Allen,, J. S., Emmorey,, K., Bruss,, J., & Damasio,, H. (2008). Morphology of the insula in relation to hearing status and sign language experience. The Journal of Neuroscience, 28, 11900–11905. https://doi.org/10.1523/JNEUROSCI.3141-08.2008
Allen,, J. S., Emmorey,, K., Bruss,, J., & Damasio,, H. (2013). Neuroanatomical differences in visual, motor, and language cortices between congenitally deaf signers, hearing signers, and hearing non‐signers. Frontiers in Neuroanatomy, 7, 26. https://doi.org/10.3389/fnana.2013.00026
Alpert,, K., Kogan,, A., Parrish,, T., Marcus,, D., & Wang,, L. (2015). The Northwestern University Neuroimaging Data Archive (NUNDA). NeuroImage, 124, 1131–1136. https://doi.org/10.1016/j.neuroimage.2015.05.060
Amaral,, L., Ganho‐Avila,, A., Osorio,, A., Soares,, M. J., He,, D., Chen,, Q., … Almeida,, J. (2016). Hemispheric asymmetries in subcortical visual and auditory relay structures in congenital deafness. The European Journal of Neuroscience, 44, 2334–2339. https://doi.org/10.1111/ejn.13340
Anderson,, C. A., Lazard,, D. S., & Hartley,, D. E. (2017). Plasticity in bilateral superior temporal cortex: Effects of deafness and cochlear implantation on auditory and visual speech processing. Hearing Research, 343, 138–149. https://doi.org/10.1016/j.heares.2016.07.013
Anderson,, C. A., Wiggins,, I. M., Kitterick,, P. T., & Hartley,, D. E. H. (2017). Adaptive benefit of cross‐modal plasticity following cochlear implantation in deaf adults. Proceedings of the National Academy of Sciences of the United States of America, 114, 10256–10261. https://doi.org/10.1073/pnas.1704785114
Ashmore,, J., Avan,, P., Brownell,, W. E., Dallos,, P., Dierkes,, K., Fettiplace,, R., … Canlon,, B. (2010). The remarkable cochlear amplifier. Hearing Research, 266, 1–17. https://doi.org/10.1016/j.heares.2010.05.001
Barone,, P., Lacassagne,, L., & Kral,, A. (2013). Reorganization of the connectivity of cortical field DZ in congenitally deaf cat. PLoS One, 8, e60093. https://doi.org/10.1371/journal.pone.0060093
Bavelier,, D., & Neville,, H. J. (2002). Cross‐modal plasticity: Where and how? Nature Reviews. Neuroscience, 3, 443–452. https://doi.org/10.1038/nrn848
Benetti,, S., Novello,, L., Maffei,, C., Rabini,, G., Jovicich,, J., & Collignon,, O. (2018). White matter connectivity between occipital and temporal regions involved in face and voice processing in hearing and early deaf individuals. NeuroImage, 179, 263–274. https://doi.org/10.1016/j.neuroimage.2018.06.044
Boatman,, D. (2004). Cortical bases of speech perception: Evidence from functional lesion studies. Cognition, 92, 47–65. https://doi.org/10.1016/j.cognition.2003.09.010
Bok,, S. T. (1929). The effect of the flexion of the furrows and convolutions of the cerebral cortex on the cortical structure. Zeitschrift Fur Die Gesamte Neurologie Und Psychiatrie, 121, 682–750. https://doi.org/10.1007/Bf02864437
Bok,, S. T. (1959). Histonomy of the cerebral cortex. Amsterdam, New York: Elsevier.
