Agarwal,, R., & Sarma,, S. V. (2010). Restoring the basal ganglia in Parkinson`s disease to normal via multi‐input phase‐shifted deep brain stimulation. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1539–1542.
Agarwal,, R., & Sarma,, S. V. (2012). Performance limitations of relay neurons. PLoS Computational Biology, 8, e1002626.
Akbar,, U., Raike,, R. S., Hack,, N., Hess,, C. W., Skinner,, J., Martinez‐Ramirez,, D., … Okun,, M. S. (2016). Randomized, blinded pilot testing of nonconventional stimulation patterns and shapes in Parkinson`s disease and essential tremor: Evidence for further evaluating narrow and biphasic pulses. Neuromodulation, 19, 343–356.
Albin,, R. L., Young,, A. B., & Penney,, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375.
Arlotti,, M., Rossi,, L., Rosa,, M., Marceglia,, S., & Priori,, A. (2016). An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson`s disease. Medical Engineering %26 Physics, 38, 498–505.
Barbieri,, R., Quirk,, M. C., Frank,, L. M., Wilson,, M. A., & Brown,, E. N. (2001). Construction and analysis of non‐Poisson stimulus‐response models of neural spiking activity. Journal of Neuroscience Methods, 105, 25–37.
Benabid,, A. L., Chabardes,, S., Mitrofanis,, J., & Pollak,, P. (2009). Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson`s disease. Lancet Neurology, 8, 67–81.
Brocker,, D. T., Swan,, B. D., So,, R. Q., Turner,, D. A., Gross,, R. E., & Grill,, W. M. (2017). Optimized temporal pattern of brain stimulation designed by computational evolution. Science Translational Medicine, 9, eaah3532.
Brocker,, D. T., Swan,, B. D., Turner,, D. A., Gross,, R. E., Tatter,, S. B., Koop,, M. M., … Grill,, W. M. (2013). Improved efficacy of temporally non‐regular deep brain stimulation in Parkinson`s disease. Experimental Neurology, 239, 60–67.
Brodal,, P. (2016). The central nervous system (5th ed.). New York, NY: Oxford University Press.
Brown,, E. N., Barbieri,, R., Eden,, U. T., & Frank,, L. M. (2003). Likelihood methods for neural spike train data analysis. In J. Feng, (Ed.), Computational neuroscience: A comprehensive approach (1st ed., pp. 253–289). London, England: Chapman and Hall/CRC.
Brown,, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current Opinion in Neurobiology, 17, 656–664.
Brown,, P., Oliviero,, A., Mazzone,, P., Insola,, A., Tonali,, P., & Di Lazzaro,, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson`s disease. The Journal of Neuroscience, 21, 1033–1038.
Butson,, C. R., Cooper,, S. E., Henderson,, J. M., & McIntyre,, C. C. (2007). Patient‐specific analysis of the volume of tissue activated during deep brain stimulation. NeuroImage, 34, 661–670.
Butson,, C. R., Cooper,, S. E., Henderson,, J. M., Wolgamuth,, B., & McIntyre,, C. C. (2011). Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage, 54, 2096–2104.
Butson,, C. R., & McIntyre,, C. C. (2008). Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimulation, 1, 7–15.
Chen,, Z., Putrino,, D. F., Ghosh,, S., Barbieri,, R., & Brown,, E. N. (2011). Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19, 121–135.
Coleman,, T. P., & Sarma,, S. S. (2010). A computationally efficient method for nonparametric modeling of neural spiking activity with point processes. Neural Computation, 22, 2002–2030.
Courtemanche,, R., Fujii,, N., & Graybiel,, A. M. (2003). Synchronous, focally modulated beta‐band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. The Journal of Neuroscience, 23, 11741–11752.
De Gaspari,, D., Siri,, C., Di Gioia,, M., Antonini,, A., Isella,, V., Pizzolato,, A., … Pezzoli,, G. (2006). Clinical correlates and cognitive underpinnings of verbal fluency impairment after chronic subthalamic stimulation in Parkinson`s disease. Parkinsonism %26 Related Disorders, 12, 289–295.
