan, T. Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab 2013, 17:965–975.
Dittmer, PJ, Miranda, JG, Gorski, JA, Palmer, AE. Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem 2009, 284:16289–16297.
Miranda, JG, Weaver, AL, Qin, Y, Park, JG, Stoddard, CI, Lin, MZ, Palmer, AE. New alternately colored FRET sensors for simultaneous monitoring of Zn2+ in multiple cellular locations. PLoS One 2012, 7:e49371. doi: 10.1371/journal.pone.0049371.
Park, JG, Qin, Y, Galati, DF, Palmer, AE. New sensors for quantitative measurement of mitochondrial Zn(2+). ACS Chem Biol 2012, 7:1636–1640.
Belousov, VV, Fradkov, AF, Lukyanov, KA, Staroverov, DB, Shakhbazov, KS, Terskikh, AV, Lukyanov, S. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 2006, 3:281–286.
Compan, V, Pierredon, S, Vanderperre, B, Krznar, P, Marchiq, I, Zamboni, N, Pouyssegur, J, Martinou, JC. Monitoring mitochondrial pyruvate carrier activity in real time using a BRET‐based biosensor: investigation of the Warburg effect. Mol Cell 2015, 59:491–501.
Allen, MD, Zhang, J. Subcellular dynamics of protein kinase A activity visualized by FRET‐based reporters. Biochem Biophys Res Commun 2006, 348:716–721.
Palmer, AE, Qin, Y, Park, JG, McCombs, JE. Design and application of genetically encoded biosensors. Trends Biotechnol 2011, 29:144–152.
Nagai, T, Yamada, S, Tominaga, T, Ichikawa, M, Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 2004, 101:10554–10559.
Shaner, NC, Campbell, RE, Steinbach, PA, Giepmans, BNG, Palmer, AE, Tsien, RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat Biotechnol 2004, 22:1567–1572.
Wang, W, Fang, H, Groom, L, Cheng, A, Zhang, W, Liu, J, Wang, X, Li, K, Han, P, Zheng, M, et al. Superoxide flashes in single mitochondria. Cell 2008, 134:279–290.
Shen, EZ, Song, CQ, Lin, Y, Zhang, WH, Su, PF, Liu, WY, Zhang, P, Xu, J, Lin, N, Zhan, C, et al. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature 2014, 508:128–132.
Schwarzländer, M, Wagner, S, Ermakova, YG, Belousov, VV, Radi, R, Beckman, JS, Buettner, GR, Demaurex, N, Duchen, MR, Forman, HJ. The `mitoflash` probe cpYFP does not respond to superoxide. Nature 2014, 514:E12–E14.
Cheng, H, Wang, W, Wang, X, Sheu, SS, Dirksen, RT, Dong, MQ. Cheng et al. reply. Nature 2014, 514:E14–E15.
Pollak, N, Dolle, C, Ziegler, M. The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J 2007, 402:205–218.
Stein, LR, Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 2012, 23:420–428.
Belenky, P, Bogan, KL, Brenner, C. NAD(+) metabolism in health and disease. Trends Biochem Sci 2007, 32:12–19.
Hung, YP, Albeck, JG, Tantama, M, Yellen, G. Imaging cytosolic NADH‐NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 2011, 14:545–554.
Zhao, Y, Yang, Y. Real‐time and high‐throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD+/NADH sensors. Free Radic Biol Med 2016, 100:43–52.
Marcu, R, Wiczer, BM, Neeley, CK, Hawkins, BJ. Mitochondrial matrix Ca(2)(+) accumulation regulates cytosolic NAD(+)/NADH metabolism, protein acetylation, and sirtuin expression. Mol Cell Biol 2014, 34:2890–2902.
Waldeck‐Weiermair, M, Jean‐Quartier, C, Rost, R, Khan, MJ, Vishnu, N, Bondarenko, AI, Imamura, H, Malli, R, Graier, WF. Leucine zipper EF hand‐containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. J Biol Chem 2011, 286:28444–28455.
Hamanaka, RB, Chandel, NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 2010, 35:505–513.
Nulton‐Persson, AC, Szweda, LI. Modulation of mitochondrial function by hydrogen peroxide. J Biol Chem 2001, 276:23357–23361.
Bilan, DS, Belousov, VV. Genetically encoded probes for NAD+/NADH monitoring. Free Radic Biol Med 2016, 100:32–42.
Ai, HW, Hazelwood, KL, Davidson, MW, Campbell, RE. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 2008, 5:401–403.
Carlson, HJ, Campbell, RE. Genetically encoded FRET‐based biosensors for multiparameter fluorescence imaging. Curr Opin Biotechnol 2009, 20:19–27.
Whitaker, M. Genetically encoded probes for measurement of intracellular calcium. In: Calcium in Living Cells, vol. 99. San Diego, CA: Elsevier; 2010, 153–182.
Rizzuto, R, De Stefani, D, Raffaello, A, Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012, 13:566–578.
