Abdallah,, A. M., Gey van Pittius,, N. C., DiGiuseppe Champion,, P. A., Cox,, J., Luirink,, J., Vandenbroucke‐Grauls,, C. M. J. E., … Bitter,, W. (2007). Type VII secretion—Mycobacteria show the way. Nature Reviews Microbiology, 5, 883–891. https://doi.org/10.1038/nrmicro1773
Alonso,, C., Vicario,, M., Pigrau,, M., Lobo,, B., & Santos,, J. (2014). Intestinal barrier function and the brain‐gut axis. In M.Lyte, & J. F.Cryan, (Eds.), Microbial endocrinology: The microbiota‐gut‐brain axis in health and disease (pp. 73–113). New York, NY: Springer.
Amor,, J. C., Swails,, J., Zhu,, X., Roy,, C. R., Nagai,, H., Ingmundson,, A., … Kahn,, R. A. (2005). The structure of RalF, an ADP‐ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. The Journal of Biological Chemistry, 280, 1392–1400. https://doi.org/10.1074/jbc.M410820200
Anderson,, R. C., Dalziel,, J. E., Gopal,, P. K., Bassett,, S., Ellis,, A., & Roy,, N. C. (2012). The role of intestinal barrier function in early life in the development of colitis. In D.Fukata, (Ed.), Colitis (pp. 1–30). Rijeka, Croatia: InTech.
Arora,, T., Singh,, S., & Sharma,, R. K. (2013). Probiotics: Interaction with gut microbiome and antiobesity potential. Nutrition, 29, 591–596. https://doi.org/10.1016/j.nut.2012.07.017
Artis,, D. (2008). Epithelial‐cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Reviews Immunology, 8, 411–420. https://doi.org/10.1038/nri2316
Arumugam,, M., Raes,, J., Pelletier,, E., Le Paslier,, D., Yamada,, T., Mende,, D. R., … Bork,, P. (2011). Enterotypes of the human gut microbiome. Nature, 473, 174–180. https://doi.org/10.1038/nature09944
Atuma,, A., Strugala,, V., Allen,, A., & Holm,, L. (2001). The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. American Journal of Physiology‐Gastrointestinal and Liver Physiology, 280(5), G922–G929. Retrieved from http://ajpgi.physiology.org/content/280/5/G922.full
Ayers,, M., Howell,, P. L., & Burrows,, L. L. (2010). Architecture of the type II secretion and type IV pilus machineries. Future Microbiology, 5, 1203–1218. https://doi.org/10.2217/fmb.10.76
Battersby,, A. J., & Gibbons,, D. L. (2013). The gut mucosal immune system in the neonatal period. Pediatric Allergy and Immunology, 24, 414–421. https://doi.org/10.1111/pai.12079
Benckert,, J., Schmolka,, N., Kreschel,, C., Zoller,, M. J., Sturm,, A., Wiedenmann,, B., & Wardemann,, H. (2011). The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen‐specific. The Journal of Clinical Investigation, 121, 1946–1955. https://doi.org/10.1172/JCI44447
Biedermann,, L., & Rogler,, G. (2015). The intestinal microbiota: Its role in health and disease. European Journal of Pediatrics, 174, 151–167. https://doi.org/10.1007/s00431-014-2476-2
Blank,, T., Detje Claudia,, N., Spieß,, A., Hagemeyer,, N., Brendecke Stefanie,, M., Wolfart,, J., … Prinz,, M. (2016). Brain endothelial‐ and epithelial‐specific interferon receptor chain 1 drives virus‐induced sickness behavior and cognitive impairment. Immunity, 44, 901–912. https://doi.org/10.1016/j.immuni.2016.04.005
Blaser,, M. J., & Falkow,, S. (2009). What are the consequences of the disappearing human microbiota? Nature Reviews Microbiology, 7, 887–894. https://doi.org/10.1038/nrmicro2245
Bocci,, V. (1992). The neglected organ: Bacterial flora has a crucial immunostimulatory role. Perspectives in Biology and Medicine, 35, 251–260. https://doi.org/10.1353/pbm.1992.0004.