Boothroyd,, A. (2010). Adapting to changed hearing: The potential role of formal training. Journal of the American Academy of Audiology, 21, 601–611. https://doi.org/10.3766/jaaa.21.9.6
Bortfeld,, H. (2019). Functional near‐infrared spectroscopy as a tool for assessing speech and spoken language processing in pediatric and adult cochlear implant users. Developmental Psychobiology, 61, 430–443. https://doi.org/10.1002/dev.21818
Boyen,, K., Langers,, D. R., de Kleine,, E., & van Dijk,, P. (2013). Gray matter in the brain: Differences associated with tinnitus and hearing loss. Hearing Research, 295, 67–78. https://doi.org/10.1016/j.heares.2012.02.010
Butler,, B. E., & Lomber,, S. G. (2013). Functional and structural changes throughout the auditory system following congenital and early‐onset deafness: Implications for hearing restoration. Frontiers in Systems Neuroscience, 7, 92. https://doi.org/10.3389/fnsys.2013.00092
Campbell,, J. D., Cardon,, G., & Sharma,, A. (2011). Clinical application of the P1 cortical auditory evoked potential biomarker in children with sensorineural hearing loss and auditory neuropathy spectrum disorder. Seminars in Hearing, 32, 147–155. https://doi.org/10.1055/s-0031-1277236
Campbell,, R., MacSweeney,, M., & Woll,, B. (2014). Cochlear implantation (CI) for prelingual deafness: The relevance of studies of brain organization and the role of first language acquisition in considering outcome success. Frontiers in Human Neuroscience, 8, 834. https://doi.org/10.3389/fnhum.2014.00834
Cardin,, V., Orfanidou,, E., Ronnberg,, J., Capek,, C. M., Rudner,, M., & Woll,, B. (2013). Dissociating cognitive and sensory neural plasticity in human superior temporal cortex. Nature Communications, 4, 1473. https://doi.org/10.1038/ncomms2463
Ceritoglu,, C., Oishi,, K., Li,, X., Chou,, M. C., Younes,, L., Albert,, M., … Mori,, S. (2009). Multi‐contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage, 47, 618–627. https://doi.org/10.1016/j.neuroimage.2009.04.057
Ceyhan,, E., Hosakere,, M., Nishino,, T., Alexopoulos,, J., Todd,, R. D., Botteron,, K. N., … Ratnanather,, J. T. (2011). Statistical analysis of cortical morphometrics using pooled distances based on labeled cortical distance maps. Journal of Mathematical Imaging and Vision, 40, 20–35. https://doi.org/10.1007/s10851-010-0240-4
Ceyhan,, E., Nishino,, T., Alexopolous,, D., Todd,, R. D., Botteron,, K. N., Miller,, M. I., & Ratnanather,, J. T. (2013). Censoring distances based on labeled cortical distance maps in cortical morphometry. Frontiers in Neurology, 4, 155. https://doi.org/10.3389/fneur.2013.00155
Chang,, Y., Lee,, H. R., Paik,, J. S., Lee,, K. Y., & Lee,, S. H. (2012). Voxel‐wise analysis of diffusion tensor imaging for clinical outcome of cochlear implantation: Retrospective study. Clinical and Experimental Otorhinolaryngology, 5(Suppl. 1), S37–S42. https://doi.org/10.3342/ceo.2012.5.S1.S37
Chang,, Y., Lee,, S. H., Lee,, Y. J., Hwang,, M. J., Bae,, S. J., Kim,, M. N., … Kang,, D. S. (2004). Auditory neural pathway evaluation on sensorineural hearing loss using diffusion tensor imaging. Neuroreport, 15, 1699–1703.
Chen,, I., Limb,, C. J., & Ryugo,, D. K. (2010). The effect of cochlear‐implant‐mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats. Journal of the Association for Research in Otolaryngology, 11, 587–603. https://doi.org/10.1007/s10162-010-0234-3
Cheng,, Q., Roth,, A., Halgren,, E., & Mayberry,, R. I. (2019). Effects of early language deprivation on brain connectivity: Language pathways in deaf native and late first‐language learners of American sign language. Frontiers in Human Neuroscience, 13, 320. https://doi.org/10.3389/fnhum.2019.00320
Chilosi,, A. M., Comparini,, A., Scusa,, M. F., Berrettini,, S., Forli,, F., Battini,, R., … Cioni,, G. (2010). Neurodevelopmental disorders in children with severe to profound sensorineural hearing loss: A clinical study. Developmental Medicine and Child Neurology, 52, 856–862. https://doi.org/10.1111/j.1469-8749.2010.03621.x
Clark,, G. M. (2014). The multi‐channel cochlear implant: Multi‐disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Hearing Research, 322, 4–13. https://doi.org/10.1016/j.heares.2014.08.002
Crinion,, J. T., Lambon‐Ralph,, M. A., Warburton,, E. A., Howard,, D., & Wise,, R. J. (2003). Temporal lobe regions engaged during normal speech comprehension. Brain, 126, 1193–1201.
