Olivetti, L, Grazioli, L, Pollastri, P. Female Reproductive System. Cham: Springer International Publishing; 2014, 207–219. ISBN: 978‐3‐319‐10749‐3.
Danforth, DN. The fibrous nature of the human cervix, and its relation to the isthmic segment in gravid and nongravid uteri. Am J Obstet Gynecol 1947, 53:541–560.
Martini, FH, Nath, JL, Bartholomew, EF. The reproductive system. In: Fundamentals of Anatomy %26 Physiology. Chapter 28, 24th ed. Glenview, IL: Pearson; 2014.
Healey, A. Embryology of the Female Reproductive Tract. Berlin Heidelberg: Springer; 2012, 21–30.
Fusi, L, Cloke, B, Brosens, JJ. The uterine junctional zone. Best Pract Res Clin Obstet Gynaecol 2006, 20:479–491.
Brosens, JJ, de Souza, NM, Barker, FG. Uterine junctional zone: function and disease. Lancet 1995, 346:558–560.
Schwalm, H, Dubrauszky, V. The structure of the musculature of the human uterus–muscles and connective tissue. Am J Obstet Gynecol 1966, 94:391–404.
Vink, JY, Qin, S, Brock, CO, Zork, NM, Feltovich, HM, Chen, X, Urie, P, Myers, KM, Hall, TJ, Wapner, R, et al. A new paradigm for the role of smooth muscle cells in the human cervix. Am J Obstet Gynecol 2016, 215:478.
Ramsey, EM. Anatomy of the human uterus. In: Chard, T, Grudzinskas, JG, eds. The Uterus. Cambridge: Cambridge University Press; 1994, 18–40.
Young, RC, Hession, RO. Three‐dimensional structure of the smooth muscle in the term‐pregnant human uterus. Obstet Gynecol 1999, 93:94–99.
Goerttler, K. Die archietektur der muscelwand des menschlichen uterus and ihre functinelle bedeutung. Jahrbuch Morph u Microsk Anat 1931, 65:45–128.
Weiss, S, Jaermann, T, Schmid, P, Staempfli, P, Boesiger, P, Niederer, P, Caduff, R, Bajka, M. Three‐dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec A Discov Mol Cell Evol Biol 2006, 288:84–90.
Fujimoto, K, Kido, A, Okada, T, Uchikoshi, M, Togashi, K. Diffusion tensor imaging (DTI) of the normal human uterus in vivo at 3 tesla: comparison of DTI parameters in the different uterine layers. J Magn Reson Imaging 2013, 38:1494–1500.
de Vasconcellos Fontes, RB, Baptista, JS, Rabbani, SR, Traynelis, VC, Liberti, EA. Structural and ultrastructural analysis of the cervical discs of young and elderly humans. PLoS One 2015, 10:e0139283.
Wolinsky, H, Glagov, S. A lamellar unit of aortic medial structure and function in mammals. Circ Res 1967, 20:99–111.
O`Connell, MK, Murthy, S, Phan, S, Xu, C, Buchanan, J, Spilker, R, Dalman, RL, Zarins, CK, Denk, W, Taylor, CA. The three‐dimensional micro‐and nanostructure of the aortic medial lamellar unit measured using 3d confocal and electron microscopy imaging. Matrix Biol 2008, 27:171–181.
Wang, H, Dey, SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 2006, 7:185–199.
Hunter, RHF, Coy, P, Gadea, J, Rath, D. Considerations of viscosity in the preliminaries to mammalian fertilisation. J Assist Reprod Genet 2011, 28:191–197.
Eytan, O, Elad, D, Zaretsky, U, Jaffa, AJ. A glance into the uterus during in vitro simulation of embryo transfer. Hum Reprod 2004, 19:562–569.
Yaniv, S, Jaffa, AJ, Eytan, O, Elad, D. Simulation of embryo transport in a closed uterine cavity model. Eur J Obstet Gynecol Reprod Biol 2009, 144:S50–S60.
Datnow, AD. A reconsideration of the secretory function of the human endometrium. J Obstet Gynaecol Br Commonw 1973, 80:865–871.
Wolf, DP, Mastroianni, L. Protein composition of human uterine fluid. Fertil Steril 1975, 26:240–247.
van Kooij, RJ, Roelofs, HJ, Kathman, GA, Kramer, MF. Synthesis of a mucous glycoprotein in the human uterus. Eur J Obstet Gynecol Reprod Biol 1982, 14:191–197.
Roberts, GP, Parker, JM, Henderson, SR. Proteins in human uterine fluid. J Reprod Fertil 1976, 48:153–157.
Clift, AF, Hart, J. Variations in the apparent viscosity of human cervical mucus. J Physiol 1953, 122:358–365.
Karni, Z, Polishuk, W, Adoni, A, Diamant, Y. Newtonian viscosity of the human cervical mucus during the menstrual cycle. Int J Fertil 1971, 16:185–188.
Wolf, DP, Sokoloski, JE, Litt, M. Composition and functioin of human cervical mucus. Biochim Biophys Acta 1980, 630:545–558.
Yudin, AI, Hanson, FW, Katz, DF. Human cervical mucus and its interaction with sperm: a fine‐structural view. Biol Reprod 1989, 40:661–671.
Menárguez, M, Pastor, LM, Odeblad, E. Morphological characterization of different human cervical mucus types using light and scanning electron microscopy. Hum Reprod 2003, 18:1782–1789.