Bradstreet,, J. J., Ruggiero,, M., & Pacini,, S. (2015). Commentary: Structural and functional features of central nervous system lymphatic vessels. Frontiers in Neuroscience, 9, 485–487. https://doi.org/10.3389/fnins.2015.00485
Campos,, M., Cisneros,, D. A., Nivaskumar,, M., & Francetic,, O. (2013). The type II secretion system—A dynamic fiber assembly nanomachine. Research in Microbiology, 164, 545–555. https://doi.org/10.1016/j.resmic.2013.03.013
Cenit,, M. C., Olivares,, M., Codoñer‐Franch,, P., & Sanz,, Y. (2015). Intestinal microbiota and celiac disease: Cause, consequence or co‐evolution? Nutrients, 7, 6900–6923. https://doi.org/10.3390/nu7085314
Chatzidaki‐Livanis,, M., Geva‐Zatorsky,, N., & Comstock,, L. E. (2016). Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proceedings of the National Academy of Sciences of the United States of America, 113, 3627–3632. https://doi.org/10.1073/pnas.1522510113
Cho,, I., & Blaser,, M. J. (2012). The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13, 260–270. https://doi.org/10.1038/nrg3182
Cho,, I., Yamanishi,, S., Cox,, L., Methé,, B. A., Zavadil,, J., Li,, K., … Blaser,, M. J. (2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature, 488, 621–626. https://doi.org/10.1038/nature11400
Christie,, P. J., Atmakuri,, K., Krishnamoorthy,, V., Jakubowski,, S., & Cascales,, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annual Review of Microbiology, 59, 451–485. https://doi.org/10.1146/annurev.micro.58.030603.123630
Costa,, T. R. D., Felisberto‐Rodrigues,, C., Meir,, A., Prevost,, M. S., Redzej,, A., Trokter,, M., & Waksman,, G. (2015). Secretion systems in Gram‐negative bacteria: Structural and mechanistic insights. Nature Reviews Microbiology, 13, 343–359. https://doi.org/10.1038/nrmicro3456
Cotillard,, A., Kennedy,, S. P., Kong,, L. C., Prifti,, E., Pons,, N., Le Chatelier,, E., … Layec,, S. (2013). Dietary intervention impact on gut microbial gene richness. Nature, 500, 585–588. https://doi.org/10.1038/nature12480
Coulthurst,, S. J. (2013). The Type VI secretion system—A widespread and versatile cell targeting system. Research in Microbiology, 164, 640–654. https://doi.org/10.1016/j.resmic.2013.03.017
Cress,, B. F., Englaender,, J. A., He,, W., Kasper,, D., Linhardt,, R. J., & Koffas,, M. A. G. (2014). Masquerading microbial pathogens: Capsular polysaccharides mimic host‐tissue molecules. FEMS Microbiology Reviews, 38, 660–697. https://doi.org/10.1111/1574-6976.12056
Daniels,, G. (2013). Human blood groups (3rd ed.). Somerset, NJ: John Wiley and Sons.
David,, L. A., Maurice,, C. F., Carmody,, R. N., Gootenberg,, D. B., Button,, J. E., Wolfe,, B. E., … Turnbaugh,, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563. https://doi.org/10.1038/nature12820.
Delves,, P. J. (2017a). Overview of the immune system. Merck Manual for Healthcare Professionals. Retrieved from http://www.merckmanuals.com/professional/immunology-allergic-disorders/biology-of-the-immune-system/overview-of-the-immune-system
Delves,, P. J. (2017b). Molecular components of the immune system. Merck Manual for Healthcare Professionals. Retrieved from http://www.merckmanuals.com/professional/immunology-allergic-disorders/biology-of-the-immune-system/molecular-components-of-the-immune-system
Delves,, P. J. (2017c). Cellular components of the immune system. Merck Manual for Healthcare Professionals. Retrieved from http://www.merckmanuals.com/professional/immunology-allergic-disorders/biology-of-the-immune-system/cellular-components-of-the-immune-system
Dethlefsen,, L., Huse,, S., Sogin,, M. L., & Relman,, D. A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology, 6, e280. https://doi.org/10.1371/journal.pbio.0060280.
Dethlefsen,, L., & Relman,, D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences of the United States of America, 108, 4554–4561. https://doi.org/10.1073/pnas.1000087107
Didierlaurent,, A., Sirard,, J.‐C., Kraehenbuhl,, J.‐P., & Neutra,, M. R. (2002). How the gut senses its content. Cellular Microbiology, 4, 61–72. https://doi.org/10.1046/j.1462-5822.2002.00177.x
Dominguez‐Bello,, M. G., & Blaser,, M. J. (2008). Do you have a probiotic in your future? Microbes and Infection, 10, 1072–1076. https://doi.org/10.1016/j.micinf.2008.07.036
Dominguez‐Bello,, M. G., Costello,, E. K., Contreras,, M., Magris,, M., Hidalgo,, G., Fierer,, N., & Knight,, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 107, 11971–11975. https://doi.org/10.1073/pnas.1002601107