Dahnke,, R., & Gaser,, C. (2018). Surface and shape analysis. In G. Spalletta,, F. Piras,, & T. Gili, (Eds.), Brain morphometry (pp. 51–73). New York, NY: Springer.
Deshpande,, A. K., Tan,, L., Lu,, L. J., Altaye,, M., & Holland,, S. K. (2016). fMRI as a preimplant objective tool to predict postimplant oral language outcomes in children with cochlear implants. Ear and Hearing, 37, e263–e272. https://doi.org/10.1097/AUD.0000000000000259
Dhir,, S. B., Kutten,, K. S., Li,, M., Faria,, A. V., & Ratnanather,, J. T. (2020). Topographic visualization of the acoustic radiation in subjects with normal hearing and hearing loss via semi‐automated tractography. (submitted)
DiFrancesco,, M. W., Robertson,, S. A., Karunanayaka,, P., & Holland,, S. K. (2013). BOLD fMRI in infants under sedation: Comparing the impact of pentobarbital and propofol on auditory and language activation. Journal of Magnetic Resonance Imaging, 38, 1184–1195. https://doi.org/10.1002/Jmri.24082
Dror,, A. A., & Avraham,, K. B. (2009). Hearing loss: Mechanisms revealed by genetics and cell biology. Annual Review of Genetics, 43, 411–437. https://doi.org/10.1146/annurev-genet-102108-134135
Duncan,, N. W., Gravel,, P., Wiebking,, C., Reader,, A. J., & Northoff,, G. (2013). Grey matter density and GABAA binding potential show a positive linear relationship across cortical regions. Neuroscience, 235, 226–231. https://doi.org/10.1016/j.neuroscience.2012.12.075
Eckert,, M. A., Cute,, S. L., Vaden,, K. I., Jr., Kuchinsky,, S. E., & Dubno,, J. R. (2012). Auditory cortex signs of age‐related hearing loss. Journal of the Association for Research in Otolaryngology, 13, 703–713. https://doi.org/10.1007/s10162-012-0332-5
Eckert,, M. A., Kuchinsky,, S. E., Vaden,, K. I., Cute,, S. L., Spampinato,, M. V., & Dubno,, J. R. (2013). White matter hyperintensities predict low frequency hearing in older adults. Journal of the Association for Research in Otolaryngology, 14, 425–433. https://doi.org/10.1007/s10162-013-0381-4
Eggermont,, J. J., & Ponton,, C. W. (2003). Auditory‐evoked potential studies of cortical maturation in normal hearing and implanted children: Correlations with changes in structure and speech perception. Acta Oto‐Laryngologica, 123, 249–252.
Emmorey,, K., Allen,, J. S., Bruss,, J., Schenker,, N., & Damasio,, H. (2003). A morphometric analysis of auditory brain regions in congenitally deaf adults. Proceedings of the National Academy of Sciences of the United States of America, 100, 10049–10054. https://doi.org/10.1073/pnas.1730169100
Faria,, A. V., Oishi,, K., Yoshida,, S., Hillis,, A., Miller,, M. I., & Mori,, S. (2015). Content‐based image retrieval for brain MRI: An image‐searching engine and population‐based analysis to utilize past clinical data for future diagnosis. NeuroImage, 7, 367–376. https://doi.org/10.1016/j.nicl.2015.01.008
Feldman,, H. M., Yeatman,, J. D., Lee,, E. S., Barde,, L. H. F., & Gaman‐Bean,, S. (2010). Diffusion tensor imaging: A review for pediatric researchers and clinicians. Journal of Developmental %26 Behavioral Pediatrics, 31, 346–356. https://doi.org/10.1097/DBP.0b013e3181dcaa8b
Feng,, G., Ingvalson,, E. M., Grieco‐Calub,, T. M., Roberts,, M. Y., Ryan,, M. E., Birmingham,, P., … Wong,, P. C. M. (2018). Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients. Proceedings of the National Academy of Sciences of the United States of America, 115, E1022–E1031. https://doi.org/10.1073/pnas.1717603115
Fettiplace,, R., & Kim,, K. X. (2014). The physiology of mechanoelectrical transduction channels in hearing. Physiological Reviews, 94, 951–986. https://doi.org/10.1152/physrev.00038.2013
Fine,, I., Finney,, E. M., Boynton,, G. M., & Dobkins,, K. R. (2005). Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex. Journal of Cognitive Neuroscience, 17, 1621–1637. https://doi.org/10.1162/089892905774597173
Fischl,, B. (2012). FreeSurfer. NeuroImage, 62, 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Friederici,, A. D. (2012). The cortical language circuit: From auditory perception to sentence comprehension. Trends in Cognitive Sciences, 16, 262–268. https://doi.org/10.1016/j.tics.2012.04.001
Gilley,, P. M., Sharma,, A., & Dorman,, M. F. (2008). Cortical reorganization in children with cochlear implants. Brain Research, 1239, 56–65. https://doi.org/10.1016/j.brainres.2008.08.026
Giraud,, A. L., & Lee,, H. J. (2007). Predicting cochlear implant outcome from brain organisation in the deaf. Restorative Neurology and Neuroscience, 25, 381–390.
