Jinek, M, Chylinski, K, Fonfara, I, Hauer, M, Doudna, JA, Charpentier, E. A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816–821.
Gasiunas, G, Barrangou, R, Horvath, P, Siksnys, V. Cas9‐crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012, 109:E2579–E2586.
Cong, L, Ran, FA, Cox, D, Lin, S, Barretto, R, Habib, N, Hsu, PD, Wu, X, Jiang, W, Marraffini, LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819–823.
Mali, P, Yang, L, Esvelt, KM, Aach, J, Guell, M, DiCarlo, JE, Norville, JE, Church, GM. RNA‐guided human genome engineering via Cas9. Science 2013, 339:823–826.
Zetsche, B, Gootenberg, JS, Abudayyeh, OO, Slaymaker, IM, Makarova, KS, Essletzbichler, P, Volz, SE, Joung, J, van der Oost, J, Regev, A, et al. Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell 2015, 163:759–771.
Kim, D, Kim, J, Hur, JK, Been, KW, Yoon, SH, Kim, JS. Genome‐wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 2016, 34:863–868.
Kleinstiver, BP, Tsai, SQ, Prew, MS, Nguyen, NT, Welch, MM, Lopez, JM, McCaw, ZR, Aryee, MJ, Joung, JK. Genome‐wide specificities of CRISPR‐Cas Cpf1 nucleases in human cells. Nat Biotechnol 2016, 34:869–874.
Kim, HK, Song, M, Lee, J, Menon, AV, Jung, S, Kang, YM, Choi, JW, Woo, E, Koh, HC, Nam, JW, et al. In vivo high‐throughput profiling of CRISPR‐Cpf1 activity. Nat Methods 2017, 14:153–159.
Mali, P, Esvelt, KM, Church, GM. Cas9 as a versatile tool for engineering biology. Nat Methods 2013, 10:957–963.
Wright, AV, Nunez, JK, Doudna, JA. Biology and applications of CRISPR systems: harnessing nature`s toolbox for genome engineering. Cell 2016, 164:29–44.
Komor, AC, Badran, AH, Liu, DR. CRISPR‐based technologies for the manipulation of eukaryotic genomes. Cell 2017, 168:20–36.
Fellmann, C, Gowen, BG, Lin, PC, Doudna, JA, Corn, JE. Cornerstones of CRISPR‐Cas in drug discovery and therapy. Nat Rev Drug Discov 2017, 16:89–100.
Doudna, JA, Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR‐Cas9. Science 2014, 346:1258096.
Barrangou, R, Doudna, JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 2016, 34:933–941.
Vora, S, Tuttle, M, Cheng, J, Church, G. Next stop for the CRISPR revolution: RNA‐guided epigenetic regulators. FEBS J 2016, 283:3181–3193.
Dominguez, AA, Lim, WA, Qi, LS. Beyond editing: repurposing CRISPR‐Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2016, 17:5–15.
Sander, JD, Joung, JK. CRISPR‐Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014, 32:347–355.
Wang, F, Qi, LS. Applications of CRISPR genome engineering in cell biology. Trends Cell Biol 2016, 26:875–888.
Wang, M, Glass, ZA, Xu, Q. Non‐viral delivery of genome‐editing nucleases for gene therapy. Gene Ther 2017, 24:144–150.
Ledford, H. The unsung heroes of CRISPR. Nature 2016, 535:342–344.
Lander, ES. The heroes of CRISPR. Cell 2016, 164:18–28.
Maggio, I, Goncalves, MA. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 2015, 33:280–291.
Wang, H, La Russa, M, Qi, LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 2016, 85:227–264.
Kim, H, Kim, JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014, 15:321–334.
Mojica, FJ, Montoliu, L. On the origin of CRISPR‐Cas technology: from prokaryotes to mammals. Trends Microbiol 2016, 24:811–820.
Cox, DB, Platt, RJ, Zhang, F. Therapeutic genome editing: prospects and challenges. Nat Med 2015, 21:121–131.
Strong, A, Musunuru, K. Genome editing in cardiovascular diseases. Nat Rev Cardiol 2017, 14:11–20.
Cornu, TI, Mussolino, C, Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat Med 2017, 23:415–423.
Lander, ES. Brave new genome. N Engl J Med 2015, 373:5–8.
Moreno, AM, Mali, P. Therapeutic genome engineering via CRISPR‐Cas systems. WIREs Syst Biol Med 2017, 9:e1380.
Maeder, ML, Gersbach, CA. Genome‐editing technologies for gene and cell therapy. Mol Ther 2016, 24:430–446.
Tycko, J, Myer, VE, Hsu, PD. Methods for optimizing CRISPR‐Cas9 genome editing specificity. Mol Cell 2016, 63:355–370.
Bolukbasi, MF, Gupta, A, Wolfe, SA. Creating and evaluating accurate CRISPR‐Cas9 scalpels for genomic surgery. Nat Methods 2016, 13:41–50.
Tsai, SQ, Joung, JK. Defining and improving the genome‐wide specificities of CRISPR‐Cas9 nucleases. Nat Rev Genet 2016, 17:300–312.
Mout, R, Ray, M, Lee, YW, Scaletti, F, Rotello, VM. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem 2017, 28:880–884.
Valdmanis, PN, Kay, MA. Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Hum Gene Ther 2017, 28:361–372.
Nelson, CE, Gersbach, CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng 2016, 7:637–662.
Moser, RJ, Hirsch, ML. AAV vectorization of DSB‐mediated gene editing technologies. Curr Gene Ther 2016, 16:207–219.
Wang, L, Li, F, Dang, L, Liang, C, Wang, C, He, B, Liu, J, Li, D, Wu, X, Xu, X, et al. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 2016, 17:626.
Zelikin, AN, Ehrhardt, C, Healy, AM. Materials and methods for delivery of biological drugs. Nat Chem 2016, 8:997–1007.
Hu, JH, Davis, KM, Liu, DR. Chemical biology approaches to genome editing: understanding, controlling, and delivering programmable nucleases. Cell Chem Biol 2016, 23:57–73.
Gori, JL, Hsu, PD, Maeder, ML, Shen, S, Welstead, GG, Bumcrot, D. Delivery and specificity of CRISPR‐Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 2015, 26:443–451.
Schmidt, F, Grimm, D. CRISPR genome engineering and viral gene delivery: a case of mutual attraction. Biotechnol J 2015, 10:258–272.
Li, L, He, ZY, Wei, XW, Gao, GP, Wei, YQ. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther 2015, 26:452–462.
LaFountaine, JS, Fathe, K, Smyth, HD. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int J Pharm 2015, 494:180–194.
Shim, G, Kim, D, Park, GT, Jin, H, Suh, SK, Oh, YK. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 2017, 38:738–753.
Chylinski, K, Makarova, KS, Charpentier, E, Koonin, EV. Classification and evolution of type II CRISPR‐Cas systems. Nucleic Acids Res 2014, 42:6091–6105.
Brocchieri, L, Karlin, S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 2005, 33:3390–3400.
van der Oost, J, Westra, ER, Jackson, RN, Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR‐Cas systems. Nat Rev Microbiol 2014, 12:479–492.
Marraffini, LA. CRISPR‐Cas immunity in prokaryotes. Nature 2015, 526:55–61.
Makarova, KS, Wolf, YI, Alkhnbashi, OS, Costa, F, Shah, SA, Saunders, SJ, Barrangou, R, Brouns, SJ, Charpentier, E, Haft, DH, et al. An updated evolutionary classification of CRISPR‐Cas systems. Nat Rev Microbiol 2015, 13:722–736.
Mohanraju, P, Makarova, KS, Zetsche, B, Zhang, F, Koonin, EV, van der Oost, J. Diverse evolutionary roots and mechanistic variations of the CRISPR‐Cas systems. Science 2016, 353:aad5147.