Hafez, ES, Barnhart, MI, Ludwig, H, Lusher, J, Joelsson, I, Daniel, JL, Sherman, AI, Jordan, JA, Wolf, H, Stewart, WC, et al. Scanning electron microscopy of human reproductive physiology. Acta Obstet Gynecol Scand Suppl 1975, 40:1–61.
Daunter, B, Counsilman, C. Cervical mucus: its structure and possible biological functions. Eur J Obstet Gynecol Reprod Biol 1980, 10:141–161.
Rutllant, J, López‐Béjar, M, Santolaria, P, Yániz, J, López‐Gatius, F. Rheological and ultrastructural properties of bovine vaginal fluid obtained at oestrus. J Anat 2002, 201:53–60.
Overstreet, JW, Katz, DF, Yudin, AI. Cervical mucus and sperm transport in reproduction. Semin Perinatol 1991, 15:149–155.
Fauci, LJ, Dillon, R. Biofluidmechanics of reproduction. Annu Rev Fluid Mech 2006, 38:371–394.
Lighthill, J. Flagellar hydrodynamics. SIAM Rev 1976, 18:161–230.
Brennen, C, Winet, H. Fluid mechanics of propulsion by cilia and flagella. Annu Rev Fluid Mech 1977, 9:339–398.
Blake, JR, Sleigh, MA. Mechanics of ciliary locomotion. Biol Rev Cambridge Philos Soc 1974, 49:85–125.
Lauga, E, Powers, TR. The hydrodynamics of swimming microorganisms. Rep Prog Phys 2009, 72:096601.
Lauga, E. Propulsion in a viscoelastic fluid. Phys Fluids 2007, 19:083104.
Wróbel, JK, Lynch, S, Barrett, A, Fauci, L, Cortez, R. Enhanced flagellar swimming through a compliant viscoelastic network in stokes flow. Fluid Mech 2016, 792:775–797.
Denissenko, P, Kantsler, V, Smith, DJ, Kirkman‐Brown, J. Human spermatozoa migration in microchannels reveals boundary‐following navigation. Proc Natl Acad Sci USA 2012, 109:8007–8010.
Qin, B, Gopinath, A, Yang, J, Gollub, JP, Arratia, PE. Flagellar kinematics and swimming of algal cells in viscoelastic fluids. Sci Rep 2015, 5:9190.
Ishimoto, K, Gaffney, EA. Mechanical tuning of mammalian sperm behaviour by hyperactivation, rheology and substrate adhesion: a numerical exploration. J R Soc Interface 2016, 13:20160633.
Riemer, RK, Heymann, MA. Regulation of uterine smooth muscle function during gestation. Pediatr Res 1998, 44:615–627.
Sanborn, BM. Relationship of ion channel activity to control of myometrial calcium. J Soc Gynecol Investig 2000, 7:4–11.
Kuriyama, H, Kitamura, K, Itoh, T, Inoue, R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998, 78:811–920.
Garfield, RE, Blennerhassett, MG, Miller, SM. Control of myometrial contractility: role and regulation of gap junctions. Oxf Rev Reprod Biol 1988, 10:436–490.
Parkington, HC, Tonta, MA, Brennecke, SP, Coleman, HA. Contractile activity membrane potential, and cytoplasmic calcium in human uterine smooth muscle in the third trimester of pregnancy during labor. Am J Obstet Gynecol 1999, 181:1145–1151.
Pressman, EK, Tucker, JA, Anderson, NC, Young, RC. Morphologic and electrophysiologic characerization of isolated pregnant human myometrial cells. Am J Obstet Gynecol 1988, 159:1273–1279.
Nakajima, A. Action potential of human myometrial fibers. Am J Obstet Gynecol 1971, 111:266–269.
Wray, S. Uterine contraction and physiological mechanisms of modulation. Am J Physiol 1993, 264:C1–C13.
Devedeux, D, Marque, C, Mansour, S, Germain, G, Duchene, J. Uterine electromyography: a critical review. Am J Obstet Gynecol 1993, 169:1636–1653.
Parkington, HC, Coleman, HA. Excitability in uterine smooth muscle. Front Horm Res 2001, 27:179–200.
Wray, S, Jones, K, Kupittayanant, S, Li, Y, Matthew, A, Monir‐Bishty, E, Noble, K, Pierce, SJ, Quenby, S, Shmygol, AV. Calcium signaling and uterine contractility. J Soc Gynecol Investig 2003, 10:252–264.
Young, RC, Smith, LH, McLaren, MD. T‐type and L‐type calcium currents in freshly dispersed human uterine smooth muscle cells. Am J Obstet Gynecol 1993, 169:785–792.
Marshall, JM. Effects of catecholamines on the smooth muscle of the female reproductive tract. Annu Rev Pharmacol 1973, 13:19–32.
Wray, S, Kupittayanant, S, Shmygol, A, Smith, RD, Burdyga, T. The physiological basis of uterine contractility: a short review. Exp Physiol 2001, 86:239–246.
Shmygol, A, Blanks, AM, Bru‐Mercier, G, Gullam, JE, Thornton, S. Control of uterine Ca2+ by membrane voltage: toward understanding the excitation‐contraction coupling in human myometrium. Ann N Y Acad Sci 2007, 1101:97–109.
Arrowsmith, S, Kendrick, A, Hanley, JA, Noble, K, Wray, S. Myometrial physiology–time to translate? Exp Physiol 2014, 99:495–502.
Young, RC. Mechanotransduction mechanisms for coordinating uterine contractions in human labor. Reproduction 2016, 152:R51–R61.