Tan, Y‐F, O`Toole, N, Taylor, NL, Millar, AH. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress‐induced damage to respiratory function. Plant Physiol 2010, 152:747–761.
Horn, D, Barrientos, A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 2008, 60:421–429.
Rines, AK, Ardehali, H. Transition metals and mitochondrial metabolism in the heart. J Mol Cell Cardiol 2013, 55:50–57.
Hessels, AM, Chabosseau, P, Bakker, MH, Engelen, W, Rutter, GA, Taylor, KM, Merkx, M. eZinCh‐2: a versatile, genetically encoded FRET sensor for cytosolic and intraorganelle Zn(2+) imaging. ACS Chem Biol 2015, 10:2126–2134.
Rasmussen, H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 1970, 170:404–412.
Richards, JS. New signaling pathways for hormones and cyclic adenosine 3`,5`‐monophosphate action in endocrine cells. Mol Endocrinol 2001, 15:209–218.
Boute, N, Jockers, R, Issad, T. The use of resonance energy transfer in high‐throughput screening: BRET versus FRET. Trends Pharmacol Sci 2002, 23:351–354.
Xu, Y, Piston, DW, Johnson, CH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 1999, 96:151–156.
Prinz, A, Diskar, M, Herberg, FW. Application of bioluminescence resonance energy transfer (BRET) for biomolecular interaction studies. Chembiochem 2006, 7:1007–1012.
Pfleger, KDG, Seeber, RM, Eidne, KA. Bioluminescence resonance energy transfer (BRET) for the real‐time detection of protein‐protein interactions. Nat Protoc 2006, 1:337–345.
Antoniewicz, MR. Methods and advances in metabolic flux analysis: a mini‐review. J Ind Microbiol Biotechnol 2015, 42:317–325.
Basu, SS, Mesaros, C, Gelhaus, SL, Blair, IA. Stable isotope labeling by essential nutrients in cell culture for preparation of labeled coenzyme A and its thioesters. Anal Chem 2011, 83:1363–1369.
Ong, SE, Blagoev, B, Kratchmarova, I, Kristensen, DB, Steen, H, Pandey, A, Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1:376–386.
Metallo, CM, Gameiro, PA, Bell, EL, Mattaini, KR, Yang, JJ, Hiller, K, Jewell, CM, Johnson, ZR, Irvine, DJ, Guarente, L, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012, 481:380–384.
Keibler, MA, Fendt, SM, Stephanopoulos, G. Expanding the concepts and tools of metabolic engineering to elucidate cancer metabolism. Biotechnol Prog 2012, 28:1409–1418.
Ducker, GS, Chen, L, Morscher, RJ, Ghergurovich, JM, Esposito, M, Teng, X, Kang, YB, Rabinowitz, JD. Reversal of cytosolic one‐carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab 2016, 23:1140–1153.
Zhang, J, Ahn, WS, Gameiro, PA, Keibler, MA, Zhang, Z, Stephanopoulos, G. 13C isotope‐assisted methods for quantifying glutamine metabolism in cancer cells. Methods Enzymol 2014, 542:369–389.
Lewis, CA, Parker, SJ, Fiske, BP, McCloskey, D, Gui, DY, Green, CR, Vokes, NI, Feist, AM, Vander Heiden, MG, Metallo, CM. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 2014, 55:253–263.
Molik, S, Lill, R, Muhlenhoff, U. Methods for studying iron metabolism in yeast mitochondria. In: Pon L, Schon E, eds. Mitochondria, vol. 80. 2nd ed. San Diego, CA: Elsevier; 2007, 261–280.
Beinert, H, Holm, RH, Munck, E. Iron‐sulfur clusters: nature`s modular, multipurpose structures. Science 1997, 277:653–659.
Lill, R, Muhlenhoff, U. Maturation of iron‐sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 2008, 77:669–700.
Bray, GA. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal Biochem 1960, 1:279–285.
Garber Morales, J, Holmes‐Hampton, GP, Miao, R, Guo, Y, Munck, E, Lindahl, PA. Biophysical characterization of iron in mitochondria isolated from respiring and fermenting yeast. Biochemistry 2010, 49:5436–5444.
Perry, RD, Sanclemente, CL. Determination of iron with bathophenanthroline following an improved procedure for reduction of iron(III) ions. Analyst 1977, 102:114–119.
Stehling, O, Elsasser, HP, Bruckel, B, Muhlenhoff, U, Lill, R. Iron‐sulfur protein maturation in human cells: evidence for a function of frataxin. Hum Mol Genet 2004, 13:3007–3015.
Hennessy, DJ, Reid, GR, Smith, FE, Thompson, SL. Ferene—a new spectrophotometric reagent for iron. Can J Chem 1984, 62:721–724.
Smith, FE, Herbert, J, Gaudin, J, Hennessy, DJ, Reid, GR. Serum iron determination using ferene triazine. Clin Biochem 1984, 17:306–310.