Giuliani,, N. R., Calhoun,, V. D., Pearlson,, G. D., Francis,, A., & Buchanan,, R. W. (2005). Voxel‐based morphometry versus region of interest: A comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research, 74, 135–147. https://doi.org/10.1016/j.schres.2004.08.019
Hall,, D., & Paltoglou,, A. (2009). fMRI of the central auditory system. NeuroMethods, 41, 537–573.
Hampton,, T. (2013). 2013 Lasker awards honor biomedical researchers and champions of public service. JAMA, 310, 1011–1013. https://doi.org/10.1001/jama.2013.276942
Hasnain,, A., Mehta,, K., Zhou,, X., Li,, H., & Chen,, N. (2018). Laplace‐domain diffuse optical measurement. Scientific Reports, 8, 12134. https://doi.org/10.1038/s41598-018-30353-5
Hochmair,, I., Hochmair,, E., Nopp,, P., Waller,, M., & Jolly,, C. (2014). Deep electrode insertion and sound coding in cochlear implants. Hearing Research, 322, 14–23. https://doi.org/10.1016/j.heares.2014.10.006
Holmes,, D. (2013). Lasker Foundation honours cochlear‐implant pioneers. Lancet, 382, 926.
Hong,, P., Jurkowski,, Z. C., & Carvalho,, D. S. (2010). Preoperative cerebral magnetic resonance imaging and white matter changes in pediatric cochlear implant recipients. International Journal of Pediatric Otorhinolaryngology, 74, 658–660. https://doi.org/10.1016/j.ijporl.2010.03.014
Hribar,, M., Suput,, D., Carvalho,, A. A., Battelino,, S., & Vovk,, A. (2014). Structural alterations of brain grey and white matter in early deaf adults. Hearing Research, 318, 1–10. https://doi.org/10.1016/j.heares.2014.09.008
Huang,, L., Zheng,, W., Wu,, C., Wei,, X., Wu,, X., Wang,, Y., & Zheng,, H. (2015). Diffusion tensor imaging of the auditory neural pathway for clinical outcome of cochlear implantation in pediatric congenital sensorineural hearing loss patients. PLoS One, 10, e0140643. https://doi.org/10.1371/journal.pone.0140643
Husain,, F. T., Medina,, R. E., Davis,, C. W., Szymko‐Bennett,, Y., Simonyan,, K., Pajor,, N. M., & Horwitz,, B. (2011). Neuroanatomical changes due to hearing loss and chronic tinnitus: A combined VBM and DTI study. Brain Research, 1369, 74–88. https://doi.org/10.1016/j.brainres.2010.10.095
Huttenlocher,, P. R., & Dabholkar,, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167–178.
