Abitua,, P. B., Wagner,, E., Navarrete,, I. A., & Levine,, M. (2012). Identification of a rudimentary neural crest in a non‐vertebrate chordate. Nature, 492(7427), 104–107. https://doi.org/10.1038/nature11589
Bally‐Cuif,, L., Gulisano,, M., Broccoli,, V., & Boncinelli,, E. (1995). c‐otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo. Mechanisms of Development, 49(1–2), 49–63. https://doi.org/10.1016/0925-4773(94)00301-3
Basch,, M. L., Bronner‐Fraser,, M., & Garcia‐Castro,, M. I. (2006). Specification of the neural crest occurs during gastrulation and requires Pax7. Nature, 441(7090), 218–222. https://doi.org/10.1038/nature04684
Bell,, D. M., Leung,, K. K., Wheatley,, S. C., Ng,, L. J., Zhou,, S., Ling,, K. W., … Cheah,, K. S. (1997). SOX9 directly regulates the type‐II collagen gene. Nature Genetics, 16(2), 174–178. https://doi.org/10.1038/ng0697-174
Betancur,, P., Bronner‐Fraser,, M., & Sauka‐Spengler,, T. (2010). Assembling neural crest regulatory circuits into a gene regulatory network. Annual Review of Cell and Developmental Biology, 26, 581–603. https://doi.org/10.1146/annurev.cellbio.042308.113245
Britten,, R. J., & Davidson,, E. H. (1969). Gene regulation for higher cells: A theory. Science, 165(3891), 349–357. https://doi.org/10.1126/science.165.3891.349
Brugmann,, S. A., & Moody,, S. A. (2005). Induction and specification of the vertebrate ectodermal placodes: Precursors of the cranial sensory organs. Biology of the Cell, 97(5), 303–319. https://doi.org/10.1042/BC20040515
Brugmann,, S. A., Pandur,, P. D., Kenyon,, K. L., Pignoni,, F., & Moody,, S. A. (2004). Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development, 131(23), 5871–5881. https://doi.org/10.1242/dev.01516
Buenrostro,, J. D., Wu,, B., Chang,, H. Y., & Greenleaf,, W. J. (2015). ATAC‐seq: A method for assaying chromatin accessibility genome‐wide. Current Protocols in Molecular Biology, 109, 21–29. https://doi.org/10.1002/0471142727.mb2129s109
Carmona‐Fontaine,, C., Matthews,, H. K., Kuriyama,, S., Moreno,, M., Dunn,, G. A., Parsons,, M., … Mayor,, R. (2008). Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature, 456(7224), 957–961. https://doi.org/10.1038/nature07441
Cheung,, M., Chaboissier,, M. C., Mynett,, A., Hirst,, E., Schedl,, A., & Briscoe,, J. (2005). The transcriptional control of trunk neural crest induction, survival, and delamination. Developmental Cell, 8(2), 179–192. https://doi.org/10.1016/j.devcel.2004.12.010
Christophorou,, N. A., Bailey,, A. P., Hanson,, S., & Streit,, A. (2009). Activation of Six1 target genes is required for sensory placode formation. Developmental Biology, 336(2), 327–336. https://doi.org/10.1016/j.ydbio.2009.09.025
David,, R., Ahrens,, K., Wedlich,, D., & Schlosser,, G. (2001). Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors. Mechanisms of Development, 103(1–2), 189–192.
Davidson,, E. H. (2006). The regulatory genome. London, England: Academic Press.