Lange, H, Kaut, A, Kispal, G, Lill, R. A mitochondrial ferredoxin is essential for biogenesis of cellular iron‐sulfur proteins. Proc Natl Acad Sci USA 2000, 97:1050–1055.
Rodriguez‐Manzaneque, MT, Tamarit, J, Belli, G, Ros, J, Herrero, E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 2002, 13:1109–1121.
Yoon, T, Cowan, JA. Iron‐sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe‐2S] clusters in ISU‐type proteins. J Am Chem Soc 2003, 125:6078–6084.
Fire, A, Xu, SQ, Montgomery, MK, Kostas, SA, Driver, SE, Mello, CC. Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806–811.
Hannon, GJ. RNA interference. Nature 2002, 418:244–251.
Mello, CC, Conte, D Jr. Revealing the world of RNA interference. Nature 2004, 431:338–342.
Wilson, RC, Doudna, JA. Molecular mechanisms of RNA interference. Annu Rev Biophys 2013, 42:217–239.
Zamore, PD, Tuschl, T, Sharp, PA, Bartel, DP. RNAi: double‐stranded RNA directs the ATP‐dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101:25–33.
Berns, K, Hijmans, EM, Mullenders, J, Brummelkamp, TR, Velds, A, Heimerikx, M, Kerkhoven, RM, Madiredjo, M, Nijkamp, W, Weigelt, B, et al. A large‐scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004, 428:431–437.
Zhang, SL, Yeromin, AV, Zhang, XHF, Yu, Y, Safrina, O, Penna, A, Roos, J, Stauderman, KA, Cahalan, MD. Genome‐wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release‐activated Ca2+ channel activity. Proc Natl Acad Sci USA 2006, 103:9357–9362.
Lee, SS, Lee, RY, Fraser, AG, Kamath, RS, Ahringer, J, Ruvkun, G. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003, 33:40–48.
Lanning, NJ, Looyenga, BD, Kauffman, AL, Niemi, NM, Sudderth, J, DeBerardinis, RJ, MacKeigan, JP. A mitochondrial RNAi screen defines cellular bioenergetic determinants and identifies an adenylate kinase as a key regulator of ATP levels. Cell Rep 2014, 7:907–917.
Jiang, DW, Zhao, LL, Clapham, DE. Genome‐wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 2009, 326:144–147.
Pagliarini, DJ, Calvo, SE, Chang, B, Sheth, SA, Vafai, SB, Ong, SE, Walford, GA, Sugiana, C, Boneh, A, Chen, WK, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134:112–123.
Heytler, PG, Prichard, WW. A new class of uncoupling agents—carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun 1962, 7:272–275.
Park, JW, Lee, SY, Yang, JY, Rho, HW, Park, BH, Lim, SN, Kim, JS, Kim, HR. Effect of carbonyl cyanide m‐chlorophenylhydrazone (CCCP) on the dimerization of lipoprotein lipase. Biochim Biophys Acta 1997, 1344:132–138.
Nicholls, DG, Ferguson, SJ. Bioenergetics. 4th ed. Salt Lake City UT: Academic Press; 2013, 1–419.
Li, NY, Ragheb, K, Lawler, G, Sturgist, J, Rajwa, B, Melendez, JA, Robinson, JP. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003, 278:8516–8525.
Chance, B, Williams, GR, Hollunger, G. Inhibition of electron and energy transfer in mitochondria. I. Effects of Amytal, thiopental, rotenone, progesterone, and methylene glycol. J Biol Chem 1963, 238:418–431.
Degli, EM. Inhibitors of NADH‐ubiquinone reductase: an overview. Biochim Biophys Acta 1998, 1364:222–235.
Zickermann, V, Wirth, C, Nasiri, H, Siegmund, K, Schwalbe, H, Hunte, C, Brandt, U. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 2015, 347:44–49.
Angerer, H, Nasiri, HR, Niedergesass, V, Kerscher, S, Schwalbe, H, Brandt, U. Tracing the tail of ubiquinone in mitochondrial complex I. Biochim Biophys Acta 2012, 1817:1776–1784.
Hirst, J. Mitochondrial complex I. Annu Rev Biochem 2013, 82:551–575.
Horsefield, R, Yankovskaya, V, Sexton, G, Whittingham, W, Shiomi, K, Omura, S, Byrne, B, Cecchini, G, Iwata, S. Structural and computational analysis of the quinone‐binding site of complex II (succinate‐ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem 2006, 281:7309–7316.
Ramsay, RR, Ackrell, BA, Coles, CJ, Singer, TP, White, GA, Thorn, GD. Reaction site of carboxanilides and of thenoyltrifluoroacetone in complex II. Proc Natl Acad Sci USA 1981, 78:825–828.
Afanas`eva, EV, Kostyrko, VA. Pentachlorophenol inhibition of succinate oxidation by the respiratory chain in submitochondrial particles from the bovine heart. Biokhimiia 1986, 51:823–829.