Nishimasu, H, Nureki, O. Structures and mechanisms of CRISPR RNA‐guided effector nucleases. Curr Opin Struct Biol 2016, 43:68–78.
Shmakov, S, Smargon, A, Scott, D, Cox, D, Pyzocha, N, Yan, W, Abudayyeh, OO, Gootenberg, JS, Makarova, KS, Wolf, YI, et al. Diversity and evolution of class 2 CRISPR‐Cas systems. Nat Rev Microbiol 2017, 15:169–182.
Jiang, F, Doudna, JA. CRISPR‐Cas9 structures and mechanisms. Annu Rev Biophys 2017, 46:505–529.
Ran, FA, Cong, L, Yan, WX, Scott, DA, Gootenberg, JS, Kriz, AJ, Zetsche, B, Shalem, O, Wu, X, Makarova, KS, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015, 520:186–191.
Kim, E, Koo, T, Park, SW, Kim, D, Kim, K, Cho, HY, Song, DW, Lee, KJ, Jung, MH, Kim, S, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 2017, 8:14500.
Mays, LE, Wilson, JM. The complex and evolving story of T cell activation to AAV vector‐encoded transgene products. Mol Ther 2011, 19:16–27.
Basner‐Tschakarjan, E, Bijjiga, E, Martino, AT. Pre‐clinical assessment of immune responses to adeno‐associated virus (AAV) vectors. Front Immunol 2014, 5:28.
Ertl, HCJ, High, KA. Impact of AAV capsid‐specific T‐cell responses on design and outcome of clinical gene transfer trials with recombinant adeno‐associated viral vectors: an evolving controversy. Hum Gene Ther 2017, 28:328–337.
Kotterman, MA, Chalberg, TW, Schaffer, DV. Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 2015, 17:63–89.
Mingozzi, F, High, KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011, 12:341–355.
Dai, Y, Schwarz, EM, Gu, D, Zhang, WW, Sarvetnick, N, Verma, IM. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long‐term expression. Proc Natl Acad Sci USA 1995, 92:1401–1405.
Yang, Y, Haecker, SE, Su, Q, Wilson, JM. Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet 1996, 5:1703–1712.
Vilquin, J‐T, Guérette, B, Kinoshita, I, Roy, B, Goulet, M, Gravel, C, Roy, R, Tremblay, JP. FK506 immunosuppression to control the immune reactions triggered by first‐generation adenovirus‐mediated gene transfer. Hum Gene Ther 1995, 6:1391–1401.
Kafri, T, Morgan, D, Krahl, T, Sarvetnick, N, Sherman, L, Verma, I. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci USA 1998, 95:11377–11382.
Jooss, K, Chirmule, N. Immunity to adenovirus and adeno‐associated viral vectors: implications for gene therapy. Gene Ther 2003, 10:955–963.
Cheng, R, Peng, J, Yan, Y, Cao, P, Wang, J, Qiu, C, Tang, L, Liu, D, Tang, L, Jin, J, et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett 2014, 588:3954–3958.
Wang, D, Mou, H, Li, S, Li, Y, Hough, S, Tran, K, Li, J, Yin, H, Anderson, DG, Sontheimer, EJ, et al. Adenovirus‐mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9‐specific immune responses. Hum Gene Ther 2015, 26:432–442.
Annunziato, S, Kas, SM, Nethe, M, Yucel, H, Del Bravo, J, Pritchard, C, Bin Ali, R, van Gerwen, B, Siteur, B, Drenth, AP, et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9‐mediated somatic genome editing of the mammary gland. Genes Dev 2016, 30:1470–1480.
Guan, Y, Ma, Y, Li, Q, Sun, Z, Ma, L, Wu, L, Wang, L, Zeng, L, Shao, Y, Chen, Y, et al. CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 2016, 8:477–488.
Jooss, K, Yang, Y, Fisher, KJ, Wilson, JM. Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998, 72:4212–4223.
Fisher, KJ, Jooss, K, Alston, J, Yang, Y, Haecker, SE, High, K, Pathak, R, Raper, SE, Wilson, JM. Recombinant adeno‐associated virus for muscle directed gene therapy. Nat Med 1997, 3:306–312.
Xiao, X, Li, J, Samulski, RJ. Efficient long‐term gene transfer into muscle tissue of immunocompetent mice by adeno‐associated virus vector. J Virol 1996, 70:8098–8108.
Kessler, PD, Podsakoff, GM, Chen, X, McQuiston, SA, Colosi, PC, Matelis, LA, Kurtzman, GJ, Byrne, BJ. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 1996, 93:14082–14087.
Chirmule, N, Propert, K, Magosin, S, Qian, Y, Qian, R, Wilson, J. Immune responses to adenovirus and adeno‐associated virus in humans. Gene Ther 1999, 6:1574–1583.
Zaiss, AK, Liu, Q, Bowen, GP, Wong, NC, Bartlett, JS, Muruve, DA. Differential activation of innate immune responses by adenovirus and adeno‐associated virus vectors. J Virol 2002, 76:4580–4590.
Bennett, J. Immune response following intraocular delivery of recombinant viral vectors. Gene Ther 2003, 10:977–982.
Maguire, AM, Simonelli, F, Pierce, EA, Pugh, EN, Jr., Mingozzi, F, Bennicelli, J, Banfi, S, Marshall, KA, Testa, F, Surace, EM, et al. Safety and efficacy of gene transfer for Leber`s congenital amaurosis. N Engl J Med 2008, 358:2240–2248.
Nathwani, AC, Tuddenham, EG, Rangarajan, S, Rosales, C, McIntosh, J, Linch, DC, Chowdary, P, Riddell, A, Pie, AJ, Harrington, C, et al. Adenovirus‐associated virus vector‐mediated gene transfer in hemophilia B. N Engl J Med 2011, 365:2357–2365.
Senis, E, Fatouros, C, Grosse, S, Wiedtke, E, Niopek, D, Mueller, AK, Borner, K, Grimm, D. CRISPR/Cas9‐mediated genome engineering: an adeno‐associated viral (AAV) vector toolbox. Biotechnol J 2014, 9:1402–1412.
Chew, WL, Tabebordbar, M, Cheng, JK, Mali, P, Wu, EY, Ng, AH, Zhu, K, Wagers, AJ, Church, GM. A multifunctional AAV‐CRISPR‐Cas9 and its host response. Nat Methods 2016, 13:868–874.
Yang, Y, Wang, L, Bell, P, McMenamin, D, He, Z, White, J, Yu, H, Xu, C, Morizono, H, Musunuru, K, et al. A dual AAV system enables the Cas9‐mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 2016, 34:334–338.
Yin, H, Song, CQ, Dorkin, JR, Zhu, LJ, Li, Y, Wu, Q, Park, A, Yang, J, Suresh, S, Bizhanova, A, et al. Therapeutic genome editing by combined viral and non‐viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016, 34:328–333.
Jarrett, KE, Lee, CM, Yeh, YH, Hsu, RH, Gupta, R, Zhang, M, Rodriguez, PJ, Lee, CS, Gillard, BK, Bissig, KD, et al. Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci Rep 2017, 7:44624.
Suzuki, K, Tsunekawa, Y, Hernandez‐Benitez, R, Wu, J, Zhu, J, Kim, EJ, Hatanaka, F, Yamamoto, M, Araoka, T, Li, Z, et al. In vivo genome editing via CRISPR/Cas9 mediated homology‐independent targeted integration. Nature 2016, 540:144–149.
Wang, X, Raghavan, A, Chen, T, Qiao, L, Zhang, Y, Ding, Q, Musunuru, K. CRISPR‐Cas9 targeting of PCSK9 in human hepatocytes in vivo‐brief report. Arterioscler Thromb Vasc Biol 2016, 36:783–786.
Yu, W, Mookherjee, S, Chaitankar, V, Hiriyanna, S, Kim, JW, Brooks, M, Ataeijannati, Y, Sun, X, Dong, L, Li, T, et al. Nrl knockdown by AAV‐delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun 2017, 8:14716.