Davidson,, E. H., & Levine,, M. S. (2008). Properties of developmental gene regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20063–20066. https://doi.org/10.1073/pnas.0806007105
Davidson,, E. H., McClay,, D. R., & Hood,, L. (2003). Regulatory gene networks and the properties of the developmental process. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1475–1480. https://doi.org/10.1073/pnas.0437746100
Davy,, A. (2004). Ephrin‐B1 forward and reverse signaling are required during mouse development. Genes %26 Development, 18(5), 572–583. https://doi.org/10.1101/gad.1171704
de Croze,, N., Maczkowiak,, F., & Monsoro‐Burq,, A. H. (2011). Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 155–160. https://doi.org/10.1073/pnas.1010740107
Delsuc,, F., Brinkmann,, H., Chourrout,, D., & Philippe,, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439(7079), 965–968. https://doi.org/10.1038/nature04336
Dessaud,, E., McMahon,, A. P., & Briscoe,, J. (2008). Pattern formation in the vertebrate neural tube: A sonic hedgehog morphogen‐regulated transcriptional network. Development, 135(15), 2489–2503. https://doi.org/10.1242/dev.009324
Dooley,, C. M., Wali,, N., Sealy,, I. M., White,, R. J., Stemple,, D. L., Collins,, J. E., & Busch‐Nentwich,, E. M. (2019). The gene regulatory basis of genetic compensation during neural crest induction. PLoS Genetics, 15(6), e1008213. https://doi.org/10.1371/journal.pgen.1008213
Dottori,, M., Gross,, M. K., Labosky,, P., & Goulding,, M. (2001). The winged‐helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development, 128(21), 4127–4138.
Elworthy,, S., Lister,, J. A., Carney,, T. J., Raible,, D. W., & Kelsh,, R. N. (2003). Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development, 130(12), 2809–2818. https://doi.org/10.1242/dev.00461
Esteve,, P., & Bovolenta,, P. (1999). cSix4, a member of the six gene family of transcription factors, is expressed during placode and somite development. Mechanisms of Development, 85(1‐2), 161–165.
Farrell,, J. A., Wang,, Y., Riesenfeld,, S. J., Shekhar,, K., Regev,, A., & Schier,, A. F. (2018). Single‐cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science, 360(6392), eaar3131. https://doi.org/10.1126/science.aar3131
Feledy,, J. A., Beanan,, M. J., Sandoval,, J. J., Goodrich,, J. S., Lim,, J. H., Matsuo‐Takasaki,, M., … Sargent,, T. D. (1999). Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1. Developmental Biology, 212(2), 455–464. https://doi.org/10.1006/dbio.1999.9374
Ferronha,, T., Rabadan,, M. A., Gil‐Guinon,, E., Le Dreau,, G., de Torres,, C., & Marti,, E. (2013). LMO4 is an essential cofactor in the Snail2‐mediated epithelial‐to‐mesenchymal transition of neuroblastoma and neural crest cells. The Journal of Neuroscience, 33(7), 2773–2783. https://doi.org/10.1523/JNEUROSCI.4511-12.2013
Furumatsu,, T., Tsuda,, M., Taniguchi,, N., Tajima,, Y., & Asahara,, H. (2005). Smad3 induces chondrogenesis through the activation of SOX9 via CREB‐binding protein/p300 recruitment. The Journal of Biological Chemistry, 280(9), 8343–8350. https://doi.org/10.1074/jbc.M413913200
Gammill,, L. S., & Bronner‐Fraser,, M. (2002). Genomic analysis of neural crest induction. Development, 129(24), 5731–5741. https://doi.org/10.1242/dev.00175
Gammill,, L. S., Gonzalez,, C., & Bronner‐Fraser,, M. (2007). Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Developmental Neurobiology, 67(1), 47–56. https://doi.org/10.1002/neu.20326
Gans,, C., & Northcutt,, R. G. (1983). Neural crest and the origin of vertebrates: A new head. Science, 220(4594), 268–273. https://doi.org/10.1126/science.220.4594.268