Deep‐Brain Stimulation for Parkinson`s Disease Study Group, Obeso,, J. A., Olanow,, C. W., Rodriguez‐Oroz,, M. C., Krack,, P., Kumar,, R., & Lang,, A. E. (2001). Deep‐brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson`s disease. The New England Journal of Medicine, 345, 956–963.
DeLong,, M. R., & Wichmann,, T. (2015). Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurology, 72, 1354–1360.
Deng,, C., Sun,, T., Manning,, Z., Gale,, J. T., Montgomery,, E. B., & Santaniello,, S. (2017). Effects of the temporal pattern of subthalamic deep brain stimulation on the neuronal complexity in the globus pallidus. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3352–3355.
Dorval,, A. D., Russo,, G. S., Hashimoto,, T., Xu,, W., Grill,, W. M., & Vitek,, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP‐primate model of Parkinson`s disease. Journal of Neurophysiology, 100, 2807–2818.
Ermentrout,, G. B. (1998). Neural networks as spatio‐temporal pattern‐forming systems. Reports on Progress in Physics, 61, 353–430.
Ermentrout,, G. B., & Kopell,, N. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators. Journal of Mathematical Biology, 29, 195–217.
Fasano,, A., Appel‐Cresswell,, S., Jog,, M., Zurowkski,, M., Duff‐Canning,, S., Cohn,, M., … Munhoz,, R. P. (2016). Medical management of Parkinson`s disease after initiation of deep brain stimulation. The Canadian Journal of Neurological Sciences, 43, 626–634.
Feng,, X. J., Shea‐Brown,, E., Greenwald,, B., Kosut,, R., & Rabitz,, H. (2007). Optimal deep brain stimulation of the subthalamic nucleus‐‐a computational study. Journal of Computational Neuroscience, 23, 265–282.
Frankemolle,, A. M., Wu,, J., Noecker,, A. M., Voelcker‐Rehage,, C., Ho,, J. C., Vitek,, J. L., … Alberts,, J. L. (2010). Reversing cognitive‐motor impairments in Parkinson`s disease patients using a computational modelling approach to deep brain stimulation programming. Brain, 133, 746–761.
Gale,, J. T. (2004) Basis of periodic activities in the basal ganglia‐thalamic‐cortical system of the rhesus macaque (Ph.D thesis). Kent State University, Kent, OH.
Gale,, J. T., Amirnovin,, R., Williams,, Z. M., Flaherty,, A. W., & Eskandar,, E. N. (2008). From symphony to cacophony: Pathophysiology of the human basal ganglia in Parkinson disease. Neuroscience and Biobehavioral Reviews, 32, 378–387.
Gale,, J. T., Shields,, D. C., Jain,, F. A., Amirnovin,, R., & Eskandar,, E. N. (2009). Subthalamic nucleus discharge patterns during movement in the normal monkey and Parkinsonian patient. Brain Research, 1260, 15–23.
Gillies,, A., Willshaw,, D., & Li,, Z. (2002). Subthalamic‐pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Biological Sciences, 269, 545–551.
Gillies,, A. J., & Willshaw,, D. J. (1998). A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proceedings of the Biological Sciences, 265, 2101–2109.
Goetz,, C. G., Tilley,, B. C., Shaftman,, S. R., Stebbins,, G. T., Fahn,, S., Martinez‐Martin,, P., … Movement Disorder Society URTF. (2008). Movement Disorder Society‐sponsored revision of the unified Parkinson`s disease rating scale (MDS‐UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23, 2129–2170.
Gorzelic,, P., Schiff,, S. J., & Sinha,, A. (2013). Model‐based rational feedback controller design for closed‐loop deep brain stimulation of Parkinson`s disease. Journal of Neural Engineering, 10, 026016.
Grant,, P. F., & Lowery,, M. M. (2013). Simulation of cortico‐basal ganglia oscillations and their suppression by closed loop deep brain stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21, 584–594.
Grill,, W. M., Snyder,, A. N., & Miocinovic,, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport, 15, 1137–1140.
Haber,, S. N., & Calzavara,, R. (2009). The cortico‐basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 78, 69–74.