Hung, SS, Chrysostomou, V, Li, F, Lim, JK, Wang, JH, Powell, JE, Tu, L, Daniszewski, M, Lo, C, Wong, RC, et al. AAV‐mediated CRISPR/Cas gene editing of retinal cells in vivo. Invest Ophthalmol Vis Sci 2016, 57:3470–3476.
Ruan, GX, Barry, E, Yu, D, Lukason, M, Cheng, SH, Scaria, ACRISPR. Cas9‐mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol Ther 2017, 25:331–341.
Tabebordbar, M, Zhu, K, Cheng, JKW, Chew, WL, Widrick, JJ, Yan, WX, Maesner, C, Wu, EY, Xiao, R, Ran, FA, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016, 351:407–411.
Nelson, CE, Hakim, CH, Ousterout, DG, Thakore, PI, Moreb, EA, Castellanos Rivera, RM, Madhavan, S, Pan, X, Ran, FA, Yan, WX, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016, 351:403–407.
Long, C, Amoasii, L, Mireault, AA, McAnally, JR, Li, H, Sanchez‐Ortiz, E, Bhattacharyya, S, Shelton, JM, Bassel‐Duby, R, Olson, EN. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016, 351:400–403.
Carroll, KJ, Makarewich, CA, McAnally, J, Anderson, DM, Zentilin, L, Liu, N, Giacca, M, Bassel‐Duby, R, Olson, EN. A mouse model for adult cardiac‐specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci USA 2016, 113:338–343.
Xie, C, Zhang, YP, Song, L, Luo, J, Qi, W, Hu, J, Lu, D, Yang, Z, Zhang, J, Xiao, J, et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res 2016, 26:1099–1111.
Bengtsson, NE, Hall, JK, Odom, GL, Phelps, MP, Andrus, CR, Hawkins, RD, Hauschka, SD, Chamberlain, JR, Chamberlain, JS. Muscle‐specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 2017, 8:14454.
Wei, Y, Chen, Y, Qiu, Y, Zhao, H, Liu, G, Zhang, Y, Meng, Q, Wu, G, Chen, Y, Cai, X, et al. Prevention of muscle wasting by CRISPR/Cas9‐mediated disruption of myostatin in vivo. Mol Ther 2016, 24:1889–1891.
Platt, RJ, Chen, S, Zhou, Y, Yim, MJ, Swiech, L, Kempton, HR, Dahlman, JE, Parnas, O, Eisenhaure, TM, Jovanovic, M, et al. CRISPR‐Cas9 knockin mice for genome editing and cancer modeling. Cell 2014, 159:440–455.
Swiech, L, Heidenreich, M, Banerjee, A, Habib, N, Li, Y, Trombetta, J, Sur, M, Zhang, F. In vivo interrogation of gene function in the mammalian brain using CRISPR‐Cas9. Nat Biotechnol 2015, 33:102–106.
Zetsche, B, Heidenreich, M, Mohanraju, P, Fedorova, I, Kneppers, J, DeGennaro, EM, Winblad, N, Choudhury, SR, Abudayyeh, OO, Gootenberg, JS, et al. Multiplex gene editing by CRISPR‐Cpf1 using a single crRNA array. Nat Biotechnol 2017, 35:31–34.
Monteys, AM, Ebanks, SA, Keiser, MS, Davidson, BL. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 2017, 25:12–23.
Manno, CS, Pierce, GF, Arruda, VR, Glader, B, Ragni, M, Rasko, JJ, Ozelo, MC, Hoots, K, Blatt, P, Konkle, B, et al. Successful transduction of liver in hemophilia by AAV‐factor IX and limitations imposed by the host immune response. Nat Med 2006, 12:342–347.
Mingozzi, F, Meulenberg, JJ, Hui, DJ, Basner‐Tschakarjan, E, Hasbrouck, NC, Edmonson, SA, Hutnick, NA, Betts, MR, Kastelein, JJ, Stroes, ES, et al. AAV‐1‐mediated gene transfer to skeletal muscle in humans results in dose‐dependent activation of capsid‐specific T cells. Blood 2009, 114:2077–2086.
Mingozzi, F, High, KA. Immune responses to AAV in clinical trials. Curr Gene Ther 2007, 7:316–324.
Desmet, CJ, Ishii, KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 2012, 12:479–491.
Paludan, SR, Bowie, AG. Immune sensing of DNA. Immunity 2013, 38:870–880.
Briner, AE, Donohoue, PD, Gomaa, AA, Selle, K, Slorach, EM, Nye, CH, Haurwitz, RE, Beisel, CL, May, AP, Barrangou, R. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell 2014, 56:333–339.
Nowak, CM, Lawson, S, Zerez, M, Bleris, L. Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Res 2016, 44:9555–9564.
Mekler, V, Minakhin, L, Semenova, E, Kuznedelov, K, Severinov, K. Kinetics of the CRISPR‐Cas9 effector complex assembly and the role of 3′‐terminal segment of guide RNA. Nucleic Acids Res 2016, 44:2837–2845.
Moreno‐Mateos, MA, Vejnar, CE, Beaudoin, JD, Fernandez, JP, Mis, EK, Khokha, MK, Giraldez, AJ. CRISPRscan: designing highly efficient sgRNAs for CRISPR‐Cas9 targeting in vivo. Nat Methods 2015, 12:982–988.
Hendel, A, Bak, RO, Clark, JT, Kennedy, AB, Ryan, DE, Roy, S, Steinfeld, I, Lunstad, BD, Kaiser, RJ, Wilkens, AB, et al. Chemically modified guide RNAs enhance CRISPR‐Cas genome editing in human primary cells. Nat Biotechnol 2015, 33:985–989.
Ma, H, Tu, LC, Naseri, A, Huisman, M, Zhang, S, Grunwald, D, Pederson, T. CRISPR‐Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 2016, 214:529–537.
Nelles, DA, Fang, MY, O`Connell, MR, Xu, JL, Markmiller, SJ, Doudna, JA, Yeo, GW. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 2016, 165:488–496.
Wang, X, Wang, Y, Wu, X, Wang, J, Wang, Y, Qiu, Z, Chang, T, Huang, H, Lin, RJ, Yee, JK. Unbiased detection of off‐target cleavage by CRISPR‐Cas9 and TALENs using integrase‐defective lentiviral vectors. Nat Biotechnol 2015, 33:175–178.
Tsai, SQ, Zheng, Z, Nguyen, NT, Liebers, M, Topkar, VV, Thapar, V, Wyvekens, N, Khayter, C, Iafrate, AJ, Le, LP, et al. GUIDE‐seq enables genome‐wide profiling of off‐target cleavage by CRISPR‐Cas nucleases. Nat Biotechnol 2015, 33:187–197.
Kariko, K, Buckstein, M, Ni, H, Weissman, D. Suppression of RNA recognition by Toll‐like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005, 23:165–175.
Rogers, GL, Martino, AT, Aslanidi, GV, Jayandharan, GR, Srivastava, A, Herzog, RW. Innate immune responses to AAV vectors. Front Microbiol 2011, 2:194.
Ramakrishna, S, Kwaku Dad, AB, Beloor, J, Gopalappa, R, Lee, SK, Kim, H. Gene disruption by cell‐penetrating peptide‐mediated delivery of Cas9 protein and guide RNA. Genome Res 2014, 24:1020–1027.
Staahl, BT, Benekareddy, M, Coulon‐Bainier, C, Banfal, AA, Floor, SN, Sabo, JK, Urnes, C, Munares, GA, Ghosh, A, Doudna, JA. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol 2017, 35:431–434.
Zuris, JA, Thompson, DB, Shu, Y, Guilinger, JP, Bessen, JL, Hu, JH, Maeder, ML, Joung, JK, Chen, ZY, Liu, DR. Cationic lipid‐mediated delivery of proteins enables efficient protein‐based genome editing in vitro and in vivo. Nat Biotechnol 2015, 33:73–80.