Golding,, J. P., Sobieszczuk,, D., Dixon,, M., Coles,, E., Christiansen,, J., Wilkinson,, D., & Gassmann,, M. (2004). Roles of erbB4, rhombomere‐specific, and rhombomere‐independent cues in maintaining neural crest‐free zones in the embryonic head. Developmental Biology, 266(2), 361–372. https://doi.org/10.1016/j.ydbio.2003.11.003
Groves,, A. K., & LaBonne,, C. (2014). Setting appropriate boundaries: Fate, patterning and competence at the neural plate border. Developmental Biology, 389(1), 2–12. https://doi.org/10.1016/j.ydbio.2013.11.027
Hall,, B. K. (2000). The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evolution and Development, 2(1), 3–5. https://doi.org/10.1046/j.1525-142x.2000.00032.x
Honoré,, S. M., Aybar,, M. J., & Mayor,, R. (2003). Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Developmental Biology, 260(1), 79–96. https://doi.org/10.1016/s0012-1606(03)00247-1
Horie,, R., Hazbun,, A., Chen,, K., Cao,, C., Levine,, M., & Horie,, T. (2018). Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature, 560(7717), 228–232. https://doi.org/10.1038/s41586-018-0385-7
Hutchins,, E. J., & Bronner,, M. E. (2018). Draxin acts as a molecular rheostat of canonical Wnt signaling to control cranial neural crest EMT. The Journal of Cell Biology, 217(10), 3683–3697. https://doi.org/10.1083/jcb.201709149
Ishihara,, T., Ikeda,, K., Sato,, S., Yajima,, H., & Kawakami,, K. (2008). Differential expression of Eya1 and Eya2 during chick early embryonic development. Gene Expression Patterns, 8(5), 357–367. https://doi.org/10.1016/j.gep.2008.01.003
Istrail,, S., & Davidson,, E. H. (2005). Logic functions of the genomic cis‐regulatory code. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 4954–4959. https://doi.org/10.1073/pnas.0409624102
Ito,, Y., Bringas,, P., Jr., Mogharei,, A., Zhao,, J., Deng,, C., & Chai,, Y. (2002). Receptor‐regulated and inhibitory Smads are critical in regulating transforming growth factor beta‐mediated Meckel`s cartilage development. Developmental Dynamics, 224(1), 69–78. https://doi.org/10.1002/dvdy.10088
Jaeger,, J., Blagov,, M., Kosman,, D., Kozlov,, K. N., Manu,, M. E., … Reinitz,, J. (2004). Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics, 167(4), 1721–1737. https://doi.org/10.1534/genetics.104.027334
Jin,, E. J., Erickson,, C. A., Takada,, S., & Burrus,, L. W. (2001). Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo. Developmental Biology, 233(1), 22–37. https://doi.org/10.1006/dbio.2001.0222
Johnson,, D. S., Mortazavi,, A., Myers,, R. M., & Wold,, B. (2007). Genome‐wide mapping of in vivo protein‐DNA interactions. Science, 316(5830), 1497–1502. https://doi.org/10.1126/science.1141319
Khudyakov,, J., & Bronner‐Fraser,, M. (2009). Comprehensive spatiotemporal analysis of early chick neural crest network genes. Developmental Dynamics, 238(3), 716–723. https://doi.org/10.1002/dvdy.21881
Kim,, H. S., Hong,, S. J., LeDoux,, M. S., & Kim,, K. S. (2001). Regulation of the tyrosine hydroxylase and dopamine beta‐hydroxylase genes by the transcription factor AP‐2. Journal of Neurochemistry, 76(1), 280–294. https://doi.org/10.1046/j.1471-4159.2001.00044.x
Kuo,, B. R., & Erickson,, C. A. (2010). Regional differences in neural crest morphogenesis. Cell Adhesion %26 Migration, 4(4), 567–585. https://doi.org/10.4161/cam.4.4.12890
Labosky,, P. A., & Kaestner,, K. H. (1998). The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mechanisms of Development, 76(1‐2), 185–190. https://doi.org/10.1016/s0925-4773(98)00105-1
Laslo,, P., Spooner,, C. J., Warmflash,, A., Lancki,, D. W., Lee,, H. J., Sciammas,, R., … Singh,, H. (2006). Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell, 126(4), 755–766. https://doi.org/10.1016/j.cell.2006.06.052
Le Douarin,, N. M., & Kalcheim,, C. (1999). The neural crest (2nd ed.). Cambridge, England: Cambridge University Press.