Etzold,, S., Kober,, O. I., MacKenzie,, D. A., Tailford,, L. E., Gunning,, A. P., Walshaw,, J., … Juge,, N. (2014). Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environmental Microbiology, 16, 888–903. https://doi.org/10.1111/1462-2920.12377
Evans,, M. L., & Chapman,, M. R. (2014). Curli biogenesis: Order out of disorder. Biochimica et Biophysica Acta, 1843, 1551–1558. https://doi.org/10.1016/j.bbamcr.2013.09.010
Evrensel,, A., & Ceylan,, M. E. (2016). Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clinical Psychopharmacology and Neuroscience, 14, 231–237. https://doi.org/10.9758/cpn.2016.14.3.231
Ewald,, D. R., & Sumner,, S. C. J. (2016). Blood type biochemistry and human disease. WIREs Systems Biology and Medicine, 8, 517–535. https://doi.org/10.1002/wsbm.1355
Fang,, S., & Evans,, R. M. (2013). Microbiology: Wealth management in the gut. Nature, 500, 538–539. https://doi.org/10.1038/500538a
Forsythe,, P., Kunze,, W., & Bienenstock,, J. (2016). Moody microbes or fecal phrenology: What do we know about the microbiota‐gut‐brain axis? BMC Medicine, 14, 58. https://doi.org/10.1186/s12916-016-0604-8
Foster,, J. A., & McVey Neufeld,, K.‐A. (2013). Gutbrain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36, 305–312. https://doi.org/10.1016/j.tins.2013.01.005
Foster,, J. A., Rinaman,, L., & Cryan,, J. F. (2017). Stress and the gut‐brain axis: Regulation by the microbiome. Neurobiology of Stress, 7(Suppl. 1), 124–136. https://doi.org/10.1016/j.ynstr.2017.03.001
Franchini,, M., & Bonfanti,, C. (2015). Evolutionary aspects of ABO blood group in humans. Clinica Chimica Acta, 444, 66–71. https://doi.org/10.1016/j.cca.2015.02.016
Freudl,, R. (2013). Leaving home ain`t easy: Protein export systems in Gram‐positive bacteria. Research in Microbiology, 164, 664–674. https://doi.org/10.1016/j.resmic.2013.03.014
Gebhardt,, M., Hutchins,, E., Comella,, P., & Aho,, E. (2014). Genes encoding meningococcal vaccine antigens are present in nonpathogenic bacteria found in the human microbiome. Bios, 85(3), 142–150. Retrieved from http://www.jstor.org/stable/24367863
Gerlach,, R. G., & Hensel,, M. (2007). Protein secretion systems and adhesins: The molecular armory of Gram‐negative pathogens. International Journal of Medical Microbiology, 297, 401–415. https://doi.org/10.1016/j.ijmm.2007.03.017
Gershon,, M. D. (1998). The second brain: A groundbreaking new understanding of nervous disorders of the stomach and intestine. New York, NY: HarperCollins.
Giongo,, A., Gano,, K. A., Crabb,, D. B., Mukherjee,, N., Novelo,, L. L., Casella,, G., … Triplett,, E. W. (2011). Toward defining the autoimmune microbiome for type 1 diabetes. The ISME Journal, 5, 82–91. https://doi.org/10.1038/ismej.2010.92
González‐Rodríguez,, I., Ruiz,, L., Gueimonde,, M., Margolles,, A., & Sánchez,, B. (2013). Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiology Letters, 340, 1–10. https://doi.org/10.1111/1574-6968.12056.
Goto,, Y., & Kiyono,, H. (2012). Epithelial barrier: An interface for the cross‐communication between gut flora and immune system. Immunological Reviews, 245, 147–163. https://doi.org/10.1111/j.1600-065X.2011.01078.x
Greenblum,, S., Turnbaugh,, P. J., & Borenstein,, E. (2012). Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 109, 594–599. https://doi.org/10.1073/pnas.1116053109
Gritz,, E. C., & Bhandari,, V. (2015). The human neonatal gut microbiome: A brief review. Frontiers in Pediatrics, 3, 1–12. https://doi.org/10.3389/fped.2015.00017
Grönlund,, M. M., Lehtonen,, O. P., Eerola,, E., & Kero,, P. (1999). Fecal microflora in healthy infants born by different methods of delivery: Permanent changes in intestinal flora after cesarean delivery. Journal of Pediatric Gastroenterology and Nutrition, 28(1), 19–25.
Guzman,, J. R., Conlin,, V. S., & Jobin,, C. (2013). Diet, microbiome, and the intestinal epithelium: An essential triumvirate? BioMed Research International, 2013, 1–12. https://doi.org/10.1155/2013/425146
Henderson,, B., Nair,, S., Pallas,, J., & Williams,, M. A. (2011). Fibronectin: A multidomain host adhesin targeted by bacterial fibronectin‐binding proteins. FEMS Microbiology Reviews, 35, 147–200. https://doi.org/10.1111/j.1574-6976.2010.00243.x
Henry,, S., Oriol,, R., & Samuelsson,, B. (1995). Lewis histo‐blood group system and associated secretory phenotypes. Vox Sanguinis, 69(3), 166–182.
Henry,, S. M. (1996). Review: Phenotyping for Lewis and secretor histo‐blood group antigens. Immunohematology, 12(2), 51–61.