Wang, M, Zuris, JA, Meng, F, Rees, H, Sun, S, Deng, P, Han, Y, Gao, X, Pouli, D, Wu, Q, et al. Efficient delivery of genome‐editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 2016, 113:2868–2873.
D`Astolfo, DS, Pagliero, RJ, Pras, A, Karthaus, WR, Clevers, H, Prasad, V, Lebbink, RJ, Rehmann, H, Geijsen, N. Efficient intracellular delivery of native proteins. Cell 2015, 161:674–690.
Kim, S, Kim, D, Cho, SW, Kim, J, Kim, JS. Highly efficient RNA‐guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014, 24:1012–1019.
Lin, S, Staahl, BT, Alla, RK, Doudna, JA. Enhanced homology‐directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 2014, 3:e04766.
Schumann, K, Lin, S, Boyer, E, Simeonov, DR, Subramaniam, M, Gate, RE, Haliburton, GE, Ye, CJ, Bluestone, JA, Doudna, JA, et al. Generation of knock‐in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA 2015, 112:10437–10442.
Liu, J, Gaj, T, Yang, Y, Wang, N, Shui, S, Kim, S, Kanchiswamy, CN, Kim, JS, Barbas, CF, 3rd. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 2015, 10:1842–1859.
Kim, K, Ryu, SM, Kim, ST, Baek, G, Kim, D, Lim, K, Chung, E, Kim, S, Kim, JS. Highly efficient RNA‐guided base editing in mouse embryos. Nat Biotechnol 2017, 35:435–437.
Gaj, T, Staahl, BT, Rodrigues, GMC, Limsirichai, P, Ekman, FK, Doudna, JA, Schaffer, DV. Targeted gene knock‐in by homology‐directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Res 2017, 45:e98.
Hur, JK, Kim, K, Been, KW, Baek, G, Ye, S, Hur, JW, Ryu, SM, Lee, YS, Kim, JS. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 2016, 34:807–808.
Walsh, G, Jefferis, R. Post‐translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006, 24:1241–1252.
Nakad, R, Schumacher, B. DNA damage response and immune defense: links and mechanisms. Front Genet 2016, 7:147.
Wang, T, Birsoy, K, Hughes, NW, Krupczak, KM, Post, Y, Wei, JJ, Lander, ES, Sabatini, DM. Identification and characterization of essential genes in the human genome. Science 2015, 350:1096–1101.
Munoz, DM, Cassiani, PJ, Li, L, Billy, E, Korn, JM, Jones, MD, Golji, J, Ruddy, DA, Yu, K, McAllister, G, et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false‐positive hits for highly amplified genomic regions. Cancer Discov 2016, 6:900–913.
Aguirre, AJ, Meyers, RM, Weir, BA, Vazquez, F, Zhang, CZ, Ben‐David, U, Cook, A, Ha, G, Harrington, WF, Doshi, MB, et al. Genomic copy number dictates a gene‐independent cell response to CRISPR/Cas9 targeting. Cancer Discov 2016, 6:914–929.
Faust, SM, Bell, P, Cutler, BJ, Ashley, SN, Zhu, Y, Rabinowitz, JE, Wilson, JM. CpG‐depleted adeno‐associated virus vectors evade immune detection. J Clin Invest 2013, 123:2994–3001.
Kanzler, H, Barrat, FJ, Hessel, EM, Coffman, RL. Therapeutic targeting of innate immunity with Toll‐like receptor agonists and antagonists. Nat Med 2007, 13:552–559.
Symons, JA, Alcami, A, Smith, GL. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 1995, 81:551–560.
Colamonici, OR, Domanski, P, Sweitzer, SM, Larner, A, Buller, RM. Vaccinia virus B18R gene encodes a type I interferon‐binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 1995, 270:15974–15978.
Warren, L, Manos, PD, Ahfeldt, T, Loh, YH, Li, H, Lau, F, Ebina, W, Mandal, PK, Smith, ZD, Meissner, A, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010, 7:618–630.
Arstila, TP, Casrouge, A, Baron, V, Even, J, Kanellopoulos, J, Kourilsky, P. A direct estimate of the human alphabeta T cell receptor diversity. Science 1999, 286:958–961.
Robins, HS, Campregher, PV, Srivastava, SK, Wacher, A, Turtle, CJ, Kahsai, O, Riddell, SR, Warren, EH, Carlson, CS. Comprehensive assessment of T‐cell receptor beta‐chain diversity in alphabeta T cells. Blood 2009, 114:4099–4107.
Qi, Q, Liu, Y, Cheng, Y, Glanville, J, Zhang, D, Lee, JY, Olshen, RA, Weyand, CM, Boyd, SD, Goronzy, JJ. Diversity and clonal selection in the human T‐cell repertoire. Proc Natl Acad Sci USA 2014, 111:13139–13144.
Reiser, JB, Darnault, C, Gregoire, C, Mosser, T, Mazza, G, Kearney, A, van der Merwe, PA, Fontecilla‐Camps, JC, Housset, D, Malissen, B. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat Immunol 2003, 4:241–247.
Reiser, JB, Gregoire, C, Darnault, C, Mosser, T, Guimezanes, A, Schmitt‐Verhulst, AM, Fontecilla‐Camps, JC, Mazza, G, Malissen, B, Housset, D. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 2002, 16:345–354.
Kass, I, Buckle, AM, Borg, NA. Understanding the structural dynamics of TCR‐pMHC complex interactions. Trends Immunol 2014, 35:604–612.
DeKosky, BJ, Kojima, T, Rodin, A, Charab, W, Ippolito, GC, Ellington, AD, Georgiou, G. In‐depth determination and analysis of the human paired heavy‐ and light‐chain antibody repertoire. Nat Med 2015, 21:86–91.
Shukla, SA, Rooney, MS, Rajasagi, M, Tiao, G, Dixon, PM, Lawrence, MS, Stevens, J, Lane, WJ, Dellagatta, JL, Steelman, S, et al. Comprehensive analysis of cancer‐associated somatic mutations in class I HLA genes. Nat Biotechnol 2015, 33:1152–1158.
Southwood, S, Sidney, J, Kondo, A, del Guercio, MF, Appella, E, Hoffman, S, Kubo, RT, Chesnut, RW, Grey, HM, Sette, A. Several common HLA‐DR types share largely overlapping peptide binding repertoires. J Immunol 1998, 160:3363–3373.
Sette, A, Sidney, J. HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 1998, 10:478–482.
Sette, A, Sidney, J. Nine major HLA class I supertypes account for the vast preponderance of HLA‐A and ‐B polymorphism. Immunogenetics 1999, 50:201–212.
Sidney, J, Peters, B, Frahm, N, Brander, C, Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol 2008, 9:1.
Greenbaum, J, Sidney, J, Chung, J, Brander, C, Peters, B, Sette, A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 2011, 63:325–335.
Jawa, V, Cousens, LP, Awwad, M, Wakshull, E, Kropshofer, H, De Groot, AS. T‐cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol 2013, 149:534–555.
Griswold, KE, Bailey‐Kellogg, C. Design and engineering of deimmunized biotherapeutics. Curr Opin Struct Biol 2016, 39:79–88.
Hoppes, R, Ekkebus, R, Schumacher, TN, Ovaa, H. Technologies for MHC class I immunoproteomics. J Proteomics 2010, 73:1945–1953.
Neefjes, J, Jongsma, ML, Paul, P, Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011, 11:823–836.
Jensen, PE. Recent advances in antigen processing and presentation. Nat Immunol 2007, 8:1041–1048.
Gilchuk, P, Hill, TM, Wilson, JT, Joyce, S. Discovering protective CD8 T cell epitopes—no single immunologic property predicts it! Curr Opin Immunol 2015, 34:43–51.