Lefebvre,, V., Li,, P., & de Crombrugghe,, B. (1998). A new long form of Sox5 (L‐Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. The EMBO Journal, 17(19), 5718–5733. https://doi.org/10.1093/emboj/17.19.5718
Levine,, M., & Davidson,, E. H. (2005). Gene regulatory networks for development. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 4936–4942. https://doi.org/10.1073/pnas.0408031102
Li,, E., Materna,, S. C., & Davidson,, E. H. (2012). Direct and indirect control of oral ectoderm regulatory gene expression by nodal signaling in the sea urchin embryo. Developmental Biology, 369(2), 377–385. https://doi.org/10.1016/j.ydbio.2012.06.022
Li,, W., & Cornell,, R. A. (2007). Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non‐neural ectoderm derivatives in zebrafish embryos. Developmental Biology, 304(1), 338–354. https://doi.org/10.1016/j.ydbio.2006.12.042
Lignell,, A., Kerosuo,, L., Streichan,, S. J., Cai,, L., & Bronner,, M. E. (2017). Identification of a neural crest stem cell niche by spatial genomic analysis. Nature Communications, 8(1), 1830. https://doi.org/10.1038/s41467-017-01561-w
Longabaugh,, W. J., Davidson,, E. H., & Bolouri,, H. (2005). Computational representation of developmental genetic regulatory networks. Developmental Biology, 283(1), 1–16. https://doi.org/10.1016/j.ydbio.2005.04.023
Lukoseviciute,, M., Gavriouchkina,, D., Williams,, R. M., Hochgreb‐Hagele,, T., Senanayake,, U., Chong‐Morrison,, V., … Sauka‐Spengler,, T. (2018). From pioneer to repressor: Bimodal foxd3 activity dynamically remodels neural crest regulatory landscape in vivo. Developmental Cell, 47(5), 608–628 e606. https://doi.org/10.1016/j.devcel.2018.11.009
Martik,, M. L., & Bronner,, M. E. (2017). Regulatory logic underlying diversification of the neural crest. Trends in Genetics, 33(10), 715–727. https://doi.org/10.1016/j.tig.2017.07.015
Martik,, M. L., Gandhi,, S., Uy,, B. R., Gillis,, J. A., Green,, S. A., Simoes‐Costa,, M., & Bronner,, M. E. (2019). Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature. https://doi.org/10.1038/s41586‐019‐1691‐4
Matsuo‐Takasaki,, M., Matsumura,, M., & Sasai,, Y. (2005). An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation. Development, 132(17), 3885–3894. https://doi.org/10.1242/dev.01959
McLarren,, K. W., Litsiou,, A., & Streit,, A. (2003). DLX5 positions the neural crest and preplacode region at the border of the neural plate. Developmental Biology, 259(1), 34–47. https://doi.org/10.1016/s0012-1606(03)00177-5
Mead,, T. J., Wang,, Q., Bhattaram,, P., Dy,, P., Afelik,, S., Jensen,, J., & Lefebvre,, V. (2013). A far‐upstream (‐70 kb) enhancer mediates Sox9 auto‐regulation in somatic tissues during development and adult regeneration. Nucleic Acids Research, 41(8), 4459–4469. https://doi.org/10.1093/nar/gkt140
Meulemans,, D., & Bronner‐Fraser,, M. (2004). Gene‐regulatory interactions in neural crest evolution and development. Developmental Cell, 7(3), 291–299. https://doi.org/10.1016/j.devcel.2004.08.007
Minoux,, M., & Rijli,, F. M. (2010). Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development, 137(16), 2605–2621. https://doi.org/10.1242/dev.040048
Mitchell,, P. J., Timmons,, P. M., Hebert,, J. M., Rigby,, P. W., & Tjian,, R. (1991). Transcription factor AP‐2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes %26 Development, 5(1), 105–119. https://doi.org/10.1101/gad.5.1.105