Hepworth,, M. R., Fung,, T. C., Masur,, S. H., Kelsen,, J. R., McConnell,, F. M., Dubrot,, J., … Sonnenberg,, G. F. (2015). Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria‐specific CD4+ T cells. Science, 348, 1031–1035. https://doi.org/10.1126/science.aaa4812
Herz,, J., & Kipnis,, J. (2016). Bugs and brain: How infection makes you feel blue. Immunity, 44, 718–720. https://doi.org/10.1016/j.immuni.2016.03.010
Hornig,, M. (2013). The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Current Opinion in Rheumatology, 25, 488–495. https://doi.org/10.1097/BOR.0b013e32836208de
Houghteling,, P. D., & Walker,, W. A. (2015). Why is initial bacterial colonization of the intestine important to infants` and children`s health? Journal of Pediatric Gastroenterology and Nutrition, 60, 294–307. https://doi.org/10.1097/MPG.0000000000000597
Huttenhower,, C., Gevers,, D., Knight,, R., Abubucker,, S., Badger,, J. H., Chinwalla,, A. T., … White,, O. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214. https://doi.org/10.1038/nature11234
Jarchum,, I., & Pamer,, E. G. (2011). Regulation of innate and adaptive immunity by the commensal microbiota. Current Opinion in Immunology, 23, 353–360. https://doi.org/10.1016/j.coi.2011.03.001
Kallus,, S. J., & Brandt,, L. J. (2012). The intestinal microbiota and obesity. Journal of Clinical Gastroenterology, 46, 16–24. https://doi.org/10.1097/MCG.0b013e31823711fd
Kashyap,, P. C., Marcobal,, A., Ursell,, L. K., Smits,, S. A., Sonnenburg,, E. D., Costello,, E. K., … Sonnenburg,, J. L. (2013). Genetically dictated change in host mucus carbohydrate landscape exerts a diet‐dependent effect on the gut microbiota. Proceedings of the National Academy of Sciences of the United States of America, 110, 17059–17064. https://doi.org/10.1073/pnas.1306070110/-/DCSupplemental
Kato,, K., & Ishiwa,, A. (2015). The role of carbohydrates in infection strategies of enteric pathogens. Tropical Medicine and Health, 43, 41–52. https://doi.org/10.2149/tmh.2014-25
Kau,, A. L., Ahern,, P. P., Griffin,, N. W., Goodman,, A. L., & Gordon,, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474, 327–336. https://doi.org/10.1038/nature10213
Kazeeva,, T., & Shevelev,, A. (2009). IgA‐specific proteins of pathogenic bacteria. The Biochemical Journal, 74, 12–21. https://doi.org/10.1134/S0006297909010027
Kelly,, D., & Mulder,, I. E. (2012). Microbiome and immunological interactions. Nutrition Reviews, 70, 18–30. https://doi.org/10.1111/j.1753-4887.2012.00498.x
Khanna,, S., & Tosh,, P. K. (2014). A clinician`s primer on the role of the microbiome in human health and disease. Mayo Clinic Proceedings, 89, 107–114. https://doi.org/10.1016/j.mayocp.2013.10.011
Kinross,, J. M., Darzi,, A. W., & Nicholson,, J. K. (2011). Gut microbiome‐host interactions in health and disease. Genome Medicine, 3, 14. https://doi.org/10.1186/gm228
Klemm,, P., & Schembri,, M. A. (2000). Bacterial adhesins: Function and structure. International Journal of Medical Microbiology, 290, 27–35. https://doi.org/10.1016/S1438-4221(00)80102-2
Kline,, K. A., Fälker,, S., Dahlberg,, S., Normark,, S., & Henriques‐Normark,, B. (2009). Bacterial adhesins in host‐microbe interactions. Cell Host %26 Microbe, 5, 580–592. https://doi.org/10.1016/j.chom.2009.05.011
Konturek,, P. C., Brzozowski,, T., & Konturek,, S. J. (2011). Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. Journal of Physiology and Pharmacology, 62(6), 591–599. Retrieved from www.jpp.krakow.pl/journal/archive/12_11/pdf/591_12_11_article.pdf
Kootte,, R. S., Vrieze,, A., Holleman,, F., Dallinga‐Thie,, G. M., Zoetendal,, E. G., de Vos,, W. M., … Nieuwdorp,, M. (2012). The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes, Obesity %26 Metabolism, 14, 112–120. https://doi.org/10.1111/j.1463-1326.2011.01483.x
Korea,, C. G., Ghigo,, J. M., & Beloin,, C. (2011). The sweet connection: Solving the riddle of multiple sugar‐binding fimbrial adhesins in Escherichia coli. BioEssays, 33, 300–311. https://doi.org/10.1002/bies.201000121
Le Chatelier,, E., Nielsen,, T., Qin,, J., Prifti,, E., Hildebrand,, F., Falony,, G., … Yamada,, T. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541–546. https://doi.org/10.1038/nature12506
Lebeer,, S., Claes,, I., Tytgat,, H. L. P., Verhoeven,, T. L. A., Marien,, E., von Ossowski,, I., … Vanderleyden,, J. (2012). Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Applied and Environmental Microbiology, 78, 185–193. https://doi.org/10.1128/AEM.06192-11
Lee,, J.‐W., Epardaud,, M., Sun,, J., Becker,, J. E., Cheng,, A. C., Heath,, J. K., & Turley,, S. J. (2007). Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nature Immunology, 8, 181–190. https://doi.org/10.1038/ni1427
Lepage,, P., Leclerc,, M. C., Joossens,, M., Mondot,, S., Blottière,, H. M., Raes,, J., … Doré,, J. (2013). A metagenomic insight into our gut`s microbiome. Gut, 62, 146–158. https://doi.org/10.1136/gutjnl-2011-301805
Ley,, R. E., Backhed,, F., & Turnbaugh,, P. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 11070–11075. https://doi.org/10.1073/pnas.0504978102
Livanos,, A. E., Greiner,, T. U., Vangay,, P., Pathmasiri,, W., Stewart,, D., McRitchie,, S., … Blaser,, M. J. (2016). Antibiotic‐mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nature Microbiology, 1, 16140. https://doi.org/10.1038/nmicrobiol.2016.140
Lloyd,, K. O. (1987). Blood group antigens as markers for normal differentiation and malignant change in human tissues. American Journal of Clinical Pathology, 87, 129–139. https://doi.org/10.1093/ajcp/87.1.129.