Sette, A, Vitiello, A, Reherman, B, Fowler, P, Nayersina, R, Kast, WM, Melief, CJ, Oseroff, C, Yuan, L, Ruppert, J, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 1994, 153:5586–5592.
van der Burg, SH, Visseren, MJ, Brandt, RM, Kast, WM, Melief, CJ. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC‐peptide complex stability. J Immunol 1996, 156:3308–3314.
Lazarski, CA, Chaves, FA, Jenks, SA, Wu, S, Richards, KA, Weaver, JM, Sant, AJ. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity 2005, 23:29–40.
Wang, P, Sidney, J, Kim, Y, Sette, A, Lund, O, Nielsen, M, Peters, B. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 2010, 11:568.
Karosiene, E, Rasmussen, M, Blicher, T, Lund, O, Buus, S, Nielsen, M. NetMHCIIpan‐3.0, a common pan‐specific MHC class II prediction method including all three human MHC class II isotypes, HLA‐DR, HLA‐DP and HLA‐DQ. Immunogenetics 2013, 65:711–724.
Nielsen, M, Andreatta, M. NetMHCpan‐3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 2016, 8:33.
Rivino, L, Tan, AT, Chia, A, Kumaran, EA, Grotenbreg, GM, MacAry, PA, Bertoletti, A. Defining CD8+ T cell determinants during human viral infection in populations of Asian ethnicity. J Immunol 2013, 191:4010–4019.
Abelin, JG, Keskin, DB, Sarkizova, S, Hartigan, CR, Zhang, W, Sidney, J, Stevens, J, Lane, W, Zhang, GL, Eisenhaure, TM, et al. Mass spectrometry profiling of HLA‐associated peptidomes in mono‐allelic cells enables more accurate epitope prediction. Immunity 2017, 46:315–326.
Liepe, J, Marino, F, Sidney, J, Jeko, A, Bunting, DE, Sette, A, Kloetzel, PM, Stumpf, MP, Heck, AJ, Mishto, M. A large fraction of HLA class I ligands are proteasome‐generated spliced peptides. Science 2016, 354:354–358.
Newell, EW, Davis, MM. Beyond model antigens: high‐dimensional methods for the analysis of antigen‐specific T cells. Nat Biotechnol 2014, 32:149–157.
Yosef, N, Regev, A. Writ large: genomic dissection of the effect of cellular environment on immune response. Science 2016, 354:64–68.
Birnbaum, ME, Mendoza, JL, Sethi, DK, Dong, S, Glanville, J, Dobbins, J, Ozkan, E, Davis, MM, Wucherpfennig, KW, Garcia, KC. Deconstructing the peptide‐MHC specificity of T cell recognition. Cell 2014, 157:1073–1087.
Blythe, MJ, Flower, DR, Benchmarking, B. cell epitope prediction: underperformance of existing methods. Prot Sci 2005, 14:246–248.
Kringelum, JV, Lundegaard, C, Lund, O, Nielsen, M. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 2012, 8:e1002829.
Ponomarenko, J, Bui, HH, Li, W, Fusseder, N, Bourne, PE, Sette, A, Peters, B. ElliPro: a new structure‐based tool for the prediction of antibody epitopes. BMC Bioinformatics 2008, 9:514.
Ponomarenko, JV, Bourne, PE. Antibody‐protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 2007, 7:64.
Nagata, S, Pastan, I. Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein‐based therapeutics. Adv Drug Deliv Rev 2009, 61:977–985.
Parker, ET, Healey, JF, Barrow, RT, Craddock, HN, Lollar, P. Reduction of the inhibitory antibody response to human factor VIII in hemophilia A mice by mutagenesis of the A2 domain B‐cell epitope. Blood 2004, 104:704–710.
Onda, M, Beers, R, Xiang, L, Lee, B, Weldon, JE, Kreitman, RJ, Pastan, I. Recombinant immunotoxin against B‐cell malignancies with no immunogenicity in mice by removal of B‐cell epitopes. Proc Natl Acad Sci USA 2011, 108:5742–5747.
Liu, W, Onda, M, Lee, B, Kreitman, RJ, Hassan, R, Xiang, L, Pastan, I. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B‐cell epitopes. Proc Natl Acad Sci USA 2012, 109:11782–11787.
Mazor, R, Eberle, JA, Hu, X, Vassall, AN, Onda, M, Beers, R, Lee, EC, Kreitman, RJ, Lee, B, Baker, D, et al. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T‐cell epitopes. Proc Natl Acad Sci USA 2014, 111:8571–8576.
Laroche, Y, Heymans, S, Capaert, S, De Cock, F, Demarsin, E, Collen, D. Recombinant staphylokinase variants with reduced antigenicity due to elimination of B‐lymphocyte epitopes. Blood 2000, 96:1425–1432.
Bartel, M, Schaffer, D, Buning, H. Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre‐existing immunity. Front Microbiol 2011, 2:204.
Bartel, MA, Weinstein, JR, Schaffer, DV. Directed evolution of novel adeno‐associated viruses for therapeutic gene delivery. Gene Ther 2012, 19:694–700.
Koerber, JT, Jang, JH, Schaffer, DV. DNA shuffling of adeno‐associated virus yields functionally diverse viral progeny. Mol Ther 2008, 16:1703–1709.
Maheshri, N, Koerber, JT, Kaspar, BK, Schaffer, DV. Directed evolution of adeno‐associated virus yields enhanced gene delivery vectors. Nat Biotechnol 2006, 24:198–204.
Zinn, E, Pacouret, S, Khaychuk, V, Turunen, HT, Carvalho, LS, Andres‐Mateos, E, Shah, S, Shelke, R, Maurer, AC, Plovie, E, et al. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep 2015, 12:1056–1068.
Li, C, Wu, S, Albright, B, Hirsch, M, Li, W, Tseng, YS, Agbandje‐McKenna, M, McPhee, S, Asokan, A, Samulski, RJ. Development of patient‐specific AAV vectors after neutralizing antibody selection for enhanced muscle gene transfer. Mol Ther 2016, 24:53–65.
Tangri, S, Mothe, BR, Eisenbraun, J, Sidney, J, Southwood, S, Briggs, K, Zinckgraf, J, Bilsel, P, Newman, M, Chesnut, R, et al. Rationally engineered therapeutic proteins with reduced immunogenicity. J Immunol 2005, 174:3187–3196.
Warmerdam, PA, Plaisance, S, Vanderlick, K, Vandervoort, P, Brepoels, K, Collen, D, De Maeyer, M. Elimination of a human T‐cell region in staphylokinase by T‐cell screening and computer modeling. Thromb Haemost 2002, 87:666–673.
Collen, D, Moreau, H, Stockx, L, Vanderschueren, S. Recombinant staphylokinase variants with altered immunoreactivity. II: Thrombolytic properties and antibody induction. Circulation 1996, 94:207–216.
Salvat, RS, Verma, D, Parker, AS, Kirsch, JR, Brooks, SA, Bailey‐Kellogg, C, Griswold, KE. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity. Proc Natl Acad Sci USA 2017, 114:E5085–E5093.
Cantor, JR, Yoo, TH, Dixit, A, Iverson, BL, Forsthuber, TG, Georgiou, G. Therapeutic enzyme deimmunization by combinatorial T‐cell epitope removal using neutral drift. Proc Natl Acad Sci USA 2011, 108:1272–1277.
Yeung, VP, Chang, J, Miller, J, Barnett, C, Stickler, M, Harding, FA. Elimination of an immunodominant CD4+ T cell epitope in human IFN‐beta does not result in an in vivo response directed at the subdominant epitope. J Immunol 2004, 172:6658–6665.
Mok, H, Lee, S, Wright, DW, Crowe, JE Jr. Enhancement of the CD8+ T cell response to a subdominant epitope of respiratory syncytial virus by deletion of an immunodominant epitope. Vaccine 2008, 26:4775–4782.