Hutton,, C., De Vita,, E., Ashburner,, J., Deichmann,, R., & Turner,, R. (2008). Voxel‐based cortical thickness measurements in MRI. NeuroImage, 40, 1701–1710. https://doi.org/10.1016/j.neuroimage.2008.01.027
Hwang,, J. H., Wu,, C. W., Chen,, J. H., & Liu,, T. C. (2006). Changes in activation of the auditory cortex following long‐term amplification: An fMRI study. Acta Oto‐Laryngologica, 126, 1275–1280. https://doi.org/10.1080/00016480600794503
Iyengar,, S. (2012). Development of the human auditory system. Journal of the Indian Institute of Science, 92, 427–440.
Jiang,, J., Zhu,, W., Shi,, F., Liu,, Y., Li,, J., Qin,, W., … Jiang,, T. (2009). Thick visual cortex in the early blind. The Journal of Neuroscience, 29, 2205–2211. https://doi.org/10.1523/JNEUROSCI.5451-08.2009
Jiang,, M., Wen,, Z., Long,, L., Wong,, C. W., Ye,, N., Zee,, C., & Chen,, B. T. (2019). Assessing cerebral white matter microstructure in children with congenital sensorineural hearing loss: A tract‐based spatial statistics study. Frontiers in Neuroscience, 13, 597. https://doi.org/10.3389/fnins.2019.00597
Jiang,, Z. Y., Odiase,, E., Isaacson,, B., Roland,, P. S., & Kutz,, J. W., Jr. (2014). Utility of MRIs in adult cochlear implant evaluations. Otology %26 Neurotology, 35, 1533–1535. https://doi.org/10.1097/MAO.0000000000000453
Jonas,, N. E., Ahmed,, J., Grainger,, J., Jephson,, C. G., Wyatt,, M. E., Hartley,, B. E., … Cochrane,, L. A. (2012). MRI brain abnormalities in cochlear implant candidates: How common and how important are they? International Journal of Pediatric Otorhinolaryngology, 76, 927–929. https://doi.org/10.1016/j.ijporl.2012.02.070
Kara,, A., Hakan Ozturk,, A., Kurtoglu,, Z., Umit Talas,, D., Aktekin,, M., Saygili,, M., & Kanik,, A. (2006). Morphometric comparison of the human corpus callosum in deaf and hearing subjects: An MRI study. Journal of Neuroradiology, 33, 158–163.
Karns,, C. M., Stevens,, C., Dow,, M. W., Schorr,, E. M., & Neville,, H. J. (2017). Atypical white‐matter microstructure in congenitally deaf adults: A region of interest and tractography study using diffusion‐tensor imaging. Hearing Research, 343, 72–82. https://doi.org/10.1016/j.heares.2016.07.008
Kim,, D. J., Park,, S. Y., Kim,, J., Lee,, D. H., & Park,, H. J. (2009). Alterations of white matter diffusion anisotropy in early deafness. Neuroreport, 20, 1032–1036. https://doi.org/10.1097/WNR.0b013e32832e0cdd
Kim,, E., Kang,, H., Lee,, H., Lee,, H. J., Suh,, M. W., Song,, J. J., … Lee,, D. S. (2014). Morphological brain network assessed using graph theory and network filtration in deaf adults. Hearing Research, 315, 88–98. https://doi.org/10.1016/j.heares.2014.06.007
Kim,, J., Choi,, J. Y., Eo,, J., & Park,, H. J. (2017). Comparative evaluation of the white matter fiber integrity in patients with prelingual and postlingual deafness. Neuroreport, 28, 1103–1107. https://doi.org/10.1097/WNR.0000000000000894
Knudsen,, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16, 1412–1425. https://doi.org/10.1162/0898929042304796
Kral,, A. (2013). Auditory critical periods: A review from system`s perspective. Neuroscience, 247, 117–133. https://doi.org/10.1016/j.neuroscience.2013.05.021
Kral,, A., & Eggermont,, J. J. (2007). What`s to lose and what`s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews, 56, 259–269. https://doi.org/10.1016/j.brainresrev.2007.07.021
Kral,, A., Hartmann,, R., Tillein,, J., Heid,, S., & Klinke,, R. (2000). Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer‐specific manner. Cerebral Cortex, 10, 714–726.