Yankovskaya, V, Sablin, SO, Ramsay, RR, Singer, TP, Ackrell, BA, Cecchini, G, Miyoshi, H. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase. J Biol Chem 1996, 271:21020–21024.
Wojtovich, AP, Brookes, PS. The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP‐sensitive potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta 2008, 1777:882–889.
Drose, S, Bleier, L, Brandt, U. A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production. Mol Pharmacol 2011, 79:814–822.
Turrens, JF, Alexandre, A, Lehninger, AL. Ubisemiquinone Is the electron‐donor for superoxide formation by complex III of heart‐mitochondria. Arch Biochem Biophys 1985, 237:408–414.
Xia, D, Yu, CA, Kim, H, Xia, JZ, Kachurin, AM, Zhang, L, Yu, L, Deisenhofer, J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 1997, 277:60–66.
Leavesley, HB, Li, L, Prabhakaran, K, Borowitz, JL, Isom, GE. Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity. Toxicol Sci 2008, 101:101–111.
Alonso, JR, Cardellach, F, Lopez, S, Casademont, J, Miro, O. Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol 2003, 93:142–146.
Nicholls, P, Marshall, DC, Cooper, CE, Wilson, MT. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans 2013, 41:1312–1316.
Yoshikawa, S, Shinzawa‐Itoh, K, Nakashima, R, Yaono, R, Yamashita, E, Inoue, N, Yao, M, Fei, MJ, Libeu, CP, Mizushima, T, et al. Redox‐coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 1998, 280:1723–1729.
Toei, M, Noji, H. Single‐molecule analysis of F0F1‐ATP synthase inhibited by N,N‐dicyclohexylcarbodiimide. J Biol Chem 2013, 288:25717–25726.
Ueno, H, Suzuki, T, Kinosita, K, Yoshida, M. ATP‐driven stepwise rotation of FOF1,‐ATP synthase. Proc Natl Acad Sci USA 2005, 102:1333–1338.
Zheng, JB, Ramirez, VD. Inhibition of mitochondrial proton F0F1‐ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol 2000, 130:1115–1123.
Abrahams, JP, Buchanan, SK, Van Raaij, MJ, Fearnley, IM, Leslie, AG, Walker, JE. The structure of bovine F1‐ATPase complexed with the peptide antibiotic efrapeptin. Proc Natl Acad Sci USA 1996, 93:9420–9424.
Burwick, NR, Wahl, ML, Fang, J, Zhong, Z, Moser, TL, Li, B, Capaldi, RA, Kenan, DJ, Pizzo, SV. An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem 2005, 280:1740–1745.
Klingenberg, M. The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 2008, 1778:1978–2021.
Bruni, A, Contessa, A, Luciani, S. Atractyloside as inhibitor of energy‐transfer reactions in liver mitochondria. Biochim Biophys Acta 1962, 60:301–311.
Pebay‐Peyroula, E, Dahout‐Gonzalez, C, Kahn, R, Trezeguet, V, Lauquin, GJ, Brandolin, G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 2003, 426:39–44.
Henderson, PJ, Lardy, HA. Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem 1970, 245:1319–1326.
Lauquin, GJ, Duplaa, AM, Klein, G, Rousseau, A, Vignais, PV. Isobongkrekic acid, a new inhibitor of mitochondrial ADP‐ATP transport: radioactive labeling and chemical and biological properties. Biochemistry 1976, 15:2323–2327.
Halestrap, AP. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J 1975, 148:85–96.
McCommis, KS, Finck, BN. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 2015, 466:443–454.
Herzig, S, Raemy, E, Montessuit, S, Veuthey, JL, Zamboni, N, Westermann, B, Kunji, ER, Martinou, JC. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337:93–96.
Beutner, G, Sharma, VK, Giovannucci, DR, Yule, DI, Sheu, SS. Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 2001, 276:21482–21488.
Trollinger, DR, Cascio, WE, Lemasters, JJ. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)‐indicating fluorophores. Biophys J 2000, 79:39–50.
Gunter, TE, Sheu, SS. Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. Biochim Biophys Acta 2009, 1787:1291–1308.
Smets, I, Caplanusi, A, Despa, S, Molnar, Z, Radu, M, VandeVen, M, Ameloot, M, Steels, P. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol 2004, 286:F784–F794.
Mallajosyula, JK, Chinta, SJ, Rajagopalan, S, Nicholls, DG, Andersen, JK. Metabolic control analysis in a cellular model of elevated MAO‐B: relevance to Parkinson`s disease. Neurotox Res 2009, 16:186–193.
Brand, MD. Top down metabolic control analysis. J Theor Biol 1996, 182:351–360.
Fell, DA. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 1992, 286 (Part 2):313–330.
Brand, MD, Nicholls, DG. Assessing mitochondrial dysfunction in cells. Biochem J 2011, 435:297–312.
Nadanaciva, S, Murray, J, Wilson, C, Gebhard, DF, Will, Y. High‐throughput assays for assessing mitochondrial dysfunction caused by compounds that impair mtDNA‐encoded protein levels in eukaryotic cells. Curr Protoc Toxicol 2011, Chapter 3:Unit3.11.