Hahn,, P. J., & McIntyre,, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28, 425–441.
Hashimoto,, T., Elder,, C. M., Okun,, M. S., Patrick,, S. K., & Vitek,, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience, 23, 1916–1923.
Hickey,, P., & Stacy,, M. (2016). Deep brain stimulation: A paradigm shifting approach to treat Parkinson`s disease. Frontiers in Neuroscience, 10, 173.
Hodgkin,, A. L., & Huxley,, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.
Holt,, A. B., & Netoff,, T. I. (2014). Origins and suppression of oscillations in a computational model of Parkinson`s disease. Journal of Computational Neuroscience, 37, 505–521.
Holt,, A. B., Wilson,, D., Shinn,, M., Moehlis,, J., & Netoff,, T. I. (2016). Phasic burst stimulation: A closed‐loop approach to tuning deep brain stimulation parameters for Parkinson`s disease. PLoS Computational Biology, 12, e1005011.
Holtzheimer,, P. E., Kelley,, M. E., Gross,, R. E., Filkowski,, M. M., Garlow,, S. J., Barrocas,, A., … Mayberg,, H. S. (2012). Subcallosal cingulate deep brain stimulation for treatment‐resistant unipolar and bipolar depression. Archives of General Psychiatry, 69, 150–158.
Howell,, B., & Grill,, W. M. (2014). Evaluation of high‐perimeter electrode designs for deep brain stimulation. Journal of Neural Engineering, 11, 046026.
Howell,, B., Huynh,, B., & Grill,, W. M. (2015). Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes. Journal of Neural Engineering, 12, 046030.
Huang,, H. D., & Santaniello,, S. (2017). Closed‐loop low‐frequency DBS restores thalamocortical relay fidelity in a computational model of the motor loop. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1954–1957.
Johnson,, L. A., Nebeck,, S. D., Muralidharan,, A., Johnson,, M. D., Baker,, K. B., & Vitek,, J. L. (2016). Closed‐loop deep brain stimulation effects on Parkinsonian motor symptoms in a non‐human primate ‐ is beta enough? Brain Stimulation, 9, 892–896.
Kandel,, E. (2013). Principles of Neural Science (5th ed.). New York, NY: McGraw‐Hill Education.
Kass,, R. E., Eden,, U. T., & Brown,, E. N. (2014). Analysis of neural data. New York, NY: Springer.
Kent,, A. R., & Grill,, W. M. (2013). Neural origin of evoked potentials during thalamic deep brain stimulation. Journal of Neurophysiology, 110, 826–843.
Kent,, A. R., Swan,, B. D., Brocker,, D. T., Turner,, D. A., Gross,, R. E., & Grill,, W. M. (2015). Measurement of evoked potentials during thalamic deep brain stimulation. Brain Stimulation, 8, 42–56.
Kreitzer,, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147.
Kuhn,, A. A., Kupsch,, A., Schneider,, G. H., & Brown,, P. (2006). Reduction in subthalamic 8‐35 Hz oscillatory activity correlates with clinical improvement in Parkinson`s disease. The European Journal of Neuroscience, 23, 1956–1960.
Kuhn,, A. A., Tsui,, A., Aziz,, T., Ray,, N., Brucke,, C., Kupsch,, A., … Brown,, P. (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson`s disease relates to both bradykinesia and rigidity. Experimental Neurology, 215, 380–387.
Lai,, H. Y., Liao,, L. D., Lin,, C. T., Hsu,, J. H., He,, X., Chen,, Y. Y., … Shih,, Y. Y. (2012). Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Journal of Neural Engineering, 9, 036001.
Le Jeune,, F., Peron,, J., Grandjean,, D., Drapier,, S., Haegelen,, C., Garin,, E., … Verin,, M. (2010). Subthalamic nucleus stimulation affects limbic and associative circuits: A PET study. European Journal of Nuclear Medicine and Molecular Imaging, 37, 1512–1520.