Kral,, A., & Tillein,, J. (2006). Brain plasticity under cochlear implant stimulation. Advances in Oto‐Rhino‐Laryngology, 64, 89–108. https://doi.org/10.1159/000094647
Kral,, A., Tillein,, J., Heid,, S., Hartmann,, R., & Klinke,, R. (2005). Postnatal cortical development in congenital auditory deprivation. Cerebral Cortex, 15, 552–562. https://doi.org/10.1093/cercor/bhh156
Kral,, A., Tillein,, J., Heid,, S., Klinke,, R., & Hartmann,, R. (2006). Cochlear implants: Cortical plasticity in congenital deprivation. Progress in Brain Research, 157, 283–313.
Kumar,, U., & Mishra,, M. (2018). Pattern of neural divergence in adults with prelingual deafness: Based on structural brain analysis. Brain Research, 1701, 58–63. https://doi.org/10.1016/j.brainres.2018.07.021
la Fougere,, C., Grant,, S., Kostikov,, A., Schirrmacher,, R., Gravel,, P., Schipper,, H. M., … Thiel,, A. (2011). Where in‐vivo imaging meets cytoarchitectonics: The relationship between cortical thickness and neuronal density measured with high‐resolution [18F]flumazenil‐PET. NeuroImage, 56, 951–960. https://doi.org/10.1016/j.neuroimage.2010.11.015
Lapointe,, A., Viamonte,, C., Morriss,, M. C., & Manolidis,, S. (2006). Central nervous system findings by magnetic resonance in children with profound sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology, 70, 863–868. https://doi.org/10.1016/j.ijporl.2005.09.022
Lawler,, C. A., Wiggins,, I. M., Dewey,, R. S., & Hartley,, D. E. (2015). The use of functional near‐infrared spectroscopy for measuring cortical reorganisation in cochlear implant users: A possible predictor of variable speech outcomes? Cochlear Implants International, 16(Suppl. 1), S30–S32. https://doi.org/10.1179/1467010014Z.000000000230
Lazard,, D. S., Lee,, H. J., Truy,, E., & Giraud,, A. L. (2013). Bilateral reorganization of posterior temporal cortices in post‐lingual deafness and its relation to cochlear implant outcome. Human Brain Mapping, 34, 1208–1219. https://doi.org/10.1002/hbm.21504
Lee,, D. S., Lee,, J. S., Oh,, S. H., Kim,, S. K., Kim,, J. W., Chung,, J. K., … Kim,, C. S. (2001). Cross‐modal plasticity and cochlear implants. Nature, 409, 149–150. https://doi.org/10.1038/35051653
Lee,, S. H., Chang,, Y., Lee,, J. E., & Cho,, J. H. (2004). The values of diffusion tensor imaging and functional MRI in evaluating profound sensorineural hearing loss. Cochlear Implants International, 5(Suppl. 1), 149–152. https://doi.org/10.1179/cim.2004.5.Supplement-1.149
Lepore,, N., Vachon,, P., Lepore,, F., Chou,, Y. Y., Voss,, P., Brun,, C. C., … Thompson,, P. M. (2010). 3D mapping of brain differences in native signing congenitally and prelingually deaf subjects. Human Brain Mapping, 31, 970–978. https://doi.org/10.1002/hbm.20910
Li,, J., Li,, W., Xian,, J., Li,, Y., Liu,, Z., Liu,, S., … He,, H. (2012). Cortical thickness analysis and optimized voxel‐based morphometry in children and adolescents with prelingually profound sensorineural hearing loss. Brain Research, 1430, 35–42. https://doi.org/10.1016/j.brainres.2011.09.057
Li,, M., Ratnanather,, J. T., Miller,, M. I., & Mori,, S. (2014). Knowledge‐based automated reconstruction of human brain white matter tracts using a path‐finding approach with dynamic programming. NeuroImage, 88, 271–281. https://doi.org/10.1016/j.neuroimage.2013.10.011
Li,, W., Li,, J., Wang,, Z., Li,, Y., Liu,, Z., Yan,, F., … He,, H. (2015). Grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. Restorative Neurology and Neuroscience, 33, 279–290. https://doi.org/10.3233/RNN-140437
Li,, W., Li,, J., Xian,, J., Lv,, B., Li,, M., Wang,, C., … Sabel,, B. A. (2013). Alterations of grey matter asymmetries in adolescents with prelingual deafness: A combined VBM and cortical thickness analysis. Restorative Neurology and Neuroscience, 31, 1–17. https://doi.org/10.3233/RNN-2012-120269
Li,, Y., Ding,, G., Booth,, J. R., Huang,, R., Lv,, Y., Zang,, Y., … Peng,, D. (2012). Sensitive period for white‐matter connectivity of superior temporal cortex in deaf people. Human Brain Mapping, 33, 349–359. https://doi.org/10.1002/hbm.21215
Li,, Z., Zhu,, Q., Geng,, Z., Song,, Z., Wang,, L., & Wang,, Y. (2015). Study of functional connectivity in patients with sensorineural hearing loss by using resting‐state fMRI. International Journal of Clinical and Experimental Medicine, 8, 569–578.