Loeser,, R. F., Pathmasiri,, W., Sumner,, S. J., McRitchie,, S., Beavers,, D., Saxena,, P., … Messier,, S. P. (2016). Association of urinary metabolites with radiographic progression of knee osteoarthritis in overweight and obese adults: An exploratory study. Osteoarthritis and Cartilage, 24, 1479–1486. https://doi.org/10.1016/j.joca.2016.03.011
Louveau,, A., Smirnov,, I., Keyes,, T. J., Eccles,, J. D., Rouhani,, S. J., Peske,, J. D., … Kipnis,, J. (2015). Structural and functional features of central nervous system lymphatic vessels. Nature, 523, 337–341. https://doi.org/10.1038/nature14432
Makivuokko,, H., Lahtinen,, S. J., Wacklin,, P., Tuovinen,, E., Tenkanen,, H., Nikkila,, J., … Matto,, J. (2012). Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiology, 12, 94–105. https://doi.org/10.1186/1471-2180-12-94
Mantis,, N. J., Rol,, N., & Corthesy,, B. (2011). Secretory IgA`s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunology, 4, 603–611. https://doi.org/10.1038/mi.2011.41
Markle,, J. G., Frank,, D. N., Mortin‐Toth,, S., Robertson,, C. E., Feazel,, L. M., Rolle‐Kampczyk,, U., … Danska,, J. S. (2013). Sex differences in the gut microbiome drive hormone‐dependent regulation of autoimmunity. Science, 339, 1084–1088. https://doi.org/10.1126/science.1233521
Martin,, F.‐P. J., Wang,, Y., Sprenger,, N., Yap,, I. K. S., Lundstedt,, T., Lek,, P., … Nicholson,, J. K. (2008). Probiotic modulation of symbiotic gut microbialhost metabolic interactions in a humanized microbiome mouse model. Molecular Systems Biology, 4, 157. https://doi.org/10.1038/msb4100190
Mazagova,, M., Wang,, L. R., Anfora,, A. T., Wissmueller,, M., Lesley,, S. A., Miyamoto,, Y., … Schnabl,, B. (2015). Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. The FASEB Journal, 29, 1043–1055. https://doi.org/10.1096/fj.14-259515
McClenathan,, B. M., Stewart,, D. A., Spooner,, C. E., Pathmasiri,, W. W., Burgess,, J. P., McRitchie,, S. L., … Sumner,, S. C. J. (2017). Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using nuclear magnetic resonance metabolomics. Vaccine, 35, 1238–1245. https://doi.org/10.1016/j.vaccine.2017.01.056
McNulty,, N. P., Yatsunenko,, T., Hsiao,, A., Faith,, J. J., Muegge,, B. D., Goodman,, A. L., … Gordon,, J. I. (2011). The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Science Translational Medicine, 3, 106ra106. https://doi.org/10.1126/scitranslmed.3002701
Methé,, B. A., Nelson,, K. E., Pop,, M., Creasy,, H. H., Giglio,, M. G., Huttenhower,, C., … White,, O. (2012). A framework for human microbiome research. Nature, 486, 215–221. https://doi.org/10.1038/nature11209
Miyoshi,, J., Yajima,, T., Okamoto,, S., Matsuoka,, K., Inoue,, N., Hisamatsu,, T., … Hibi,, T. (2011). Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn`s disease. Journal of Gastroenterology, 46, 1056–1063. https://doi.org/10.1007/s00535-011-0425-7
Mnookin,, S. (2011). The panic virus: A true story of medicine, science, and fear. New York, NY: Simon %26 Schuster.
Moncada,, D., & Chadee,, K. (2002). Production, structure, and function of gastrointestinal mucins. In M. J.Blaser,, P. D.Smith,, J. I.Ravdin,, H. B.Greenberg,, & R. L.Guarrant, (Eds.), Infections of the gastrointestinal tract. (pp. 57–79) Philadelphia, PA: Lippincott Williams %26 Wilkins.