Lehto,, L. J., Slopsema,, J. P., Johnson,, M. D., Shatillo,, A., Teplitzky,, B. A., Utecht,, L., … Michaeli,, S. (2017). Orientation selective deep brain stimulation. Journal of Neural Engineering, 14, 016016.
Levy,, R., Ashby,, P., Hutchison,, W. D., Lang,, A. E., Lozano,, A. M., & Dostrovsky,, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson`s disease. Brain, 125, 1196–1209.
Limousin,, P., Pollak,, P., Benazzouz,, A., Hoffmann,, D., Le Bas,, J. F., Broussolle,, E., … Benabid,, A. L. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91–95.
Little,, S., Pogosyan,, A., Neal,, S., Zavala,, B., Zrinzo,, L., Hariz,, M., … Brown,, P. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 74, 449–457.
Liu,, C., Wang,, J., Deng,, B., Wei,, X., Yu,, H., Li,, H., … Loparo,, K. A. (2016). Closed‐loop control of tremor‐predominant Parkinsonian state based on parameter estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24, 1109–1121.
Liu,, C., Wang,, J., Li,, H., Lu,, M., Deng,, B., Yu,, H., … Loparo,, K. A. (2017). Closed‐loop modulation of the pathological disorders of the basal ganglia network. IEEE Transactions on Neural Networks and Learning Systems, 28, 371–382.
Liu,, J., Khalil,, H. K., & Oweiss,, K. G. (2011). Model‐based analysis and control of a network of basal ganglia spiking neurons in the normal and parkinsonian states. Journal of Neural Engineering, 8, 045002.
Lowery,, M. M. (2017). Modeling deep brain stimulation for Parkinson`s disease. In A. A. Moustafa, (Ed.), Computational models of brain and behavior (pp. 109–123). Hoboken, NJ: John Wiley %26 Sons.
McIntyre,, C. C., Chaturvedi,, A., Shamir,, R. R., & Lempka,, S. F. (2015). Engineering the next generation of clinical deep brain stimulation technology. Brain Stimulation, 8, 21–26.
McIntyre,, C. C., Grill,, W. M., Sherman,, D. L., & Thakor,, N. V. (2004). Cellular effects of deep brain stimulation: Model‐based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.
Miocinovic,, S., Parent,, M., Butson,, C. R., Hahn,, P. J., Russo,, G. S., Vitek,, J. L., & McIntyre,, C. C. (2006). Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96, 1569–1580.
Miocinovic,, S., Somayajula,, S., Chitnis,, S., & Vitek,, J. L. (2013). History, applications, and mechanisms of deep brain stimulation. JAMA Neurology, 70, 163–171.
Modolo,, J., Henry,, J., & Beuter,, A. (2008). Dynamics of the subthalamo‐pallidal complex in Parkinson`s disease during deep brain stimulation. Journal of Biological Physics, 34, 251–266.
Montgomery, Jr., E. B. (2006). Effects of GPi stimulation on human thalamic neuronal activity. Clinical Neurophysiology, 117, 2691–2702.
Montgomery, Jr., E. B., & Baker,, K. B. (2000). Mechanisms of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.
Moran,, R. J., Kiebel,, S. J., Stephan,, K. E., Reilly,, R. B., Daunizeau,, J., & Friston,, K. J. (2007). A neural mass model of spectral responses in electrophysiology. NeuroImage, 37, 706–720.
Moran,, R. J., Mallet,, N., Litvak,, V., Dolan,, R. J., Magill,, P. J., Friston,, K. J., & Brown,, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7, e1002124.
Moro,, E., Esselink,, R. J., Xie,, J., Hommel,, M., Benabid,, A. L., & Pollak,, P. (2002). The impact on Parkinson`s disease of electrical parameter settings in STN stimulation. Neurology, 59, 706–713.
Moro,, E., Lozano,, A. M., Pollak,, P., Agid,, Y., Rehncrona,, S., Volkmann,, J., … Lang,, A. E. (2010). Long‐term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson`s disease. Movement Disorders, 25, 578–586.
Moss,, J., Ryder,, T., Aziz,, T. Z., Graeber,, M. B., & Bain,, P. G. (2004). Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson`s disease. Brain, 127, 2755–2763.