Morikawa,, Y., Zehir,, A., Maska,, E., Deng,, C., Schneider,, M. D., Mishina,, Y., & Cserjesi,, P. (2009). BMP signaling regulates sympathetic nervous system development through Smad4‐dependent and ‐independent pathways. Development, 136(21), 3575–3584. https://doi.org/10.1242/dev.038133
Morrison,, M. A., Zimmerman,, M. W., Look,, A. T., & Stewart,, R. A. (2016). Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods in Cell Biology, 134, 97–138. https://doi.org/10.1016/bs.mcb.2015.12.003
Murko,, C., Vieceli,, F. M., & Bronner,, M. (2018). Transcriptome dataset of trunk neural crest cells migrating along the ventral pathway of chick embryos. Data in Brief, 21, 2547–2553. https://doi.org/10.1016/j.dib.2018.11.109
Nieto,, M. A., Sargent,, M. G., Wilkinson,, D. G., & Cooke,, J. (1994). Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science, 264(5160), 835–839. https://doi.org/10.1126/science.7513443
Nikitina,, N., Sauka‐Spengler,, T., & Bronner‐Fraser,, M. (2008). Dissecting early regulatory relationships in the lamprey neural crest gene network. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20083–20088. https://doi.org/10.1073/pnas.0806009105
Osborne,, N. J., Begbie,, J., Chilton,, J. K., Schmidt,, H., & Eickholt,, B. J. (2005). Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick. Developmental Dynamics, 232(4), 939–949. https://doi.org/10.1002/dvdy.20258
Papanayotou,, C., Mey,, A., Birot,, A. M., Saka,, Y., Boast,, S., Smith,, J. C., … Stern,, C. D. (2008). A mechanism regulating the onset of Sox2 expression in the embryonic neural plate. PLoS Biology, 6(1), e2. https://doi.org/10.1371/journal.pbio.0060002
Paquette,, S. M., Leinonen,, K., & Longabaugh,, W. J. (2016). BioTapestry now provides a web application and improved drawing and layout tools. F1000Res, 5, 39. https://doi.org/10.12688/f1000research.7620.1
Peter,, I. S., & Davidson,, E. H. (2011). A gene regulatory network controlling the embryonic specification of endoderm. Nature, 474(7353), 635–639. https://doi.org/10.1038/nature10100
Peter,, I. S., & Davidson,, E. H. (2015). Genomic control process: Development and evolution. London, England: Academic Press.
Peter,, I. S., & Davidson,, E. H. (2017). Assessing regulatory information in developmental gene regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5862–5869. https://doi.org/10.1073/pnas.1610616114
Pieper,, M., Ahrens,, K., Rink,, E., Peter,, A., & Schlosser,, G. (2012). Differential distribution of competence for panplacodal and neural crest induction to non‐neural and neural ectoderm. Development, 139(6), 1175–1187. https://doi.org/10.1242/dev.074468
Potterf,, S. B., Mollaaghababa,, R., Hou,, L., Southard‐Smith,, E. M., Hornyak,, T. J., Arnheiter,, H., & Pavan,, W. J. (2001). Analysis of SOX10 function in neural crest‐derived melanocyte development: SOX10‐dependent transcriptional control of dopachrome tautomerase. Developmental Biology, 237(2), 245–257. https://doi.org/10.1006/dbio.2001.0372
Qiu,, X., Mao,, Q., Tang,, Y., Wang,, L., Chawla,, R., Pliner,, H. A., & Trapnell,, C. (2017). Reversed graph embedding resolves complex single‐cell trajectories. Nature Methods, 14(10), 979–982. https://doi.org/10.1038/nmeth.4402