King, C, Garza, EN, Mazor, R, Linehan, JL, Pastan, I, Pepper, M, Baker, D. Removing T‐cell epitopes with computational protein design. Proc Natl Acad Sci USA 2014, 111:8577–8582.
Salvat, RS, Choi, Y, Bishop, A, Bailey‐Kellogg, C, Griswold, KE. Protein deimmunization via structure‐based design enables efficient epitope deletion at high mutational loads. Biotechnol Bioeng 2015, 112:1306–1318.
Salvat, RS, Parker, AS, Choi, Y, Bailey‐Kellogg, C, Griswold, KE. Mapping the pareto optimal design space for a functionally deimmunized biotherapeutic candidate. PLoS Comput Biol 2015, 11:e1003988.
Kleinstiver, BP, Prew, MS, Tsai, SQ, Nguyen, NT, Topkar, VV, Zheng, Z, Joung, JK. Broadening the targeting range of Staphylococcus aureus CRISPR‐Cas9 by modifying PAM recognition. Nat Biotechnol 2015, 33:1293–1298.
Kleinstiver, BP, Prew, MS, Tsai, SQ, Topkar, VV, Nguyen, NT, Zheng, Z, Gonzales, AP, Li, Z, Peterson, RT, Yeh, JR, et al. Engineered CRISPR‐Cas9 nucleases with altered PAM specificities. Nature 2015, 523:481–485.
Mingozzi, F, Liu, YL, Dobrzynski, E, Kaufhold, A, Liu, JH, Wang, Y, Arruda, VR, High, KA, Herzog, RW. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 2003, 111:1347–1356.
Crispe, IN. Hepatic T cells and liver tolerance. Nat Rev Immunol 2003, 3:51–62.
Bowen, DG, Zen, M, Holz, L, Davis, T, McCaughan, GW, Bertolino, P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 2004, 114:701–712.
Cao, O, Dobrzynski, E, Wang, L, Nayak, S, Mingle, B, Terhorst, C, Herzog, RW. Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 2007, 110:1132–1140.
Crispe, IN. The liver as a lymphoid organ. Annu Rev Immunol 2009, 27:147–163.
Thomson, AW, Knolle, PA. Antigen‐presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010, 10:753–766.
Tiegs, G, Lohse, AW. Immune tolerance: what is unique about the liver. J Autoimmun 2010, 34:1–6.
Maldonado, RA, von Andrian, UH. How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol 2010, 108:111–165.
Jenne, CN, Kubes, P. Immune surveillance by the liver. Nat Immunol 2013, 14:996–1006.
Kumar, SR, Hoffman, BE, Terhorst, C, de Jong, YP, Herzog, RW. The balance between CD8+ T cell‐mediated clearance of AAV‐encoded antigen in the liver and tolerance is dependent on the vector dose. Mol Ther 2017, 25:880–891.
Limmer, A, Ohl, J, Kurts, C, Ljunggren, HG, Reiss, Y, Groettrup, M, Momburg, F, Arnold, B, Knolle, PA. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen‐specific T‐cell tolerance. Nat Med 2000, 6:1348–1354.
Breous, E, Somanathan, S, Vandenberghe, LH, Wilson, JM. Hepatic regulatory T cells and kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 2009, 50:612–621.
Doerfler, PA, Todd, AG, Clement, N, Falk, DJ, Nayak, S, Herzog, RW, Byrne, BJ. Copackaged AAV9 vectors promote simultaneous immune tolerance and phenotypic correction of Pompe disease. Hum Gene Ther 2016, 27:43–59.
Toromanoff, A, Adjali, O, Larcher, T, Hill, M, Guigand, L, Chenuaud, P, Deschamps, JY, Gauthier, O, Blancho, G, Vanhove, B, et al. Lack of immunotoxicity after regional intravenous (RI) delivery of rAAV to nonhuman primate skeletal muscle. Mol Ther 2010, 18:151–160.
Ferrand, M, Galy, A, Boisgerault, F. A dystrophic muscle broadens the contribution and activation of immune cells reacting to rAAV gene transfer. Gene Ther 2014, 21:828–839.
Sarukhan, A, Soudais, C, Danos, O, Jooss, K. Factors influencing cross‐presentation of non‐self antigens expressed from recombinant adeno‐associated virus vectors. J Gene Med 2001, 3:260–270.
Fan, H, Xiao, S, Tong, T, Wang, S, Xie, L, Jiang, Y, Chen, H, Fang, L. Immunogenicity of porcine circovirus type 2 capsid protein targeting to different subcellular compartments. Mol Immunol 2008, 45:653–660.
Yin, H, Xue, W, Chen, S, Bogorad, RL, Benedetti, E, Grompe, M, Koteliansky, V, Sharp, PA, Jacks, T, Anderson, DG. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014, 32:551–553.
Kotterman, MA, Schaffer, DV. Engineering adeno‐associated viruses for clinical gene therapy. Nat Rev Genet 2014, 15:445–451.
Grimm, D, Zolotukhin, SE. Pluribus unum: 50 years of research, millions of viruses, and one goal‐tailored acceleration of AAV evolution. Mol Ther 2015, 23:1819–1831.
Vandenberghe, LH, Wilson, JM, Gao, G. Tailoring the AAV vector capsid for gene therapy. Gene Ther 2009, 16:311–319.
Moore, R, Spinhirne, A, Lai, MJ, Preisser, S, Li, Y, Kang, T, Bleris, L. CRISPR‐based self‐cleaving mechanism for controllable gene delivery in human cells. Nucleic Acids Res 2015, 43:1297–1303.
Feng, J, Jester, BW, Tinberg, CE, Mandell, DJ, Antunes, MS, Chari, R, Morey, KJ, Rios, X, Medford, JI, Church, GM, et al. A general strategy to construct small molecule biosensors in eukaryotes. Elife 2015, 4:e10606.
Nunez, JK, Harrington, LB, Doudna, JA. Chemical and biophysical modulation of Cas9 for tunable genome engineering. ACS Chem Biol 2016, 11:681–688.
Gernoux, G, Wilson, JM, Mueller, C. Regulatory and exhausted T cell responses to AAV capsid. Hum Gene Ther 2017, 28:338–349.
De Groot, AS, Moise, L, McMurry, JA, Wambre, E, Van Overtvelt, L, Moingeon, P, Scott, DW, Martin, W. Activation of natural regulatory T cells by IgG Fc‐derived peptide "Tregitopes". Blood 2008, 112:3303–3311.
Mueller, C, Chulay, JD, Trapnell, BC, Humphries, M, Carey, B, Sandhaus, RA, McElvaney, NG, Messina, L, Tang, Q, Rouhani, FN, et al. Human Treg responses allow sustained recombinant adeno‐associated virus‐mediated transgene expression. J Clin Invest 2013, 123:5310–5318.
Le Guiner, C, Stieger, K, Toromanoff, A, Guilbaud, M, Mendes‐Madeira, A, Devaux, M, Guigand, L, Cherel, Y, Moullier, P, Rolling, F, et al. Transgene regulation using the tetracycline‐inducible TetR‐KRAB system after AAV‐mediated gene transfer in rodents and nonhuman primates. PLoS One 2014, 9:e102538.
Favre, D, Blouin, V, Provost, N, Spisek, R, Porrot, F, Bohl, D, Marme, F, Cherel, Y, Salvetti, A, Hurtrel, B, et al. Lack of an immune response against the tetracycline‐dependent transactivator correlates with long‐term doxycycline‐regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno‐associated virus. J Virol 2002, 76:11605–11611.
Finn, JD, Hui, D, Downey, HD, Dunn, D, Pien, GC, Mingozzi, F, Zhou, S, High, KA. Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC class I following transduction. Mol Ther 2010, 18:135–142.