Munhoz,, R. P., Picillo,, M., Fox,, S. H., Bruno,, V., Panisset,, M., Honey,, C. R., & Fasano,, A. (2016). Eligibility criteria for deep brain stimulation in Parkinson`s disease, tremor, and dystonia. The Canadian Journal of Neurological Sciences, 43, 462–471.
Neher,, E., & Sakmann,, B. (1992). The patch clamp technique. Scientific American, 266, 44–51.
Okun,, M. S., Gallo,, B. V., Mandybur,, G., Jagid,, J., Foote,, K. D., Revilla,, F. J., … SJM DBS Study Group. (2012). Subthalamic deep brain stimulation with a constant‐current device in Parkinson`s disease: An open‐label randomised controlled trial. Lancet Neurology, 11, 140–149.
Pavlides,, A., Hogan,, S. J., & Bogacz,, R. (2015). Computational models describing possible mechanisms for generation of excessive beta oscillations in Parkinson`s disease. PLoS Computational Biology, 11, e1004609.
Pedoto,, G., Santaniello,, S., Fiengo,, G., Glielmo,, L., Hallett,, M., Zhuang,, P., & Sarma,, S. V. (2012). Point process modeling reveals anatomical non‐uniform distribution across the subthalamic nucleus in Parkinson`s disease. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2539–2542.
Pena,, E., Zhang,, S., Deyo,, S., Xiao,, Y., & Johnson,, M. D. (2017). Particle swarm optimization for programming deep brain stimulation arrays. Journal of Neural Engineering, 14, 016014.
Perlmutter,, J. S., & Mink,, J. W. (2006). Deep brain stimulation. Annual Review of Neuroscience, 29, 229–257.
Pessiglione,, M., Guehl,, D., Rolland,, A. S., Francois,, C., Hirsch,, E. C., Feger,, J., & Tremblay,, L. (2005). Thalamic neuronal activity in dopamine‐depleted primates: Evidence for a loss of functional segregation within basal ganglia circuits. The Journal of Neuroscience, 25, 1523–1531.
Picillo,, M., Lozano,, A. M., Kou,, N., Puppi Munhoz,, R., & Fasano,, A. (2016). Programming deep brain stimulation for Parkinson`s disease: The Toronto western hospital algorithms. Brain Stimulation, 9, 425–437.
Pinotsis,, D., Robinson,, P., Beim Graben,, P., & Friston,, K. (2014). Neural masses and fields: Modeling the dynamics of brain activity. Frontiers in Computational Neuroscience, 8, 149.
Ponce,, F. A., Asaad,, W. F., Foote,, K. D., Anderson,, W. S., Rees Cosgrove,, G., Baltuch,, G. H., … for The ADvance Research Group. (2016). Bilateral deep brain stimulation of the fornix for Alzheimer`s disease: Surgical safety in the ADvance trial. Journal of Neurosurgery, 125, 75–84.
Popovych,, O. V., Hauptmann,, C., & Tass,, P. A. (2006). Control of neuronal synchrony by nonlinear delayed feedback. Biological Cybernetics, 95, 69–85.
Popovych,, O. V., Lysyansky,, B., & Tass,, P. A. (2017). Closed‐loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases. Scientific Reports, 7, 1033.
Popovych,, O. V., & Tass,, P. A. (2010). Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 82, 026204.
Raz,, A., Vaadia,, E., & Bergman,, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine vervet model of parkinsonism. The Journal of Neuroscience, 20, 8559–8571.
Rizzone,, M., Lanotte,, M., Bergamasco,, B., Tavella,, A., Torre,, E., Faccani,, G., … Deep,, L. L. (2001). Brain stimulation of the subthalamic nucleus in Parkinson`s disease: Effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 215–219.
Rowland,, N. C., Sammartino,, F., & Lozano,, A. M. (2017). Advances in surgery for movement disorders. Movement Disorders, 32, 5–10.
Rubin,, J. E., & Terman,, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.