Roellig,, D., Tan‐Cabugao,, J., Esaian,, S., & Bronner,, M. E. (2017). Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells. eLife, 6, 2–4. https://doi.org/10.7554/eLife.21620
Rothstein,, M., Bhattacharya,, D., & Simoes‐Costa,, M. (2018). The molecular basis of neural crest axial identity. Developmental Biology, 444, S170–S180. https://doi.org/10.1016/j.ydbio.2018.07.026
Sauka‐Spengler,, T., & Bronner‐Fraser,, M. (2008). A gene regulatory network orchestrates neural crest formation. Nature Reviews. Molecular Cell Biology, 9(7), 557–568. https://doi.org/10.1038/nrm2428
Sauka‐Spengler,, T., Meulemans,, D., Jones,, M., & Bronner‐Fraser,, M. (2007). Ancient evolutionary origin of the neural crest gene regulatory network. Developmental Cell, 13(3), 405–420. https://doi.org/10.1016/j.devcel.2007.08.005
Schwarz,, Q., Vieira,, J. M., Howard,, B., Eickholt,, B. J., & Ruhrberg,, C. (2008). Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development, 135(9), 1605–1613. https://doi.org/10.1242/dev.015412
Seberg,, H. E., Van Otterloo,, E., Loftus,, S. K., Liu,, H., Bonde,, G., Sompallae,, R., … Cornell,, R. A. (2017). TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genetics, 13(3), e1006636. https://doi.org/10.1371/journal.pgen.1006636
Shellard,, A., & Mayor,, R. (2016). Chemotaxis during neural crest migration. Seminars in Cell %26 Developmental Biology, 55, 111–118. https://doi.org/10.1016/j.semcdb.2016.01.031
Sheng,, G., & Stern,, C. D. (1999). Gata2 and Gata3: Novel markers for early embryonic polarity and for non‐neural ectoderm in the chick embryo. Mechanisms of Development, 87(1‐2), 213–216.
Simoes‐Costa,, M., & Bronner,, M. E. (2013). Insights into neural crest development and evolution from genomic analysis. Genome Research, 23(7), 1069–1080. https://doi.org/10.1101/gr.157586.113
Simoes‐Costa,, M., & Bronner,, M. E. (2015). Establishing neural crest identity: A gene regulatory recipe. Development, 142(2), 242–257. https://doi.org/10.1242/dev.105445
Simoes‐Costa,, M., & Bronner,, M. E. (2016). Reprogramming of avian neural crest axial identity and cell fate. Science, 352(6293), 1570–1573. https://doi.org/10.1126/science.aaf2729
Simoes‐Costa,, M., McKeown,, S., Tan‐Cabugao,, J., Sauka‐Spengler,, T., & Bronner,, M. E. (2012). Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is encrypted in the genome. PLoS Genetics, 8(12), e1003142. https://doi.org/10.1371/journal.pgen.1003142
Simoes‐Costa,, M., Tan‐Cabugao,, J., Antoshechkin,, I., Sauka‐Spengler,, T., & Bronner,, M. E. (2014). Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Research, 24(2), 281–290. https://doi.org/10.1101/gr.161182.113
Skene,, P. J., & Henikoff,, S. (2017). An efficient targeted nuclease strategy for high‐resolution mapping of DNA binding sites. eLife, 6, e21856. https://doi.org/10.7554/eLife.21856
Smith,, A., Robinson,, V., Patel,, K., & Wilkinson,, D. G. (1997). The EphA4 and EphB1 receptor tyrosine kinases and ephrin‐B2 ligand regulate targeted migration of branchial neural crest cells. Current Biology, 7(8), 561–570. https://doi.org/10.1016/s0960-9822(06)00255-7
Soldatov,, R., Kaucka,, M., Kastriti,, M. E., Petersen,, J., Chontorotzea,, T., Englmaier,, L., … Adameyko,, I. (2019). Spatiotemporal structure of cell fate decisions in murine neural crest. Science, 364(6444), 1–67. https://doi.org/10.1126/science.aas9536