Natale,, P., Bruser,, T., & Driessen,, A. J. M. (2008). Sec‐ and Tat‐mediated protein secretion across the bacterial cytoplasmic membrane—Distinct translocases and mechanisms. Biochimica et Biophysica Acta, 1778, 1735–1756. https://doi.org/10.1016/j.bbamem.2007.07.015
Nivaskumar,, M., & Francetic,, O. (2014). Type II secretion system: A magic beanstalk or a protein escalator. Biochimica et Biophysica Acta, 1843, 1568–1577. https://doi.org/10.1016/j.bbamcr.2013.12.020
Nuccio,, S.‐P., & Bäumler,, A. J. (2007). Evolution of the chaperone/usher assembly pathway: Fimbrial classification goes Greek. Microbiology and Molecular Biology Reviews, 71, 551–575. https://doi.org/10.1128/MMBR.00014-07
Nwodo,, U. U., Green,, E., & Okoh,, A. I. (2012). Bacterial exopolysaccharides: Functionality and prospects. International Journal of Molecular Sciences, 13, 14002–14015. https://doi.org/10.3390/ijms131114002
Ochoa‐Reparaz,, J., Mielcarz,, D. W., Begum‐ Haque,, S., & Kasper,, L. H. (2011). Gut, bugs, and brain: Role of commensal bacteria in the control of central nervous system disease. Annals of Neurology, 69, 240–247. https://doi.org/10.1002/ana.22344
Ohnmacht,, C., Marques,, R., Presley,, L., Sawa,, S., Lochner,, M., & Eberl,, G. (2011). Intestinal microbiota, evolution of the immune system and the bad reputation of pro‐inflammatory immunity. Cellular Microbiology, 13, 653–659. https://doi.org/10.1111/j.1462-5822.2011.01577.x
Ouwerkerk,, J. P., de Vos,, W. M., & Belzer,, C. (2013). Glycobiome: Bacteria and mucus at the epithelial interface. Best Practice %26 Research Clinical Gastroenterology, 27, 25–38. https://doi.org/10.1016/j.bpg.2013.03.001
Pagnini,, C., Saeed,, R., Bamias,, G., Arseneau,, K. O., Pizarro,, T. T., & Cominelli,, F. (2010). Probiotics promote gut health through stimulation of epithelial innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 107, 454–459. https://doi.org/10.1073/pnas.0910307107
Pathmasiri,, W., Pratt,, K. J., Collier,, D. N., Lutes,, L. D., McRitchie,, S., & Sumner,, S. C. J. (2012). Integrating metabolomic signatures and psychosocial parameters in responsivity to an immersion treatment model for adolescent obesity. Metabolomics, 8, 1037–1051. https://doi.org/10.1007/s11306-012-0404-x
Pizarro‐Cerdá,, J., & Cossart,, P. (2006). Bacterial adhesion and entry into host cells. Cell, 124, 715–727. https://doi.org/10.1016/j.cell.2006.02.012
Proctor,, L. M. (2011). The Human Microbiome Project in 2011 and beyond. Cell Host %26 Microbe, 10, 287–291. https://doi.org/10.1016/j.chom.2011.10.001
Proft,, T., & Fraser,, J. D. (2003). Bacterial superantigens. Clinical and Experimental Immunology, 133, 299–306. https://doi.org/10.1046/j.1365-2249.2003.02203.x
Qin,, J., Li,, R., Raes,, J., Arumugam,, M., Burgdorf,, K., Manichanh,, C., … Wang,, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65. https://doi.org/10.1038/nature08821
Rakoff‐Nahoum,, S., Coyne,, M. J., & Comstock,, L. E. (2014). An ecological network of polysaccharide utilization among human intestinal symbionts. Current Biology, 24, 40–49. https://doi.org/10.1016/j.cub.2013.10.077
Raper,, D., Louveau,, A., & Kipnis,, J. (2016). How do meningeal lymphatic vessels drain the CNS? Trends in Neurosciences, 39, 581–586. https://doi.org/10.1016/j.tins.2016.07.001
Ravn,, V., & Dabelsteen,, E. (2000). Tissue distribution of histo‐blood group antigens. APMIS, 108, 1–28. https://doi.org/10.1034/j.1600-0463.2000.d01-1.x
Rendón,, M. A., Saldaña,, Z., Erdem,, A. L., Monteiro‐Neto,, V., Vázquez,, A., Kaper,, J. B., … Girón,, J. A. (2007). Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proceedings of the National Academy of Sciences of the United States of America, 104, 10637–10642. https://doi.org/10.1073/pnas.0704104104
Rennoll‐Bankert,, K. E., Rahman,, M. S., Gillespie,, J. J., Guillotte,, M. L., Kaur,, S. J., Lehman,, S. S., … Azad,, A. F. (2015). Which way in? The RalF Arf‐GEF orchestrates Rickettsia host cell invasion. PLoS Pathogens, 11, e1005115. https://doi.org/10.1371/journal.ppat.1005115
Rescigno,, M. (2011). The intestinal epithelial barrier in the control of homeostasis and immunity. Trends in Immunology, 32, 256–264. https://doi.org/10.1016/j.it.2011.04.003
Rescigno,, M. (2013). Mucosal immunology and bacterial handling in the intestine. Best Practice %26 Research Clinical Gastroenterology, 27, 17–24. https://doi.org/10.1016/j.bpg2013.03.004.