Santaniello,, S., Fiengo,, G., Glielmo,, L., & Grill,, W. M. (2007a). Basal ganglia modeling in healthy and Parkinson`s disease state. II. Network‐Based Multi‐Units Simulation. In 2007 American Control Conference, pp. 4095–4100.
Santaniello,, S., Fiengo,, G., Glielmo,, L., & Grill,, W. M. (2007b). Basal ganglia modeling in healthy and Parkinson`s disease state. I. Isolated Neurons Activity. In 2007 American Control Conference, pp. 4089–4094.
Santaniello,, S., Fiengo,, G., Glielmo,, L., & Grill,, W. M. (2011). Closed‐loop control of deep brain stimulation: A simulation study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19, 15–24.
Santaniello,, S., Gale,, J. T., Montgomery,, E. B., & Sarma,, S. V. (2010a). Modeling the motor striatum under deep brain stimulation in normal and MPTP conditions. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2065–2068.
Santaniello,, S., Gale,, J. T., Montgomery,, E. B., & Sarma,, S. V. (2010b). Modeling the effects of Deep Brain Stimulation on sensorimotor cortex in normal and MPTP conditions. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2081–2084.
Santaniello,, S., Gale,, J. T., Montgomery, Jr., E. B., & Sarma,, S. V. (2012). Reinforcement mechanisms in putamen during high frequency STN DBS: A point process study. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1214–1217.
Santaniello,, S., McCarthy,, M. M., Montgomery, Jr., E. B., Gale,, J. T., Kopell,, N., & Sarma,, S. V. (2015). Therapeutic mechanisms of high‐frequency stimulation in Parkinson`s disease and neural restoration via loop‐based reinforcement. Proceedings of the National Academy of Sciences of the United States of America, 112, E586–E595.
Santaniello,, S., Montgomery, Jr., E. B., Gale,, J. T., & Sarma,, S. V. (2012). Non‐stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation. Frontiers in Integrative Neuroscience, 6, 35.
Sarma,, S. V., Cheng,, M., Eden,, U., Hu,, R., Williams,, Z., Brown,, E. N., & Eskandar,, E. (2008). Modeling neural spiking activity in the sub‐thalamic nucleus of Parkinson`s patients and a healthy primate. In 47th IEEE Conference on Decision and Control, pp. 2012–2017.
Sarma,, S. V., Cheng,, M. L., Eden,, U., Williams,, Z., Brown,, E. N., & Eskandar,, E. (2012). The effects of cues on neurons in the basal ganglia in Parkinson`s disease. Frontiers in Integrative Neuroscience, 6, 40.
Sarma, S. V., Eden, U. T., Cheng, M. L., Williams, Z., Eskandar, E. N., & Brown, E. N. (2009). Using point process models to determine the impact of visual cues on basal ganglia activity and behavior of Parkinson`s patients. In 48h IEEE Conference on Decision and Control, pp. 7716–7722.
Sarma,, S. V., Eden,, U. T., Cheng,, M. L., Williams,, Z. M., Hu,, R., Eskandar,, E., & Brown,, E. N. (2010). Using point process models to compare neural spiking activity in the subthalamic nucleus of Parkinson`s patients and a healthy primate. IEEE Transactions on Biomedical Engineering, 57, 1297–1305.
Saxena,, S., Santaniello,, S., Montgomery,, E. B., Gale,, J. T., & Sarma,, S. V. (2010). Point process models show temporal dependencies of basal ganglia nuclei under deep brain stimulation. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4152–4155.
Schneider,, J. S., & Rothblat,, D. S. (1996). Alterations in intralaminar and motor thalamic physiology following nigrostriatal dopamine depletion. Brain Research, 742, 25–33.
Selzler,, K., Burack,, M., Bender,, R., & Mapstone,, M. (2013). Neurophysiological correlates of motor and working memory performance following subthalamic nucleus stimulation. Journal of Cognitive Neuroscience, 25, 37–48.
Shamir,, R. R., Dolber,, T., Noecker,, A. M., Walter,, B. L., & McIntyre,, C. C. (2015). Machine learning approach to optimizing combined stimulation and medication therapies for Parkinson`s disease. Brain Stimulation, 8, 1025–1032.