Wu, M, Neilson, A, Swift, AL, Moran, R, Tamagnine, J, Parslow, D, Armistead, S, Lemire, K, Orrell, J, Teich, J, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 2007, 292:C125–C136.
Affourtit, C, Brand, MD. Uncoupling protein‐2 contributes significantly to high mitochondrial proton leak in INS‐1E insulinoma cells and attenuates glucose‐stimulated insulin secretion. Biochem J 2008, 409:199–204.
Ainscow, EK, Brand, MD. Top‐down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur J Biochem 1999, 263:671–685.
Affourtit, C, Brand, MD. Measuring mitochondrial bioenergetics in Ins‐1e insulinoma cells. In: Abelson JN, Simon MI, eds. Methods in Enzymology, vol 457: Mitochondrial Function, Part B: Mitochondrial Protein Kinases, Protein Phosphatases and Mitochondrial Diseases. San Diego, CA: Academic Press Inc.; 2009, 405–424. doi: 10.1016/S0076-6879(09)05023-X.
Nicholls, DG. Simultaneous monitoring of ionophore‐ and inhibitor‐mediated plasma and mitochondrial membrane potential changes in cultured neurons. J Biol Chem 2006, 281:14864–14874.
Murai, M, Miyoshi, H. Current topics on inhibitors of respiratory complex I. Biochim Biophys Acta 2016, 1857:884–891.
Vanark, G, Berden, JA. Binding of Hqno to beef‐heart submitochondrial particles. Biochim Biophys Acta 1977, 459:119–137.
Brandt, U, Vonjagow, G. Analysis of inhibitor binding to the mitochondrial cytochrome‐c reductase by fluorescence quench titration—evidence for a catalytic switch at the Q0 center. Eur J Biochem 1991, 195:163–170.
Pelicano, H, Feng, L, Zhou, Y, Carew, JS, Hileman, EO, Plunkett, W, Keating, MJ, Huang, P. Inhibition of mitochondrial respiration: a novel strategy to enhance drug‐induced apoptosis in human leukemia cells by a reactive oxygen species‐mediated mechanism. J Biol Chem 2003, 278:37832–37839.
Porter, RK, Brand, MD. Causes of differences in respiration rate of hepatocytes from mammals of different body mass. Am J Physiol 1995, 269:R1213–R1224.
Crofts, AR. The cytochrome bc1 complex: function in the context of structure. Annu Rev Physiol 2004, 66:689–733.
Swierczek, M, Cieluch, E, Sarewicz, M, Borek, A, Moser, CC, Dutton, PL, Osyczka, A. An electronic bus bar lies in the core of cytochrome bc1. Science 2010, 329:451–454.
Crofts, AR, Barquera, B, Gennis, RB, Kuras, R, Guergova‐Kuras, M, Berry, EA. Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry 1999, 38:15807–15826.
Hong, S, Pedersen, PL. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 2008, 72:590–641, Table of Contents.
Dupuis, A, Issartel, JP, Vignais, PV. Direct identification of the fluoroaluminate and fluoroberyllate species responsible for inhibition of the mitochondrial‐F1‐ATPase. FEBS Lett 1989, 255:47–52.
Halestrap, AP, Brenner, C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 2003, 10:1507–1525.
Halestrap, AP, Denton, RM. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha‐cyano‐4‐hydroxycinnamate. Biochem J 1974, 138:313–316.
Bianchi, K, Rimessi, A, Prandini, A, Szabadkai, G, Rizzuto, R. Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim Biophys Acta 2004, 1742:119–131.
Gunter, TE, Buntinas, L, Sparagna, G, Eliseev, R, Gunter, K. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 2000, 28:285–296.
Lee, B, Miles, PD, Vargas, L, Luan, P, Glasco, S, Kushnareva, Y, Kornbrust, ES, Grako, KA, Wollheim, CB, Maechler, P, et al. Inhibition of mitochondrial Na+‐Ca2+ exchanger increases mitochondrial metabolism and potentiates glucose‐stimulated insulin secretion in rat pancreatic islets. Diabetes 2003, 52:965–973.
Cox, DA, Conforti, L, Sperelakis, N, Matlib, MA. Selectivity of inhibition of Na(+)‐Ca2+ exchange of heart mitochondria by benzothiazepine CGP‐37157. J Cardiovasc Pharmacol 1993, 21:595–599.
McCormack, JG, Denton, RM. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+‐sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J 1980, 190:95–105.
Mercer, TR, Neph, S, Dinger, ME, Crawford, J, Smith, MA, Shearwood, AM, Haugen, E, Bracken, CP, Rackham, O, Stamatoyannopoulos, JA, et al. The human mitochondrial transcriptome. Cell 2011, 146:645–658.
Mardis, ER. Next‐generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008, 9:387–402.