Garfield, RE, Thilander, G, Blennerhassett, MG, Sakai, N. Are gap junctions necessary for cell‐to‐cell coupling of smooth muscle? An update. Can J Physiol Pharmacol 1992, 70:481–490.
Miyoshi, H, Boyle, MB, MacKay, LB, Garfield, RE. Voltage‐clamp studies of gap junctions between uterine muscle cells during term and preterm labor. Biophys J 1996, 71:1324–1334.
Kawarabayashi, T, Marshall, JM. Factors influencing circular muscle activity in the pregnant rat uterus. Biol Reprod 1981, 24:373–379.
Wray, S, Burdyga, T, Noble, D, Noble, K, Borysova, L, Arrowsmith, S. Progress in understanding electro‐mechanical signalling in the myometrium. Acta Physiol (Oxf) 2015, 213:417–431.
Young, RC, Hession, RO. Intra‐ and intercellular calcium waves in cultured human myometrium. J Muscle Res Cell Motil 1996, 17:349–355.
Young, RC, Zhang, P. The mechanism of propagation of intracellular calcium waves in cultured human uterine myocytes. Am J Obstet Gynecol 2001, 184:1228–1234.
Wray, S, Burdyga, T, Noble, K. Calcium signalling in smooth muscle. Cell Calcium 2005, 38:397–407.
Noble, K, Matthew, A, Burdyga, T, Wray, S. A review of recent insights into the role of the sarcoplasmic reticulum and ca entry in uterine smooth muscle. Eur J Obstet Gynecol Reprod Biol 2009, 144(suppl 1):S11–S19.
Wray, S. Insights from physiology into myometrial function and dysfunction. Exp Physiol 2015, 100:1468–1476.
Hodgkin, AL, Huxley, AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952, 117:500–544.
Hai, CM, Murphy, RA. Cross‐bridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol 1988, 254:C99–C106.
Sneyd, J, Keizer, J, Sanderson, M. Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J 1995, 9:1463–1472.
Bursztyn, L, Eytan, O, Jaffa, AJ, Elad, D. Modeling myometrial smooth muscle contraction. Ann N Y Acad Sci 2007, 1101:110–138.
Bursztyn, L, Eytan, O, Jaffa, AJ, Elad, D. Mathematical model of excitation‐contraction in a uterine smooth muscle cell. Am J Physiol Cell Physiol 2007, 292:C1816–C1829.
Murtada, SI, Kroon, M, Holzapfel, GA. A calcium‐driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 2010, 9:749–762.
Tong, WC, Choi, CY, Kharche, S, Holden, AV, Zhang, H, Taggart, MJ. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS One 2011, 29:e18685.
Maggio, CD, Jennings, SR, Robichaux, JL, Stapor, PC, Hyman, JM. A modified hai‐murphy model of uterine smooth muscle contraction. Bull Math Biol 2012, 74:143–158.
Sharifimajd, B, Stalhand, J. A continuum model for excitation‐contraction of smooth muscle under finite deformations. J Theor Biol 2014, 355:1–9.
Young, RC. A computer model of uterine contractions based on action potential propagation and intercellular calcium waves. Obstet Gynecol 1997, 89:604–608.
Sheldon, RE, Mashayamombe, C, Shi, SQ, Garfield, RE, Shmygol, A, Blanks, AM, van den Berg, HA. Alterations in gap junction connexin43/connexin45 ratio mediate a transition from quiescence to excitation in a mathematical model of the myometrium. J R Soc Interface 2014, 11:101.
Yochum, M, Laforêt, J, Marque, C. An electro‐mechanical multiscale model of uterine pregnancy contraction. Comput Biol Med 2016, 77:182–194.
Eytan, O, Jaffa, AJ, Har‐Toov, J, Dalach, E, Elad, D. Dynamics of the intra‐uterine fluid‐wall interface. Ann Biomed Eng 1999, 27:372–379.
van Gestel, I, Ijland, MM, Hoogland, HJ, Evers, JL. Endometrial wave‐like activity in the non‐pregnant uterus. Hum Reprod Update 2003, 9:131–138.
De Ziegler, D, Bulletti, C, Fanchin, R, Epiney, M, Pa, B. Contractility of the nonpregnant uterus: the follicular phase. Ann N Y Acad Sci 2001, 943:172–184.
Oki, T, Douchi, T, Maruta, K, Nakamura, S, Nagata, Y. Changes in endometrial wave‐like movements in accordance with the phases of menstrual cycle. J Obstet Gynaecol Res 2002, 28:176–181.
Ijland, MM, Evers, JL, Dunselman, GA, van Katwijk, C, Lo, CR, Hoogland, HJ. Endometrial wavelike movements during the menstrual cycle. Fertil Steril 1996, 65:1996.
Leyendecker, G, Wildt, L. A new concept of endometriosis and adenomyosis: tissue injury and repair (tiar). Horm Mol Biol Clin Investig 2011, 5:125–142.
Kunz, G, Leyendecker, G. Uterine peristaltic activity during the menstrual cycle: characterization, regulation, function and dysfunction. Reprod Biomed Online 2002, 4:5–9.
Kissler, S, Siebzehnruebl, E, Kohl, J, Mueller, A, Hamscho, N, Gaetje, R, Ahr, A, Rody, A, Kaufmann, M. Uterine contractility and directed sperm transport assessed by hysterosalpingoscintigraphy (hssg) and intrauterine pressure (iup) measurement. Acta Obst Gyn Scand 2004, 83:369–374.