Southard‐Smith,, E. M., Kos,, L., & Pavan,, W. J. (1998). Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nature Genetics, 18(1), 60–64. https://doi.org/10.1038/ng0198-60
Stolfi,, A., Ryan,, K., Meinertzhagen,, I. A., & Christiaen,, L. (2015). Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature, 527(7578), 371–374. https://doi.org/10.1038/nature15758
Streit,, A., Berliner,, A. J., Papanayotou,, C., Sirulnik,, A., & Stern,, C. D. (2000). Initiation of neural induction by FGF signalling before gastrulation. Nature, 406(6791), 74–78. https://doi.org/10.1038/35017617
Tai,, A., Cheung,, M., Huang,, Y. H., Jauch,, R., Bronner,, M. E., & Cheah,, K. S. (2016). SOXE neofunctionalization and elaboration of the neural crest during chordate evolution. Scientific Reports, 6, 34964. https://doi.org/10.1038/srep34964
Takeda,, K., Yasumoto,, K., Takada,, R., Takada,, S., Watanabe,, K., Udono,, T., … Shibahara,, S. (2000). Induction of melanocyte‐specific microphthalmia‐associated transcription factor by Wnt‐3a. The Journal of Biological Chemistry, 275(19), 14013–14016. https://doi.org/10.1074/jbc.c000113200
Taneyhill,, L. A., Coles,, E. G., & Bronner‐Fraser,, M. (2007). Snail2 directly represses cadherin6B during epithelial‐to‐mesenchymal transitions of the neural crest. Development, 134(8), 1481–1490. https://doi.org/10.1242/dev.02834
Tani‐Matsuhana,, S., Vieceli,, F. M., Gandhi,, S., Inoue,, K., & Bronner,, M. E. (2018). Transcriptome profiling of the cardiac neural crest reveals a critical role for MafB. Developmental Biology, 444(Suppl 1), S209–S218. https://doi.org/10.1016/j.ydbio.2018.09.015
Vallin,, J., Thuret,, R., Giacomello,, E., Faraldo,, M. M., Thiery,, J. P., & Broders,, F. (2001). Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/beta‐catenin signaling. The Journal of Biological Chemistry, 276(32), 30350–30358. https://doi.org/10.1074/jbc.M103167200
Wagner,, D. E., Weinreb,, C., Collins,, Z. M., Briggs,, J. A., Megason,, S. G., & Klein,, A. M. (2018). Single‐cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science, 360(6392), 981–987. https://doi.org/10.1126/science.aar4362
Watt,, K. E. N., & Trainor,, P. A. (2014). Chapter 17 ‐ Neurocristopathies: The Etiology and Pathogenesis of Disorders Arising from Defects in Neural Crest Cell Development. In P. A. Trainor, (Ed.), Neural crest cells (pp. 361–394). Boston, MA: Academic Press.
Wahlbuhl,, M., Reiprich,, S., Vogl,, M. R., Bosl,, M. R., & Wegner,, M. (2012). Transcription factor Sox10 orchestrates activity of a neural crest‐specific enhancer in the vicinity of its gene. Nucleic Acids Research, 40(1), 88–101. https://doi.org/10.1093/nar/gkr734
Wakamatsu,, Y., Endo,, Y., Osumi,, N., & Weston,, J. A. (2004). Multiple roles of Sox2, an HMG‐box transcription factor in avian neural crest development. Developmental Dynamics, 229(1), 74–86. https://doi.org/10.1002/dvdy.10498
Yu,, H. H., & Moens,, C. B. (2005). Semaphorin signaling guides cranial neural crest cell migration in zebrafish. Developmental Biology, 280(2), 373–385. https://doi.org/10.1016/j.ydbio.2005.01.029
Yu,, J. K., Meulemans,, D., McKeown,, S. J., & Bronner‐Fraser,, M. (2008). Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Research, 18(7), 1127–1132. https://doi.org/10.1101/gr.076208.108