Martino, AT, Basner‐Tschakarjan, E, Markusic, DM, Finn, JD, Hinderer, C, Zhou, S, Ostrov, DA, Srivastava, A, Ertl, HC, Terhorst, C, et al. Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid‐specific CD8+ T cells. Blood 2013, 121:2224–2233.
Levitskaya, J, Sharipo, A, Leonchiks, A, Ciechanover, A, Masucci, MG. Inhibition of ubiquitin/proteasome‐dependent protein degradation by the Gly‐Ala repeat domain of the Epstein‐Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 1997, 94:12616–12621.
Levitskaya, J, Coram, M, Levitsky, V, Imreh, S, Steigerwald‐Mullen, PM, Klein, G, Kurilla, MG, Masucci, MG. Inhibition of antigen processing by the internal repeat region of the Epstein‐Barr virus nuclear antigen‐1. Nature 1995, 375:685–688.
Sharipo, A, Imreh, M, Leonchiks, A, Imreh, S, Masucci, MG. A minimal glycine‐alanine repeat prevents the interaction of ubiquitinated I kappaB alpha with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat Med 1998, 4:939–944.
Dantuma, NP, Heessen, S, Lindsten, K, Jellne, M, Masucci, MG. Inhibition of proteasomal degradation by the gly‐Ala repeat of Epstein‐Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci USA 2000, 97:8381–8385.
Ossevoort, M, Visser, BM, van den Wollenberg, DJ, van der Voort, EI, Offringa, R, Melief, CJ, Toes, RE, Hoeben, RC. Creation of immune `stealth` genes for gene therapy through fusion with the Gly‐Ala repeat of EBNA‐1. Gene Ther 2003, 10:2020–2028.
Tortorella, D, Gewurz, BE, Furman, MH, Schust, DJ, Ploegh, HL. Viral subversion of the immune system. Annu Rev Immunol 2000, 18:861–926.
Forsyth, KS, Eisenlohr, LC. Giving CD4+ T cells the slip: viral interference with MHC class II‐restricted antigen processing and presentation. Curr Opin Immunol 2016, 40:123–129.
Yewdell, JW, Hill, AB. Viral interference with antigen presentation. Nat Immunol 2002, 3:1019–1025.
Encode‐Project‐Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57–74.
Pankowicz, FP, Barzi, M, Legras, X, Hubert, L, Mi, T, Tomolonis, JA, Ravishankar, M, Sun, Q, Yang, D, Borowiak, M, et al. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun 2016, 7:12642.
Xu, L, Park, KH, Zhao, L, Xu, J, El Refaey, M, Gao, Y, Zhu, H, Ma, J, Han, R. CRISPR‐mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 2016, 24:564–569.
Acsadi, G, Lochmuller, H, Jani, A, Huard, J, Massie, B, Prescott, S, Simoneau, M, Petrof, BJ, Karpati, G. Dystrophin expression in muscles of mdx mice after adenovirus‐mediated in vivo gene transfer. Hum Gene Ther 1996, 7:129–140.
Gilchrist, SC, Ontell, MP, Kochanek, S, Clemens, PR. Immune response to full‐length dystrophin delivered to Dmd muscle by a high‐capacity adenoviral vector. Mol Ther 2002, 6:359–368.
Lochmuller, H, Petrof, BJ, Pari, G, Larochelle, N, Dodelet, V, Wang, Q, Allen, C, Prescott, S, Massie, B, Nalbantoglu, J, et al. Transient immunosuppression by FK506 permits a sustained high‐level dystrophin expression after adenovirus‐mediated dystrophin minigene transfer to skeletal muscles of adult dystrophic (mdx) mice. Gene Ther 1996, 3:706–716.
Xiang, Z, Ertl, HC. Manipulation of the immune response to a plasmid‐encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 1995, 2:129–135.
Parzych, EM, Li, H, Yin, X, Liu, Q, Wu, TL, Podsakoff, GM, High, KA, Levine, MH, Ertl, HC. Effects of immunosuppression on circulating adeno‐associated virus capsid‐specific T cells in humans. Hum Gene Ther 2013, 24:431–442.
Shmakov, S, Abudayyeh, OO, Makarova, KS, Wolf, YI, Gootenberg, JS, Semenova, E, Minakhin, L, Joung, J, Konermann, S, Severinov, K, et al. Discovery and functional characterization of diverse class 2 CRISPR‐Cas systems. Mol Cell 2015, 60:385–397.
Abudayyeh, OO, Gootenberg, JS, Konermann, S, Joung, J, Slaymaker, IM, Cox, DB, Shmakov, S, Makarova, KS, Semenova, E, Minakhin, L, et al. C2c2 is a single‐component programmable RNA‐guided RNA‐targeting CRISPR effector. Science 2016, 353:aaf5573.
Yang, H, Gao, P, Rajashankar, KR, Patel, DJ. PAM‐dependent target DNA recognition and cleavage by C2c1 CRISPR‐Cas endonuclease. Cell 2016, 167:1814–28.e12.
Burstein, D, Harrington, LB, Strutt, SC, Probst, AJ, Anantharaman, K, Thomas, BC, Doudna, JA, Banfield, JF. New CRISPR‐Cas systems from uncultivated microbes. Nature 2017, 542:237–241.
East‐Seletsky, A, O`Connell, MR, Knight, SC, Burstein, D, Cate, JH, Tjian, R, Doudna, JA. Two distinct RNase activities of CRISPR‐C2c2 enable guide‐RNA processing and RNA detection. Nature 2016, 538:270–273.
Smargon, AA, Cox, DB, Pyzocha, NK, Zheng, K, Slaymaker, IM, Gootenberg, JS, Abudayyeh, OA, Essletzbichler, P, Shmakov, S, Makarova, KS, et al. Cas13b Is a type VI‐B CRISPR‐associated RNA‐guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 2017, 65:618–30.e7.
Meister, G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 2013, 14:447–459.
Swarts, DC, Makarova, K, Wang, Y, Nakanishi, K, Ketting, RF, Koonin, EV, Patel, DJ, van der Oost, J. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 2014, 21:743–753.
Gao, F, Shen, XZ, Jiang, F, Wu, Y, Han, C. DNA‐guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol 2016, 34:768–773.
Lee, SH, Turchiano, G, Ata, H, Nowsheen, S, Romito, M, Lou, Z, Ryu, SM, Ekker, SC, Cathomen, T, Kim, JS. Failure to detect DNA‐guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol 2016, 35:17–18.
Shalem, O, Sanjana, NE, Zhang, F. High‐throughput functional genomics using CRISPR‐Cas9. Nat Rev Genet 2015, 16:299–311.
Koeferle, A, Stricker, SH, Beck, S. Brave new epigenomes: the dawn of epigenetic engineering. Genome Med 2015, 7:59.
Chavez, A, Tuttle, M, Pruitt, BW, Ewen‐Campen, B, Chari, R, Ter‐Ovanesyan, D, Haque, SJ, Cecchi, RJ, Kowal, EJK, Buchthal, J, et al. Comparison of Cas9 activators in multiple species. Nat Methods 2016, 13:563–567.
Thakore, PI, Black, JB, Hilton, IB, Gersbach, CA. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 2016, 13:127–137.
Didovyk, A, Borek, B, Tsimring, L, Hasty, J. Transcriptional regulation with CRISPR‐Cas9: principles, advances, and applications. Curr Opin Biotechnol 2016, 40:177–184.
Stricker, SH, Koferle, A, Beck, S. From profiles to function in epigenomics. Nat Rev Genet 2017, 18:51–66.
Chaikind, B, Bessen, JL, Thompson, DB, Hu, JH, Liu, DR. A programmable Cas9‐serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res 2016, 44:9758–9770.
Batra, R, Nelles, DA, Pirie, E, Blue, SM, Marina, RJ, Wang, H, Chaim, IA, Thomas, JD, Zhang, N, Nguyen, V, et al. Elimination of toxic microsatellite repeat expansion RNA by RNA‐targeting Cas9. Cell 2017, 170:899–912.e10.