Meirzon, D, Jaffa, AJ, Gordon, Z, Elad, D. A new method for analysis of non‐pregnant uterine peristalsis using transvaginal ultrasound. Ultrasound Obstet Gynecol 2011, 38:217–224.
Bulletti, C, de Ziegler, D, Polli, V, Diotallevi, L, Ferro, ED, Flamigni, C. Uterine contractility during the menstrual cycle. Hum Reprod 2000, 15:81–89.
Eytan, O, Halevi, I, Har‐Toov, J, Wolman, I, Elad, D, Jaffa, AJ. Characteristics of uterine peristalsis in spontaneous and induced cycles. Fertil Steril 2001, 76:337–341.
Abuhamad, A, Chaoui, R, Jeanty, P, Paladini, D, Walsh, E. Ultrasound in Obstetrics and Gynecology: A Practical Approach. GLOWM; 2014.
Killick, SR. Ultrasound and the receptivity of the endometrium. Reprod Biomed Online 2007, 15:63–67.
Abbas, K, Monaghan, SD, Campbell, I. Uterine physiology. Anaesth Intensive Care 2011, 12:108–110.
Leyendecker, G, Kunz, G, Wildt, L, Beil, D, Deininger, H. Uterine hyperperistalsis and dysperistalsis as dysfunctions of the mechanism of rapid sperm transport in patients with endometriosis and infertility. Hum Reprod 1996, 11:1542–1551.
Gora, S, Elad, D, Jaffa, A. Objective analysis of vaginal ultrasound video clips for exploring uterine peristalsis post vaginal and caesarean section deliveries. Reprod Sci. 2017. doi: http://dx.doi.org/10.1177/1933719117697256. [Epub ahead of print; January 1, 2017]
Fanchin, R. Uterine contractility decreases at the time of blastocyst transfers. Hum Reprod 2001, 16:1115–1119.
Fanchin, R, Righini, C, Olivennes, F, Taylor, S, de Ziegler, D, Frydman, R. Uterine contractions at the time of embryo transfer alter pregnancy rates after in‐vitro fertilization. Hum Reprod 1998, 13:1998.
Togashi, K. Uterine contractility evaluated on cine magnetic resonance imaging. Ann N Y Acad Sci 2007, 1101:62–71.
Nakai, A, Togashi, K, Yamaoka, T, Fujiwara, T, Ueda, H, Koyama, T, Kobayashi, H, Kagimura, T, Fujii, S, Konishi, J. Uterine peristalsis shown on cine MR imaging using ultrafast sequence. J Magn Reson Imaging 2003, 18:726–733.
Kido, A, Togashi, K, Nishino, M, Miyake, K, Koyama, T, Fujimoto, R, Iwasaku, K, Fujii, S, Hayakawa, K. Cine mr imaging of uterine peristalsis in patients with endometriosis. Eur Radiol 2007, 17:1813–1819.
Kido, A, Nishiura, M, Togashi, K, Nakai, A, Fujiwara, T, Kataoka, ML, Koyama, T, Fujii, S, Asada, N. A semiautomated technique for evaluation of uterine peristalsis. J Magn Reson Imaging 2005, 21:249–257.
Watanabe, K, Kataoka, M, Yano, K, Nishio, S, Umehana, M, Kido, A, Togashi, K. Automated detection and measurement of uterine peristalsis in cine mr images: automated detection of uterine peristalsis. J Magn Reson Imaging 2015, 42:644–650.
Kunz, G, Beil, D, Deininger, H, Wildt, L, Leyendecker, G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum Reprod 1996, 11:627–632.
Wildt, L, Kissler, S, Licht, P, Becker, W. Sperm transport in the human female genital tract and its modulation by oxytocin as assessed by hysterosalpingoscintigraphy, hysterotonography, electrohysterography and doppler sonography. Hum Reprod Update 1998, 4:655–666.
Zervomanolakis, I, Ott, HW, Hadziomerovic, D, Mattle, V, Seeber, BE, Virgolini, I, Heute, D, Kissler, S, Leyendecker, G, Wildt, L. Physiology of upward transport in the human female genital tract. Ann N Y Acad Sci 2007, 1101:1–20.
Eytan, O, Jaffa, AJ, Elad, D. Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med Eng Phys 2001, 23:473–482.
Eytan, O, Elad, D. Analysis of intra‐uterine fluid motion induced by uterine contractions. Bull Math Biol 1999, 61:221–238.
Eytan, O, Fuad, A, Gull, I, Wolman, I, Elad, D, Jaffa, AJ. The mechanism of hydrosalpinx in embryo implantation. Hum Reprod 2001, 16:2662–2667.
Teran, J, Fauci, L, Shelley, M. Peristaltic pumping and irreversibility of a stokesian viscoelastic fluid. Phys Fluids 2008, 20:073101.
Aranda, V, Cortez, R, Fauci, L. Stokesian peristaltic pumping in a three‐dimensional tube with a phase‐shifted asymmetry. Phys Fluids 2011, 23:081901.
Aranda, V, Cortez, R, Fauci, L. A model of stokesian peristalsis and vesicle transport in a three‐dimensional closed cavity. J Biomech 2015, 48:1631–1638.
Yaniv, S, Elad, D, Jaffa, AJ, Eytan, O. Biofluid aspects of embryo transfer. Ann Biomed Eng 2003, 31:1255–1262.