Round,, J. L., & Mazmanian,, S. K. (2009). The gut microbiome shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9, 313–323. https://doi.org/10.1038/nri2515
Ruiz,, L., Hevia,, A., Bernardo,, D., Margolles,, A., & Sánchez,, B. (2014). Extracellular molecular effectors mediating probiotic attributes. FEMS Microbiology Letters, 359, 1–11. https://doi.org/10.1111/1574-6968.12576
Russell,, A. B., Peterson,, S. B., & Mougous,, J. D. (2014). Type VI secretion system effectors: Poisons with a purpose. Nature Reviews Microbiology, 12, 137–148. https://doi.org/10.1038/nrmicro3185
Sánchez,, B., Urdaci,, M. C., & Margolles,, A. (2010). Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa‐bacteria interactions. Microbiology, 156, 3232–3242. https://doi.org/10.1099/mic.0.044057-0
Santacruz,, A., Marcos,, A., Wärnberg,, J., Martí,, A., Martin‐matillas,, M., Campoy,, C., … EVASYON Study Group (2009). Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity, 17, 1906–1915. https://doi.org/10.1038/oby.2009.112
Schneewind,, O., & Missiakas,, D. (2014). Sec‐secretion and sortase‐mediated anchoring of proteins in Gram‐positive bacteria. Biochimica et Biophysica Acta, 1843, 1687–1697. https://doi.org/10.1016/j.bbamcr.2013.11.009
Segers,, M. E., & Lebeer,, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG ‐ host interactions. Microbial Cell Factories, 13, S7. https://doi.org/10.1186/1475-2859-13-S1-S7
Servin,, A. L. (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews, 28, 405–440. https://doi.org/10.1016/j.femsre.2004.01.003
Shen,, W., Gaskins,, H. R., & McIntosh,, M. K. (2014). Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. The Journal of Nutritional Biochemistry, 25, 270–280. https://doi.org/10.1016/j.jnutbio.2013.09.009
Simon,, A. K., Hollander,, G. A., & McMichael,, A. (2015). Evolution of the immune system in humans from infancy to old age. Proceedings of the Biological Sciences, 282, 20143085. https://doi.org/10.1098/rspb.2014.3085
Smyth,, D. J., Cooper,, J. D., Howson,, J. M., Clarke,, P., Downes,, K., Mistry,, T., … Todd,, J. A. (2011). FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes, 60, 3081–3084. https://doi.org/10.2337/db11-0638
Stowell,, S. R., Arthur,, C. M., Dias‐baruffi,, M., Rodrigues,, L. C., Gourdine,, J.‐P., Heimburg‐molinaro,, J., … Cummings,, R. D. (2010). Innate immune lectins kill bacteria expressing blood group antigen. Nature Medicine, 16, 295–301. https://doi.org/10.1038/nm.2103
Swiatczak,, B., & Rescigno,, M. (2012). How the interplay between antigen presenting cells and microbiota tunes host immune responses in the gut. Seminars in Immunology, 24, 43–49. https://doi.org/10.1016/j.mim.2011.11.004
Thomas,, S., Holland,, I. B., & Schmitt,, L. (2014). The type 1 secretion pathway—The hemolysin system and beyond. Biochimica et Biophysica Acta, 1843, 1629–1641. https://doi.org/10.1016/j.bbamcr.2013.09.017
Tilg,, H., & Kaser,, A. (2011). Gut microbiome, obesity, and metabolic dysfunction. The Journal of Clinical Investigation, 121, 2126–2132. https://doi.org/10.1172/JCI58109
Toivanen,, P., Vaahtovuo,, J., & Eerola,, E. (2001). Influence of major histocompatibility complex on bacterial composition of fecal flora. Infection and Immunity, 69, 2372–2377. https://doi.org/10.1128/IAI.69.4.2372-2377.2001
Tuohy,, K. M., Conterno,, L., Gasperotti,, M., & Viola,, R. (2012). Up‐regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. Journal of Agricultural and Food Chemistry, 60, 8776–8782. https://doi.org/10.1021/jf2053959
Turnbaugh,, P. J., Hamady,, M., Yatsunenko,, T., Cantarel,, B. L., Duncan,, A., Ley,, R. E., … Gordon,, J. I. (2009). A core gut microbiome in obese and lean twins. Nature, 457, 480–484. https://doi.org/10.1038/nature07540
Turnbaugh,, P. J., Ley,, R. E., Mahowald,, M. A., Magrini,, V., Mardis,, E. R., & Gordon,, J. I. (2006). An obesity‐associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031. https://doi.org/10.1038/nature05414
Ueno,, M., Chiba,, Y., Murakami,, R., Matsumoto,, K., Kawauchi,, M., & Fujihara,, R. (2016). Blood–brain barrier and blood–cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathology, 33, 89–96. https://doi.org/10.1007/s10014-016-0255-7