Kal, AJ, van Zonneveld, AJ, Benes, V, van den Berg, M, Koerkamp, MG, Albermann, K, Strack, N, Ruijter, JM, Richter, A, Dujon, B, et al. Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 1999, 10:1859–1872.
Brown, PO, Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat Genet 1999, 21:33–37.
Heller, MJ. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 2002, 4:129–153.
Malmgren, S, Nicholls, DG, Taneera, J, Bacos, K, Koeck, T, Tamaddon, A, Wibom, R, Groop, L, Ling, C, Mulder, H, et al. Tight coupling between glucose and mitochondrial metabolism in clonal β‐cells is required for robust insulin secretion. J Biol Chem 2009, 284:32395–32404.
Gauthier, BR, Brun, T, Sarret, EJ, Ishihara, H, Schaad, O, Descombes, P, Wollheim, CB. Oligonucleotide microarray analysis reveals PDX1 as an essential regulator of mitochondrial metabolism in rat islets. J Biol Chem 2004, 279:31121–31130.
Gracey, AY, Fraser, EJ, Li, W, Fang, Y, Taylor, RR, Rogers, J, Brass, A, Cossins, AR. Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proc Natl Acad Sci USA 2004, 101:16970–16975.
Wang, Z, Gerstein, M, Snyder, M. RNA‐Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57–63.
Rackham, O, Filipovska, A. Analysis of the human mitochondrial transcriptome using directional deep sequencing and parallel analysis of RNA ends. Methods Mol Biol 2014, 1125:263–275.
Turk, EM, Das, V, Seibert, RD, Andrulis, ED. The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One 2013, 8:e78105.
Kolondra, A, Labedzka‐Dmoch, K, Wenda, JM, Drzewicka, K, Golik, P. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts. BMC Genomics 2015, 16:827.
van der Lee, R, Szklarczyk, R, Smeitink, J, Smeets, HJ, Huynen, MA, Vogel, R. Transcriptome analysis of complex I‐deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system. BMC Genomics 2015, 16:691.
Calvo, SE, Mootha, VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 2010, 11:25–44.
Amado, FM, Barros, A, Azevedo, AL, Vitorino, R, Ferreira, R. An integrated perspective and functional impact of the mitochondrial acetylome. Expert Rev Proteomics 2014, 11:383–394.
Bailey, SM, Landar, A, Darley‐Usmar, V. Mitochondrial proteomics in free radical research. Free Radic Biol Med 2005, 38:175–188.
Chen, X, Wei, S, Yang, F. Mitochondria in the pathogenesis of diabetes: a proteomic view. Protein Cell 2012, 3:648–660.
Chou, HC, Chan, HL. Targeting proteomics to investigate metastasis‐associated mitochondrial proteins. J Bioenerg Biomembr 2012, 44:629–634.
Padrao, AI, Vitorino, R, Duarte, JA, Ferreira, R, Amado, F. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective. J Proteome Res 2013, 12:4257–4267.
Hollander, JM, Baseler, WA, Dabkowski, ER. Proteomic remodeling of mitochondria in heart failure. Congest Heart Fail 2011, 17:262–268.
Cui, Z, Hou, J, Chen, X, Li, J, Xie, Z, Xue, P, Cai, T, Wu, P, Xu, T, Yang, F. The profile of mitochondrial proteins and their phosphorylation signaling network in INS‐1 β cells. J Proteome Res 2010, 9:2898–2908.
Hirschey, MD, Shimazu, T, Goetzman, E, Jing, E, Schwer, B, Lombard, DB, Grueter, CA, Harris, C, Biddinger, S, Ilkayeva, OR, et al. SIRT3 regulates mitochondrial fatty‐acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121–125.
Hirschey, MD, Shimazu, T, Huang, JY, Verdin, E. Acetylation of mitochondrial proteins. Methods Enzymol 2009, 457:137–147.
Silva, AM, Vitorino, R, Domingues, MR, Spickett, CM, Domingues, P. Post‐translational modifications and mass spectrometry detection. Free Radic Biol Med 2013, 65:925–941.
Chung, DJ, Szyszka, B, Brown, JC, Huner, NP, Staples, JF. Changes in the mitochondrial phosphoproteome during mammalian hibernation. Physiol Genomics 2013, 45:389–399.
Lee, J, Xu, Y, Chen, Y, Sprung, R, Kim, SC, Xie, S, Zhao, Y. Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol Cell Proteomics 2007, 6:669–676.
Palmisano, G, Sardanelli, AM, Signorile, A, Papa, S, Larsen, MR. The phosphorylation pattern of bovine heart complex I subunits. Proteomics 2007, 7:1575–1583.
Reinders, J, Wagner, K, Zahedi, RP, Stojanovski, D, Eyrich, B, van der Laan, M, Rehling, P, Sickmann, A, Pfanner, N, Meisinger, C. Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 2007, 6:1896–1906.
Ito, J, Taylor, NL, Castleden, I, Weckwerth, W, Millar, AH, Heazlewood, JL. A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Proteomics 2009, 9:4229–4240.