Eytan, O, Elad, D, Jaffa, AJ. Bioengineering studies of the embryo transfer procedure. Ann N Y Acad Sci 2007, 1101:21–37.
Yaniv, S, Jaffa, AJ, Elad, D. Modeling embryo transfer into a closed uterine model. J Biomech 2012, 134:111003.
Gillespie, EC. Principles of uterine growth in pregnancy. Am J Obstet Gynecol 1950, 59:949–959.
Fisk, NM, Ronderos‐Dumit, D, Tannirandorn, Y, Nicolini, U, Talbert, D, Rodeck, CH. Normal amniotic pressure throughout gestation. BJOG 1992, 99:18–22.
Smith, R, Imtiaz, M, Banney, D, Paul, JW, Young, RC. Why the heart is like an orchestra and the uterus is like a soccer crowd. Am J Obstet Gynecol 2015, 213:181–185.
Sheldon, RE, Shmygol, A, Van Den Berg, HA, Blanks, AM. Functional and morphological development of the womb throughout life. Sci Prog 2015, 98:103–127.
Buhimschi, CS, Buhimschi, IA, Malinow, AM, Weiner, CP. Intrauterine pressure during the second stage of labor in obese women. Obstet Gynecol 2004, 103:225–230.
Blencowe, H, Cousens, S, Chou, D, Oestergaard, M, Say, L, Moller, A‐B, Kinney, M, Lawn, J, Born Too Soon Preterm Birth Action Group. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health 2013, 10(suppl 1):S2.
Degani, S, Leibovitz, Z, Shapiro, I, Gonen, R, Ohel, G. Myometrial thickness in pregnancy: longitudinal sonographic study. J Ultrasound Med 1998, 17:661–665.
Buhimschi, CS, Buhimschi, IA, Malinow, AM, Weiner, CP. Myometrial thickness during human labor and immediately post partum. Am J Obstet Gynecol 2003, 188:553–559.
Buhimschi, CS, Buhimschi, IA, Norwitz, ER, Sfakianaki, AK, Hamar, B, Copel, JA, Saade, GR, Weiner, CP. Sonographic myometrial thickness predicts the latency interval of women with preterm premature rupture of the membranes and oligohydramnios. Am J Obstet Gynecol 2005, 193:762–770.
Durnwald, CP, Mercer, BM. Myometrial thickness according to uterine site, gestational age and prior cesarean delivery. J Matern Fetal Neonatal Med 2008, 21:247–250.
Sokolowski, P, Saison, F, Giles, W, McGrath, S, Smith, D, Smith, J, Smith, R. Human uterine wall tension trajectories and the onset of parturition. PLoS One 2010, 5:e11037.
House, M, Bhadelia, R, Myers, K, Socrate, S. Magnetic resonance imaging of three‐dimensional cervical anatomy in the second and third trimester. Eur J Obstet Gynecol Reprod Biol 2009, 144(suppl 1):S65–S69.
Wachsberg, RH, Kurtz, AB, Levine, CD, Solomon, P, Wapner, RJ. Real‐time ultrasonographic analysis of the normal postpartum uterus: technique, variability, and measurements. J Ultrasound Med 1994, 13:215–221.
Cunningham, FG, Leveno, KJ, Bloom, SL, Spong, CY, Dashe, JS, Hoffman, BL, Casey, BM, Sheffield, JS. Chapter 4: maternal physiology. In: Williams Obstetrics. 24th ed. New York, NY: McGraw‐Hill Education/Medical; 2014.
Martini, FH, Nath, JL, Bartholomew, EF. Development and inheritance. In: Fundamentals of Anatomy %26 Physiology. Chapter 29, 24th ed. Glenview, IL: Pearson; 2014.
Baah‐Dwomoh, A, McGuire, J, Tan, T, De Vita, R. Mechanical properties of female reproductive organs and supporting connective tissues: a review of the current state of knowledge. Appl Mech Rev 2016, 68:060801–060812.
Conrad, JT, Johnson, WL, Kuhn, WK, Hunter, CA. Passive stretch relationships in human uterine muscle. Am J Obstet Gynecol 1966, 96:1055–1059.
Conrad, JT, Kuhn, WK, Johnson, WL. Stress relaxation in human uterine muscle. Am J Obstet Gynecol 1966, 95:254–265.
Pearsall, G, Roberts, V. Passive mechanical properties of uterine muscle (myometrium) tested in vitro. J Biomech 1978, 11:167–176.
Kiss, M, Hobson, M, Varghese, T, Harter, J, Kliewer, M, Hartenbach, E, Zagzebski, J. Frequency‐dependent complex modulus of the uterus: preliminary results. Phys Med Biol 2006, 51:3683–3695.
Omari, EA, Varghese, T, Kliewer, MA, Harter, J, Hartenbach, EM. Dynamic and quasi‐static mechanical testing for characterization of the viscoelastic properties of human uterine tissue. J Biomech 2015, 48:1730–1736.
Gardner, MO, Goldenberg, RL, Cliver, SP, Tucker, JM, Nelson, KG, Copper, RL. The origin and outcome of preterm twin pregnancies. Obstet Gynecol 1995, 85:553–557.
Goldenberg, RL, Iams, JD, Miodovnik, M, Van Dorsten, JP, Thurnau, G, Bottoms, S, Mercer, BM, Meis, PJ, Moawad, AH, Das, A, et al. The preterm prediction study: risk factors in twin gestations. National Institute of Child Health and Human Development Maternal‐Fetal Medicine Units Network. Am J Obstet Gynecol 1996, 175:1047–1053.