Shamir,, R. R., Dolbert,, T., Noecker,, A. M., Frankemolle,, A. M., Walter,, B. L., & McIntyre,, C. C. (2014). A method for predicting the outcomes of combined pharmacologic and deep brain stimulation therapy for Parkinson`s disease. Medical Image Computing and Computer‐Assisted Intervention, 17, 188–195.
Snari,, R., Tinsley,, M. R., Wilson,, D., Faramarzi,, S., Netoff,, T. I., Moehlis,, J., & Showalter,, K. (2015). Desynchronization of stochastically synchronized chemical oscillators. Chaos, 25, 123116.
Snyder,, D. L., & Miller,, M. I. (1991). Random point processes in time and space (2nd ed.). New York, NY: Springer‐Verlag.
So,, R. Q., Kent,, A. R., & Grill,, W. M. (2012). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: A computational modeling study. Journal of Computational Neuroscience, 32, 499–519.
Stiefel,, K. M., & Ermentrout,, G. B. (2016). Neurons as oscillators. Journal of Neurophysiology, 116, 2950–2960.
Tass,, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand‐controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–88.
Tass,, P. A., & Hauptmann,, C. (2007). Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. International Journal of Psychophysiology, 64, 53–61.
Temel,, Y., Blokland,, A., Ackermans,, L., Boon,, P., van Kranen‐Mastenbroek,, V. H., Beuls,, E. A., … Visser‐Vandewalle,, V. (2006). Differential effects of subthalamic nucleus stimulation in advanced Parkinson disease on reaction time performance. Experimental Brain Research, 169, 389–399.
Tinkhauser,, G., Pogosyan,, A., Little,, S., Beudel,, M., Herz,, D. M., Tan,, H., & Brown,, P. (2017). The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson`s disease. Brain, 140, 1053–1067.
Truccolo,, W., Eden,, U. T., Fellows,, M. R., Donoghue,, J. P., & Brown,, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.
Volkmann,, J., Herzog,, J., Kopper,, F., & Deuschl,, G. (2002). Introduction to the programming of deep brain stimulators. Movement Disorders, 17(Suppl. 3), S181–S187.
Vyas,, S., Huang,, H., Gale,, J. T., Sarma,, S. V., & Montgomery,, E. B. (2016). Neuronal complexity in subthalamic nucleus is reduced in Parkinson`s disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24, 36–45.
Wei,, X. F., & Grill,, W. M. (2005). Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. Journal of Neural Engineering, 2, 139–147.
Wei,, X. F., & Grill,, W. M. (2009). Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. Journal of Neural Engineering, 6, 046008.
Wichmann,, T., Bergman,, H., & DeLong,, M. R. (1994). The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 521–530.
Williams,, Z. M., Neimat,, J. S., Cosgrove,, G. R., & Eskandar,, E. N. (2005). Timing and direction selectivity of subthalamic and pallidal neurons in patients with Parkinson disease. Experimental Brain Research, 162, 407–416.
Willsie,, A. C., & Dorval,, A. D. (2015). Computational field shaping for deep brain stimulation with thousands of contacts in a novel electrode geometry. Neuromodulation, 18, 542–550; discussion 550‐1.
Wojtecki,, L., Timmermann,, L., Jorgens,, S., Sudmeyer,, M., Maarouf,, M., Treuer,, H., … Schnitzler,, A. (2006). Frequency‐dependent reciprocal modulation of verbal fluency and motor functions in subthalamic deep brain stimulation. Archives of Neurology, 63, 1273–1276.
Wu,, H., Van Dyck‐Lippens,, P. J., Santegoeds,, R., van Kuyck,, K., Gabriels,, L., Lin,, G., … Nuttin,, B. (2013). Deep‐brain stimulation for anorexia nervosa. World Neurosurgery, 80, S29 e1–S29 e10.
Xiao,, Y., Pena,, E., & Johnson,, M. D. (2016). Theoretical optimization of stimulation strategies for a directionally segmented deep brain stimulation electrode array. IEEE Transactions on Biomedical Engineering, 63, 359–371.