Liegeois‐Chauvel,, C., Musolino,, A., Badier,, J. M., Marquis,, P., & Chauvel,, P. (1994). Evoked potentials recorded from the auditory cortex in man: Evaluation and topography of the middle latency components. Electroencephalography and Clinical Neurophysiology, 92, 204–214.
Liem,, F., Hurschler,, M. A., Jancke,, L., & Meyer,, M. (2014). On the planum temporale lateralization in suprasegmental speech perception: Evidence from a study investigating behavior, structure, and function. Human Brain Mapping, 35, 1779–1789. https://doi.org/10.1002/hbm.22291
Liem,, F., Zaehle,, T., Burkhard,, A., Jancke,, L., & Meyer,, M. (2012). Cortical thickness of supratemporal plane predicts auditory N1 amplitude. Neuroreport, 23, 1026–1030. https://doi.org/10.1097/WNR.0b013e32835abc5c
Lin,, F. R., Ferrucci,, L., An,, Y., Goh,, J. O., Doshi,, J., Metter,, E. J., … Resnick,, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. NeuroImage, 90, 84–92. https://doi.org/10.1016/j.neuroimage.2013.12.059
Lin,, Y., Wang,, J., Wu,, C., Wai,, Y., Yu,, J., & Ng,, S. (2008). Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: Changes in radial diffusivity and diffusion anisotropy. Journal of Magnetic Resonance Imaging, 28, 598–603. https://doi.org/10.1002/jmri.21464
Liu,, B., Feng,, Y., Yang,, M., Chen,, J. Y., Li,, J., Huang,, Z. C., & Zhang,, L. L. (2015). Functional connectivity in patients with sensorineural hearing loss using resting‐state MRI. American Journal of Audiology, 24, 145–152. https://doi.org/10.1044/2015_AJA-13-0068
Liu,, Z.‐H., Li,, M., Xian,, J.‐F., He,, H.‐G., Wang,, J.‐C., Li,, Y., … Liu,, S. (2010). Investigation of the white matter with tract based spatial statistics in congenitally deaf patients. Chinese Journal of Medical Imaging Technology, 26, 1226–1229.
Long,, P., Wan,, G., Roberts,, M. T., & Corfas,, G. (2018). Myelin development, plasticity, and pathology in the auditory system. Developmental Neurobiology, 78, 80–92. https://doi.org/10.1002/dneu.22538
Lyness,, R. C., Alvarez,, I., Sereno,, M. I., & MacSweeney,, M. (2014). Microstructural differences in the thalamus and thalamic radiations in the congenitally deaf. NeuroImage, 100, 347–357. https://doi.org/10.1016/j.neuroimage.2014.05.077
Mackeith,, S., Joy,, R., Robinson,, P., & Hajioff,, D. (2012). Pre‐operative imaging for cochlear implantation: Magnetic resonance imaging, computed tomography, or both? Cochlear Implants International, 13, 133–136. https://doi.org/10.1179/1754762811Y.0000000002
Maffei,, C. (2017). Finding the missing connection: Diffusion‐based tractography reconstruction of the acoustic radiation and other applications. (PhD thesis). University of Trento.