Kirkinen, P, Jouppila, P. Polyhydramnion. A clinical study. Ann Chir Gynaecol 1977, 67:117–122.
Menon, R, Bonney, EA, Condon, J, Mesiano, S, Taylor, RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update 2016, 22:535–560.
Shynlova, O, Lee, Y‐H, Srikhajon, K, Lye, SJ. Physiologic uterine inflammation and labor onset: integration of endocrine and mechanical signals. Reprod Sci 2013, 20:154–167.
Elovitz, M, Mrinalini, C. Animal models of preterm birth. Trends Endocrinol Metab 2004, 15:479–487.
Mesiano, S, Chan, E‐C, Fitter, JT, Kwek, K, Yeo, G, Smith, R. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab 2002, 87:2924–2930.
Reynolds, SRM. Hormonic and physical factors in uterine growth. Cold Spring Harb Symp Quant Biol 1937, 5:84–92.
Smith, R, Mesiano, S, McGrath, S. Hormone trajectories leading to human birth. Regul Pept 2002, 108:159–164.
Douglas, AJ, Clarke, EW, Goldspink, DF. Influence of mechanical stretch on growth and protein turnover of rat uterus. Am J Physiol Endocrinol Metab 1988, 254:E543–E548.
Lye, SJ, Mitchell, J, Nashman, N, Oldenhof, A, Ou, R, Shynlova, O, Langille, L. Role of mechanical signals in the onset of term and preterm labor. Front Horm Res 2001, 27:165–178.
Shynlova, O, Kwong, R, Lye, SJ. Mechanical stretch regulates hypertrophic phenotype of the myometrium during pregnancy. Reproduction 2010, 139:247–253.
Adams Waldorf, KM, Singh, N, Mohan, AR, Young, RC, Ngo, L, Das, A, Tsai, J, Bansal, A, Paolella, L, Herbert, BR, et al. Uterine overdistention induces preterm labor mediated by inflammation: observations in pregnant women and nonhuman primates. Am J Obstet Gynecol 2015, 213:830.e1–830.e19.
Myers, KM, Feltovich, H, Mazza, E, Vink, J, Bajka, M, Wapner, RJ, Hall, TJ, House, M. The mechanical role of the cervix in pregnancy. J Biomech 2015, 48:1511–1523.
Gravett, MG, Rubens, CE, Nunes, TM, GAPPS Review Group. Global report on preterm birth and stillbirth (2 of 7): discovery science. BMC Pregnancy Childbirth 2010, 10(suppl 1):S2.
Iams, JD. Prevention of preterm parturition. N Engl J Med 2014, 370:254–261.
Vink, J, Feltovich, H. Cervical etiology of spontaneous preterm birth. Semin Fetal Neonatal Med 2016, 21:106–112.
Lang, CT, Iams, JD, Tangchitnob, E, Socrate, S, House, M. A method to visualize 3‐dimensional anatomic changes in the cervix during pregnancy. J Ultrasound Med 2010, 29:255–260.
Parikh, R, Patel, A, Stack, T, Socrate, S, House, M. How the cervix shortens: an anatomic study using 3‐dimensional transperineal sonography and image registration in singletons and twins. J Ultrasound Med 2011, 30:1197–1204.
House, M, Feltovich, H, Hall, T, Stack, T, Patels, A, Socrate, S. Three‐dimensional, extended field‐of‐view ultrasound method for estimating large strain mechanical properties of the cervix during pregnancy. Ultrason Imaging 2012, 34:1–14.
Westervelt, A, Fernandez, M, House, M, Vink, J, Nhan‐Chang, C‐L, Wapner, R, Myers, K. A parameterized ultrasound‐based finite element analysis of the mechanical environment of pregnancy. J Biomech Eng. In press.
Fernandez, M, House, M, Jambawalikar, S, Zork, N, Vink, J, Wapner, R, Myers, K. Investigating the mechanical function of the cervix during pregnancy using finite element models derived from high‐resolution 3D MRI. Comput Methods Biomech Biomed Eng 2016, 19:404–417.
Petersen, LK, Uldbjerg, N. Cervical collagen in non‐pregnant women with previous cervical incompetence. Eur J Obstet Gynecol Reprod Biol 1996, 67:41–45.
Myers, K, Paskaleva, A, House, M, Socrate, S. Mechanical and biochemical properties of human cervical tissue. Acta Biomater 2008, 4:104–116.
Myers, K, Socrate, S, Tzeranis, D, House, M. Changes in the biochemical constituents and morphologic appearance of the human cervical stroma during pregnancy. Eur J Obstet Gynecol Reprod Biol 2009, 144(suppl 1):S82–S89.
Yao, W, Gan, Y, Myers, KM, Vink, JY, Wapner, RJ, Hendon, CP. Collagen fiber orientation and dispersion in the upper cervix of non‐pregnant and pregnant women. PLoS One 2016, 11:e0166709.
Gan, Y, Yao, W, Myers, KM, Vink, JY, Wapner, RJ, Hendon, CP. Analyzing three‐dimensional ultrastructure of human cervical tissue using optical coherence tomography. Biomed Opt Express 2015, 6:1090–1108.
Aspden, R. Collagen organization in the cervix and its relation to mechanical function. Coll Relat Res 1988, 8:103–112.