Komor, AC, Kim, YB, Packer, MS, Zuris, JA, Liu, DR. Programmable editing of a target base in genomic DNA without double‐stranded DNA cleavage. Nature 2016, 533:420–424.
Nishida, K, Arazoe, T, Yachie, N, Banno, S, Kakimoto, M, Tabata, M, Mochizuki, M, Miyabe, A, Araki, M, Hara, KY, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 2016, 353:aaf8729.
Yang, L, Briggs, AW, Chew, WL, Mali, P, Guell, M, Aach, J, Goodman, DB, Cox, D, Kan, Y, Lesha, E, et al. Engineering and optimising deaminase fusions for genome editing. Nat Commun 2016, 7:13330.
Hess, GT, Fresard, L, Han, K, Lee, CH, Li, A, Cimprich, KA, Montgomery, SB, Bassik, MC. Directed evolution using dCas9‐targeted somatic hypermutation in mammalian cells. Nat Methods 2016, 13:1036–1042.
Ma, Y, Zhang, J, Yin, W, Zhang, Z, Song, Y, Chang, X. Targeted AID‐mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 2016, 13:1029–1035.
Kim, YB, Komor, AC, Levy, JM, Packer, MS, Zhao, KT, Liu, DR. Increasing the genome‐targeting scope and precision of base editing with engineered Cas9‐cytidine deaminase fusions. Nat Biotechnol 2017, 35:371–376.
U.S. Food and Drug Administration. Cellular and gene therapy guidances. Available at: https://www.fda.gov/BiologicsBloodVaccines/guidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/default.htm. (Accessed September 8, 2017).
European Medicines Agency. Guideline on immunogenicity assessment of therapeutic proteins. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/06/WC500228861.pdf. (Accessed September 8, 2017).
Bosley, KS, Botchan, M, Bredenoord, AL, Carroll, D, Charo, RA, Charpentier, E, Cohen, R, Corn, J, Doudna, J, Feng, G, et al. CRISPR germline engineering—the community speaks. Nat Biotechnol 2015, 33:478–486.
Lunshof, JE. Human germ line editing‐roles and responsibilities. Protein Cell 2016, 7:7–10.
Peng, Y. The morality and ethics governing CRISPR‐Cas9 patents in China. Nat Biotechnol 2016, 34:616–618.
Lanphier, E, Urnov, F, Haecker, SE, Werner, M, Smolenski, J. Don`t edit the human germ line. Nature 2015, 519:410–411.
Porteus, MH, Dann, CT. Genome editing of the germline: broadening the discussion. Mol Ther 2015, 23:980–982.
Baltimore, D, Berg, P, Botchan, M, Carroll, D, Charo, RA, Church, G, Corn, JE, Daley, GQ, Doudna, JA, Fenner, M, et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 2015, 348:36–38.
Carroll, D, Charo, RA. The societal opportunities and challenges of genome editing. Genome Biol 2015, 16:242.
Isasi, R, Kleiderman, E, Knoppers, BM. Genetic technology regulation. Editing policy to fit the genome? Science 2016, 351:337–339.
Sharma, A, Scott, CT. The ethics of publishing human germline research. Nat Biotechnol 2015, 33:590–592.
Blendon, RJ, Gorski, MT, Benson, JM. The public and the gene‐editing revolution. N Engl J Med 2016, 374:1406–1411.
Hynes, RO, Coller, BS, Porteus, M. Toward responsible human genome editing. JAMA 2017, 317:1829–1830.
Aach, J, Lunshof, J, Iyer, E, Church, GM. Addressing the ethical issues raised by synthetic human entities with embryo‐like features. Elife 2017, 6:e20674.
Liang, P, Xu, Y, Zhang, X, Ding, C, Huang, R, Zhang, Z, Lv, J, Xie, X, Chen, Y, Li, Y, et al. CRISPR/Cas9‐mediated gene editing in human tripronuclear zygotes. Protein Cell 2015, 6:363–372.
Ma, H, Marti‐Gutierrez, N, Park, SW, Wu, J, Lee, Y, Suzuki, K, Koski, A, Ji, D, Hayama, T, Ahmed, R, et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017, 548:413–419.
Parnas, O, Jovanovic, M, Eisenhaure, TM, Herbst, RH, Dixit, A, Ye, CJ, Przybylski, D, Platt, RJ, Tirosh, I, Sanjana, NE, et al. A Genome‐wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 2015, 162:675–686.
Perli, SD, Cui, CH, Lu, TK. Continuous genetic recording with self‐targeting CRISPR‐Cas in human cells. Science 2016, 353:aag0511.
Marceau, CD, Puschnik, AS, Majzoub, K, Ooi, YS, Brewer, SM, Fuchs, G, Swaminathan, K, Mata, MA, Elias, JE, Sarnow, P, et al. Genetic dissection of Flaviviridae host factors through genome‐scale CRISPR screens. Nature 2016, 535:159–163.
Timms, RT, Menzies, SA, Tchasovnikarova, IA, Christensen, LC, Williamson, JC, Antrobus, R, Dougan, G, Ellgaard, L, Lehner, PJ. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nat Commun 2016, 7:11786.
Jaitin, DA, Weiner, A, Yofe, I, Lara‐Astiaso, D, Keren‐Shaul, H, David, E, Salame, TM, Tanay, A, van Oudenaarden, A, Amit, I. Dissecting immune circuits by linking CRISPR‐pooled screens with single‐cell RNA‐Seq. Cell 2016, 167:1883–96.e15.
Dixit, A, Parnas, O, Li, B, Chen, J, Fulco, CP, Jerby‐Arnon, L, Marjanovic, ND, Dionne, D, Burks, T, Raychowdhury, R, et al. Perturb‐Seq: dissecting molecular circuits with scalable single‐cell RNA profiling of pooled genetic screens. Cell 2016, 167:1853–66.e17.
Datlinger, P, Rendeiro, AF, Schmidl, C, Krausgruber, T, Traxler, P, Klughammer, J, Schuster, LC, Kuchler, A, Alpar, D, Bock, C. Pooled CRISPR screening with single‐cell transcriptome readout. Nat Methods 2017, 14:297–301.
Eyquem, J, Mansilla‐Soto, J, Giavridis, T, van der Stegen, SJ, Hamieh, M, Cunanan, KM, Odak, A, Gonen, M, Sadelain, M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017, 543:113–117.
Vita, R, Overton, JA, Greenbaum, JA, Ponomarenko, J, Clark, JD, Cantrell, JR, Wheeler, DK, Gabbard, JL, Hix, D, Sette, A, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res 2015, 43:D405–D412.
Nishimasu, H, Ran, FA, Hsu, PD, Konermann, S, Shehata, SI, Dohmae, N, Ishitani, R, Zhang, F, Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156:935–949.
Nishimasu, H, Cong, L, Yan, WX, Ran, FA, Zetsche, B, Li, Y, Kurabayashi, A, Ishitani, R, Zhang, F, Nureki, O. Crystal Structure of Staphylococcus aureus Cas9. Cell 2015, 162:1113–1126.
Yamada, M, Watanabe, Y, Gootenberg, JS, Hirano, H, Ran, FA, Nakane, T, Ishitani, R, Zhang, F, Nishimasu, H, Nureki, O. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR‐Cas9 systems. Mol Cell 2017, 65:1109–21.e3.
Dong, D, Ren, K, Qiu, X, Zheng, J, Guo, M, Guan, X, Liu, H, Li, N, Zhang, B, Yang, D, et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 2016, 532:522–526.
Yamano, T, Nishimasu, H, Zetsche, B, Hirano, H, Slaymaker, IM, Li, Y, Fedorova, I, Nakane, T, Makarova, KS, Koonin, EV, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 2016, 165:949–962.