Nguyen, TT, Wong, R, Menazza, S, Sun, J, Chen, Y, Wang, G, Gucek, M, Steenbergen, C, Sack, MN, Murphy, E. Cyclophilin D modulates mitochondrial acetylome. Circ Res 2013, 113:1308–1319.
Still, AJ, Floyd, BJ, Hebert, AS, Bingman, CA, Carson, JJ, Gunderson, DR, Dolan, BK, Grimsrud, PA, Dittenhafer‐Reed, KE, Stapleton, DS, et al. Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation. J Biol Chem 2013, 288:26209–26219.
Pavlides, S, Tsirigos, A, Migneco, G, Whitaker‐Menezes, D, Chiavarina, B, Flomenberg, N, Frank, PG, Casimiro, MC, Wang, C, Pestell, RG, et al. The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 2010, 9:3485–3505.
Sharma, K, Karl, B, Mathew, AV, Gangoiti, JA, Wassel, CL, Saito, R, Pu, M, Sharma, S, You, YH, Wang, L, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 2013, 24:1901–1912.
Koves, TR, Ussher, JR, Noland, RC, Slentz, D, Mosedale, M, Ilkayeva, O, Bain, J, Stevens, R, Dyck, JR, Newgard, CB, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008, 7:45–56.
Yugi, K, Kubota, H, Hatano, A, Kuroda, S. Trans‐omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol 2016, 34:276–290.
Weigelt, K, Kuster, H, Radchuk, R, Muller, M, Weichert, H, Fait, A, Fernie, AR, Saalbach, I, Weber, H. Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J 2008, 55:909–926.
Burkewitz, K, Morantte, I, Weir, HJ, Yeo, R, Zhang, Y, Huynh, FK, Ilkayeva, OR, Hirschey, MD, Grant, AR, Mair, WB. Neuronal CRTC‐1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 2015, 160:842–855.
Hebert, AS, Dittenhafer‐Reed, KE, Yu, W, Bailey, DJ, Selen, ES, Boersma, MD, Carson, JJ, Tonelli, M, Balloon, AJ, Higbee, AJ, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 2013, 49:186–199.
Prabakaran, S, Swatton, JE, Ryan, MM, Huffaker, SJ, Huang, JT, Griffin, JL, Wayland, M, Freeman, T, Dudbridge, F, Lilley, KS, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004, 9:684–697, 643.
Williams, EG, Wu, Y, Jha, P, Dubuis, S, Blattmann, P, Argmann, CA, Houten, SM, Amariuta, T, Wolski, W, Zamboni, N, et al. Systems proteomics of liver mitochondria function. Science 2016, 352:aad0189.
Bannai, H, Tamada, Y, Maruyama, O, Nakai, K, Miyano, S. Extensive feature detection of N‐terminal protein sorting signals. Bioinformatics 2002, 18:298–305.
Guda, C, Fahy, E, Subramaniam, S. MITOPRED: a genome‐scale method for prediction of nucleus‐encoded mitochondrial proteins. Bioinformatics 2004, 20:1785–1794.
Claros, MG, Vincens, P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996, 241:779–786.
Kumar, M, Verma, R, Raghava, GP. Prediction of mitochondrial proteins using support vector machine and hidden Markov model. J Biol Chem 2006, 281:5357–5363.
King, BR, Guda, C. ngLOC: an n‐gram‐based Bayesian method for estimating the subcellular proteomes of eukaryotes. Genome Biol 2007, 8:R68.
Small, I, Peeters, N, Legeai, F, Lurin, C. Predotar: a tool for rapidly screening proteomes for N‐terminal targeting sequences. Proteomics 2004, 4:1581–1590.
Nakai, K, Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999, 24:34–36.
Guda, C. pTARGET: a web server for predicting protein subcellular localization. Nucleic Acids Res 2006, 34:W210–W213.
Emanuelsson, O, Nielsen, H, Brunak, S, von Heijne, G. Predicting subcellular localization of proteins based on their N‐terminal amino acid sequence. J Mol Biol 2000, 300:1005–1016.
Gaston, D, Tsaousis, AD, Roger, AJ. Predicting proteomes of mitochondria and related organelles from genomic and expressed sequence tag data. Methods Enzymol 2009, 457:21–47.
Chacinska, A, Koehler, CM, Milenkovic, D, Lithgow, T, Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 2009, 138:628–644.
Stucki, JW. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem 1980, 109:269–283.
Tager, JM, Wanders, RJ, Groen, AK, Kunz, W, Bohnensack, R, Kuster, U, Letko, G, Bohme, G, Duszynski, J, Wojtczak, L. Control of mitochondrial respiration. FEBS Lett 1983, 151:1–9.
Pietrobon, D, Zoratti, M, Azzone, GF, Caplan, SR. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies. Biochemistry 1986, 25:767–775.