Zork, NM, Myers, KM, Yoshida, K, Cremers, S, Jiang, H, Ananth, CV, Wapner, RJ, Kitajewski, J, Vink, J. A systematic evaluation of collagen cross‐links in the human cervix. Am J Obstet Gynecol 2015, 212:321–e1.
Myers, K, Socrate, S, Paskaleva, A, House, M. A study of the anisotropy and tension/compression behavior of human cervical tissue. J Biomech Eng 2010, 132:021003.
Fernandez, M, Vink, J, Yoshida, K, Wapner, R, Myers, K. Direct measurement of the permeability of human cervical tissue. J Biomech Eng 2013, 135:021024.
Myers, K, Ateshian, G. Interstitial growth and remodeling of biological tissues: tissue composition as state variables. J Mech Behav Biomed Mater 2014, 29:544–556.
Yao, W, Yoshida, K, Fernandez, M, Vink, J, Wapner, R, Ananth, C, Oyen, M, Myers, K. Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation. J Mech Behav Biomed Mater 2014, 34:18–26.
Myers, KM, Hendon, CP, Gan, Y, Yao, W, Yoshida, K, Fernandez, M, Vink, J, Wapner, RJ. A continuous fiber distribution material model for human cervical tissue. J Biomech 2015, 48:1533–1540.
Yoshida, K, Reeves, C, Vink, J, Kitajewski, J, Wapner, R, Jiang, H, Cremers, S, Myers, K. Cervical collagen network remodeling in normal pregnancy and disrupted parturition in Antxr2 deficient mice. J Biomech Eng 2014, 136:021017.
Yoshida, K, Jiang, H, Kim, M, Vink, J, Cremers, S, Paik, D, Wapner, R, Mahendroo, M, Myers, K. Quantitative evaluation of collagen crosslinks and corresponding tensile mechanical properties in mouse cervical tissue during normal pregnancy. PLoS One 2014, 9:e112391.
Yoshida, K, Mahendroo, M, Vink, J, Wapner, R, Myers, K. Material properties of mouse cervical tissue in normal gestation. Acta Biomater 2016, 36:195–209.
Fruscalzo, A, Mazza, E, Feltovich, H, Schmitz, R. Cervical elastography during pregnancy: a critical review of current approaches with a focus on controversies and limitations. J Med Ultrason 2016, 43:493–504.
Garfield, R, Saade, G, Buhimschi, C, Buhimschi, I, Shi, L, Shi, S, Chwalisz, K. Control and assessment of the uterus and cervix during pregnancy and labour. Hum Reprod Update 1998, 4:673–695.
Schlembach, D, Mackay, L, Shi, L, Maner, W, Garfield, R, Maul, H. Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination. Eur J Obstet Gynecol Reprod Biol 2009, 144(suppl 1):S70–S76.
Kuon, RJ, Shi, SQ, Maul, H, Sohn, C, Balducci, J, Shi, L, Garfield, RE. A novel optical method to assess cervical changes during pregnancy and use to evaluate the effects of progestins on term and preterm labor. Am J Obstet Gynecol 2011, 205:e15–e20.
Etemadi, M, Chung, P, Heller, J, Liu, J, Rand, L, Roy, S. Towards birthalert—a clinical device intended for early preterm birth detection. IEEE Trans Biomed Eng 2014, 60:3484–3493.
Feltovich, H, Nam, K, Hall, TJ. Quantitative ultrasound assessment of cervical microstructure. Ultrason Imaging 2010, 32:131–142.
McFarlin, BL, Bigelow, TA, Laybed, Y, O`Brien, WD, Oelze, ML, Abramowicz, JS. Ultrasonic attenuation estimation of the pregnant cervix: a preliminary report. Ultrasound Obstet Gynecol 2010, 36:218–225.
Labyed, Y, Bigelow, TA, Mcfarlin, BL. Estimate of the attenuation coefficient using a clinical array transducer for the detection of cervical ripening in human pregnancy. Ultrasonics 2011, 51:34–39.
Feltovich, H, Hall, T, Berghella, V. Beyond cervical length: emerging technologies for assessing the pregnant cervix. Am J Obstet Gynecol 2012, 207:345–354.
Carlson, LC, Romero, ST, Palmeri, ML, Muñoz del Rio, A, Esplin, SM, Rotemberg, VM, Hall, TJ, Feltovich, H. Changes in shear wave speed pre and post induction of labor: a feasibility study. Ultrasound Obstet Gynecol 2015, 46:93–98.
Carlson, LC, Feltovich, H, Palmeri, ML, Dahl, JJ, Munoz del Rio, A, Hall, TJ. Estimation of shear wave speed in the human uterine cervix. Ultrasound Obstet Gynecol 2014, 43:452–458.
Mazza, E, Parra‐Saavedra, M, Bajka, M, Gratacos, E, Nicolaides, K, Deprest, J. In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy. Prenat Diagn 2014, 34:33–41.
Badir, S, Bajka, M, Mazza, E. A novel procedure for the mechanical characterization of the uterine cervix during pregnancy. J Mech Behav Biomed Mater 2013, 27:143–153.
O`Brien, CM, Vargis, E, Paria, BC, Bennett, KA, Mahadevan‐Jansen, A, Reese, J. Raman spectroscopy provides a noninvasive approach for determining biochemical composition of the pregnant cervix in vivo. Acta Paediatr 2014, 103:715–721.
Hee, L, Liao, D, Sandager, P, Gregersen, H, Uldbjerg, N. Cervical stiffness evaluated in vivo by endoflip in pregnant women. PLoS One 2014, 9:e91121.