Ursell,, L. K., Haiser,, H. J., Van Treuren,, W., Garg,, N., Reddivari,, L., Vanamala,, J., … Knight,, R. (2014). The intestinal metabolome: An intersection between microbiota and host. Gastroenterology, 146, 1470–1476. https://doi.org/10.1053/j.gastro.2014.03.001
Vaarala,, O. (2013). Human intestinal microbiota and type 1 diabetes. Current Diabetes Reports, 13, 601–607. https://doi.org/10.1007/s11892-013-0409-5
van Wely,, K. H. M., Swaving,, J., Freudl,, R., & Driessen,, A. J. M. (2001). Translocation of proteins across the cell envelope of Gram‐positive bacteria. FEMS Microbiology Reviews, 25, 437–454. https://doi.org/10.1016/S0168-6445(01)00062-6
Varum,, F. J. O., & Basit,, A. W. (2014). Gastrointestinal mucosa and mucus. In V.V. Khutoryanskiy (Ed.), Mucoadhesive materials and drug delivery systems. (1st ed., Chap. 4, pp. 83–98). John Wiley and Sons, Ltd. Retrieved from http://public.eblib.com/choice/publicfullrecord.aspx?p=1712885
Wacklin,, P., Mäkivuokko,, H., Alakulppi,, N., Nikkilä,, J., Tenkanen,, H., Räbinä,, J., … Mättö,, J. (2011). Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One, 6, e20113. https://doi.org/10.1371/journal.pone.0020113
Wacklin,, P., Tuimala,, J., Nikkilä,, J., Sebastian,, T., Mäkivuokko,, H., Alakulppi,, N., … Mättö,, J. (2014). Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One, 9, e94863. https://doi.org/10.1371/journal.pone.0094863
Walker,, W. A. (1978). Antigen handling by the gut. Archives of Disease in Childhood, 53(7), 527–531.
Wang,, H., Liang,, S., Wang,, M. Q., Gao,, J. Q., Sun,, C. H., Wang,, J., … Wu,, L. (2016). Potential serum biomarkers from a metabolomics study of autism. Journal of Psychiatry %26 Neuroscience, 41, 27–37. https://doi.org/10.1503/jpn.140009
Wang,, Z., Klipfell,, E., Bennett,, B. J., Koeth,, R., Levison,, B. S., DuGar,, B., … Hazen,, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63. https://doi.org/10.1038/nature09922
Wang,, Z. K., & Yang,, Y. S. (2013). Upper gastrointestinal microbiota and digestive diseases. World Journal of Gastroenterology, 19, 1541–1550. https://doi.org/10.3748/wjg.v19.i10.1541
Watkins,, W. M. (2001). The ABO blood group system: Historical background. Transfusion Medicine, 11(4), 243–265.
Weiss,, F. U., Schurmann,, C., Guenther,, A., Ernst,, F., Teumer,, A., Mayerle,, J., … Lerch,, M. (2014). Fucosyltransferase 2 (FUT2) non‐secretor status and blood group B are associated with elevated serum lipase activity in asymptomatic subjects and an increased risk for chronic pancreatitis a genetic association study. Pancreatology, 14, S14. https://doi.org/10.1136/gutjnl-2014-306930
Wells,, J. M., Rossi,, O., Meijerink,, M., & van Baarlen,, P. (2011). Epithelial crosstalk at the microbiota‐mucosal interface. Proceedings of the National Academy of Sciences of the United States of America, 108, 4607–4614. https://doi.org/10.1073/pnas.1000092107
Weng,, M., & Walker,, W. A. (2013). The role of gut microbiota in programming the immune phenotype. Journal of Developmental Origins of Health and Disease, 4, 203–214. https://doi.org/10.1017/S2040174412000712
Wikoff,, W. R., Anfora,, A. T., Liu,, J., Schultz,, P. G., Lesley,, S. A., Peters,, E. C., & Siuzdak,, G. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106, 3698–3703. https://doi.org/10.1073/pnas.0812874106
Wu,, G. D., Chen,, J., Hoffmann,, C., Bittinger,, K., Ying‐Yu,, C., Keilbaugh,, S. A., … Lewis,, J. D. (2011). Linking long‐term dietary patterns with gut microbial enterotypes. Science, 334, 105–108. https://doi.org/10.1126/science.1208344
Yang,, P., Li,, H. L., & Wang,, C. Y. (2011). FUT2 nonfunctional variant: A “missing link” between genes and environment in type 1 diabetes? Diabetes, 60, 2685–2687. https://doi.org//10.2337/db11-1104
Yatsunenko,, T., Rey,, F. E., Manary,, M. J., Trehan,, I., Dominguez‐Bello,, M. G., Contreras,, M., … Gordon,, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486, 222–227. https://doi.org/10.1038/nature11053