Gauthier, LD, Greenstein, JL, O`Rourke, B, Winslow, RL. An integrated mitochondrial ROS production and scavenging model: implications for heart failure. Biophys J 2013, 105:2832–2842.
Yugi, K, Tomita, M. A general computational model of mitochondrial metabolism in a whole organelle scale. Bioinformatics 2004, 20:1795–1796.
Beard, DA. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 2005, 1:e36.
Wu, F, Yang, F, Vinnakota, KC, Beard, DA. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. J Biol Chem 2007, 282:24525–24537.
Smith, AC, Robinson, AJ. A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC Syst Biol 2011, 5:102.
Kleessen, S, Araujo, WL, Fernie, AR, Nikoloski, Z. Model‐based confirmation of alternative substrates of mitochondrial electron transport chain. J Biol Chem 2012, 287:11122–11131.
Cortassa, S, Aon, MA. Computational modeling of mitochondrial function. Methods Mol Biol 2012, 810:311–326.
Cortassa, S, Aon, MA, Marban, E, Winslow, RL, O`Rourke, B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 2003, 84:2734–2755.
Cortassa, S, Aon, MA, O`Rourke, B, Jacques, R, Tseng, HJ, Marban, E, Winslow, RL. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 2006, 91:1564–1589.
Kembro, JM, Aon, MA, Winslow, RL, O`Rourke, B, Cortassa, S. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two‐compartment model. Biophys J 2013, 104:332–343.
Vo, TD, Greenberg, HJ, Palsson, BO. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J Biol Chem 2004, 279:39532–39540.
Alves, R, Sorribas, A. In silico pathway reconstruction: iron‐sulfur cluster biogenesis in Saccharomyces cerevisiae. BMC Syst Biol 2007, 1:10.
Gaj, T, Gersbach, CA, Barbas, CF. ZFN, TALEN, and CRISPR/Cas‐based methods for genome engineering. Trends Biotechnol 2013, 31:397–405.
Jo, A, Ham, S, Lee, GH, Lee, YI, Kim, S, Lee, YS, Shin, JH, Lee, Y. Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int 2015, Article ID 305716, 10 pp. doi:10.1155/2015/305716.
Hsu, PD, Lander, ES, Zhang, F. Development and applications of CRISPR‐Cas9 for genome engineering. Cell 2014, 157:1262–1278.
Gammage, PA, Rorbach, J, Vincent, AI, Rebar, EJ, Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large‐scale deletions or point mutations. EMBO Mol Med 2014, 6:458–466.
Bacman, SR, Williams, SL, Pinto, M, Peralta, S, Moraes, CT. Specific elimination of mutant mitochondrial genomes in patient‐derived cells by mitoTALENs. Nat Med 2013, 19:1111–1113.
Minczuk, M, Papworth, MA, Kolasinska, P, Murphy, MP, Klug, A. Sequence‐specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA 2006, 103:19689–19694.
Penta, JS, Johnson, FM, Wachsman, JT, Copeland, WC. Mitochondrial DNA in human malignancy. Mutat Res 2001, 488:119–133.
Tachibana, M, Amato, P, Sparman, M, Woodward, J, Sanchis, DM, Ma, H, Gutierrez, NM, Tippner‐Hedges, R, Kang, E, Lee, HS, et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature 2013, 493:627–631.
Tachibana, M, Sparman, M, Sritanaudomchai, H, Ma, H, Clepper, L, Woodward, J, Li, Y, Ramsey, C, Kolotushkina, O, Mitalipov, S. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 2009, 461:367–372.
Edwards, MD, Symbor‐Nagrabs, A, Dollard, L, Gifford, DK, Fink, GR. Interactions between chromosomal and nonchromosomal elements reveal missing heritability. Proc Natl Acad Sci USA 2014, 111:7719–7722.
Lin, HC, Liu, SY, Lai, HS, Lai, IR. Isolated mitochondria infusion mitigates ischemia‐reperfusion injury of the liver in rats. Shock 2013, 39:304–310.
Chang, JC, Wu, SL, Liu, KH, Chen, YH, Chuang, CS, Cheng, FC, Su, HL, Wei, YH, Kuo, SJ, Liu, CS. Allogeneic/xenogeneic transplantation of peptide‐labeled mitochondria in Parkinson`s disease: restoration of mitochondria functions and attenuation of 6‐hydroxydopamine‐induced neurotoxicity. Transl Res 2016, 170:40–56.e1‐3.
Schandera, J, Mackey, TK. Mitochondrial replacement techniques: divergence in global policy. Trends Genet 2016, 32:385–390.
Mitalipov, S, Wolf, DP. Clinical and ethical implications of mitochondrial gene transfer. Trends Endocrinol Metab 2014, 25:5–7.
Falk, MJ, Decherney, A, Kahn, JP. Mitochondrial replacement techniques—implications for the clinical community. N Engl J Med 2016, 374:1103–1106.
Ernster, L, Schatz, G. Mitochondria: a historical review. J Cell Biol 1981, 91:227s–255s.