Vercellini, P, Viganò, P, Somigliana, E, Daguati, R, Abbiati, A, Fedele, L. Adenomyosis: epidemiological factors. Best Pract Res Clin Obstet Gynaecol 2006, 20:465–477.
Taran, F, Stewart, EA, Brucker, S. Adenomyosis: epidemiology, risk factors, clinical phenotype and surgical and interventional alternatives to hysterectomy. Geburtshilfe Frauenheilkd 2013, 73:924–931.
Mishra, VV, Gaddagi, RA, Aggarwal, R, Choudhary, S, Sharma, U, Patel, U. Prevalence; characteristics and management of endometriosis amongst infertile women: A one year retrospective study. J Clin Diagn Res 2015, 9:QC01.
Leyendecker, G, Wildt, L, Mall, G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet 2009, 280:529–538.
Leyendecker, G, Kunz, G, Herbertz, M, Beil, D, Huppert, P, Mall, G, Kissler, S, Noe, M, Wildt, L. Uterine peristaltic activity and the development of endometriosis. Ann N Y Acad Sci 2004, 1034:338–355.
Shaked, S, Jaffa, AJ, Grisaru, D, Elad, D. Uterine peristalsis‐induced stresses within the uterine wall may sprout adenomyosis. Biomech Model Mechanobiol 2015, 14:437–444.
Yoshino, O, Hayashi, T, Osuga, Y, Orisaka, M, Asada, H, Okuda, S, Hori, M, Furuya, M, Onuki, H, Sadoshima, Y, et al. Decreased pregnancy rate is linked to abnormal uterine peristalsis caused by intramural fibroids. Hum Reprod 2010, 25:2475–2479.
Pier, BD, Bates, GW. Potential causes of subfertility in patients with intramural fibroids. Fertil Res Pract 2015, 1:12. doi:10.1186/s40738‐015‐0005‐2.
Purohit, P, Vigneswaran, K. Fibroids and infertility. Curr Obstet Gynecol Rep 2016, 5:81–88.
Gibbons, L, Belizán, JM, Lauer, JA, Betrán, AP, Merialdi, M, Althabe, F, et al. The global numbers and costs of additionally needed and unnecessary caesarean sections performed per year: overuse as a barrier to universal coverage. World Health Rep 2010, 30:1–31.
Molina, G, Weiser, TG, Lipsitz, SR, Esquivel, MM, Uribe‐Leitz, T, Azad, T, Shah, N, Semrau, K, Berry, WR, Gawande, AA, et al. Relationship between cesarean delivery rate and maternal and neonatal mortality. JAMA 2015, 314:2263–2270.
Naji, O, Wynants, L, Smith, A, Abdallah, Y, Saso, S, Stalder, C, Van Huffel, S, Ghaem‐Maghami, S, Van Calster, B, Timmerman, D, et al. Does the presence of a Caesarean section scar affect implantation site and early pregnancy outcome in women attending an early pregnancy assessment unit? Hum Reprod 2013, 28:1489–1496.
Scott, J, Porter, F. Cesarean Delivery. Philadelphia: Lippincott Williams %26 Wilkins; 2008.
O`Neill, SM, Khashan, AS, Henriksen, TB, Kenny, LC, Kearney, PM, Mortensen, PB, Greene, RA, Agerbo, E. Does a Caesarean section increase the time to a second live birth? A register‐based cohort study. Hum Reprod 2014, 29:2560–2568.
Gurol‐Urganci, I, Bou‐Antoun, S, Lim, CP, Cromwell, DA, Mahmood, TA, Templeton, A, van der Meulen, JH. Impact of Caesarean section on subsequent fertility: a systematic review and meta‐analysis. Hum Reprod 2013, 28:1943–1952.
Gurol‐Urganci, I, Cromwell, DA, Mahmood, TA, van der Meulen, JH, Templeton, A. A population‐based cohort study of the effect of Caesarean section on subsequent fertility. Hum Reprod 2014, 29:1320–1326.
O`Neill, SM, Khashan, AS, Kenny, LC, Kearney, PM, Mortensen, PB, Greene, RA, Agerbo, E, Uldbjerg, N, Henriksen, TB. Time to subsequent live birth according to mode of delivery in the first birth. BJOG 2015, 122:1207–1215.
Eijsink, JJH, van der Leeuw‐Harmsen, L, van der Linden, PJQ. Pregnancy after Caesarean section: fewer or later? Hum Reprod 2008, 23:543–547.
Evers, EC, McDermott, KC, Blomquist, JL, Handa, VL. Mode of delivery and subsequent fertility. Hum Reprod 2014, 29:2569–2574.
Art. Assisted reproductive technology, 2013. National Summary Report. Available at: http://www.cdc.gov/art/pdf/2013‐report/art_2013_national_summary_report.pdf (Accessed November 22, 2016).
Zhu, L, Che, H, Xiao, L, Li, Y. Uterine peristalsis before embryo transfer affects the chance of clinical pregnancy in fresh and frozen‐thawed embryo transfer cycles. Hum Reprod 2014, 29:1238–1243.
Eytan, O, Elad, D, Jaffa, AJ. Evaluation of the embryo transfer protocol by a laboratory model of the uterus. Fertil Steril 2007, 88:485–493.
Eytan, O, Zaretsky, U, Jaffa, AJ, Elad, D. In vitro simulation of embryo transfer in a laboratory model of the uterus. J Biomech 2007, 40:1073–1080.