Marie,, D., Maingault,, S., Crivello,, F., Mazoyer,, B., & Tzourio‐Mazoyer,, N. (2016). Surface‐based morphometry of cortical thickness and surface area associated with Heschl`s Gyri duplications in 430 healthy volunteers. Frontiers in Human Neuroscience, 10, 69. https://doi.org/10.3389/fnhum.2016.00069
McKay,, C. M., Shah,, A., Seghouane,, A. K., Zhou,, X., Cross,, W., & Litovsky,, R. (2016). Connectivity in language areas of the brain in cochlear implant users as revealed by fNIRS. Advances in Experimental Medicine and Biology, 894, 327–335. https://doi.org/10.1007/978-3-319-25474-6_34
Mehta,, K., Hasnain,, A., Zhou,, X., Luo,, J., Penney,, T. B., & Chen,, N. (2017). Spread spectrum time‐resolved diffuse optical measurement system for enhanced sensitivity in detecting human brain activity. Journal of Biomedical Optics, 22, 45005. https://doi.org/10.1117/1.JBO.22.4.045005
Merzenich,, M. M. (2015). Early UCSF contributions to the development of multiple‐channel cochlear implants. Hearing Research, 322, 39–46. https://doi.org/10.1016/j.heares.2014.12.008
Mesgarani,, N., David,, S. V., Fritz,, J. B., & Shamma,, S. A. (2014). Mechanisms of noise robust representation of speech in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 111, 6792–6797. https://doi.org/10.1073/pnas.1318017111
Meyer,, M., Liem,, F., Hirsiger,, S., Jancke,, L., & Hanggi,, J. (2014). Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory‐related areas of the human cortex. Cerebral Cortex, 24, 2541–2552. https://doi.org/10.1093/cercor/bht094
Meyer,, M., Toepel,, U., Keller,, J., Nussbaumer,, D., Zysset,, S., & Friederici,, A. D. (2007). Neuroplasticity of sign language: Implications from structural and functional brain imaging. Restorative Neurology and Neuroscience, 25, 335–351.
Miao,, W., Li,, J., Tang,, M., Xian,, J., Li,, W., Liu,, Z., … He,, H. (2013). Altered white matter integrity in adolescents with prelingual deafness: A high‐resolution tract‐based spatial statistics imaging study. AJNR. American Journal of Neuroradiology, 34, 1264–1270. https://doi.org/10.3174/ajnr.A3370
Miller,, M. I., Faria,, A. V., Oishi,, K., & Mori,, S. (2013). High‐throughput neuro‐imaging informatics. Frontiers in Neuroinformatics, 7, 31. https://doi.org/10.3389/fninf.2013.00031
Miller,, M. I., Hosakere,, M., Barker,, A. R., Priebe,, C. E., Lee,, N., Ratnanather,, J. T., … Csernansky,, J. G. (2003). Labeled cortical mantle distance maps of the cingulate quantify differences between dementia of the Alzheimer type and healthy aging. Proceedings of the National Academy of Sciences of the United States of America, 100, 15172–15177. https://doi.org/10.1073/pnas.2136624100
Miller,, M. I., Massie,, A. B., Ratnanather,, J. T., Botteron,, K. N., & Csernansky,, J. G. (2000). Bayesian construction of geometrically based cortical thickness metrics. NeuroImage, 12, 676–687. https://doi.org/10.1006/nimg.2000.0666
Miller,, M. I., Younes,, L., & Trouvé,, A. (2014). Diffeomorphometry and geodesic positioning systems for human anatomy. Technology, 2, 36–43. https://doi.org/10.1142/S2339547814500010
Moon,, I. J., Kim,, E. Y., Park,, G. Y., Jang,, M. S., Kim,, J. H., Lee,, J., … Hong,, S. H. (2012). The clinical significance of preoperative brain magnetic resonance imaging in pediatric cochlear implant recipients. Audiology %26 Neuro‐Otology, 17, 373–380. https://doi.org/10.1159/000341818
Moore,, J. K. (2002). Maturation of human auditory cortex: Implications for speech perception. The Annals of Otology, Rhinology, and Laryngology, 111(Suppl. 189), 7–10.
Moore,, J. K., & Guan,, Y. L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2, 297–311.
Moore,, J. K., & Linthicum,, F. H., Jr. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46, 460–478. https://doi.org/10.1080/14992020701383019
Mori,, S., Oishi,, K., Faria,, A. V., & Miller,, M. I. (2013). Atlas‐based neuroinformatics via MRI: Harnessing information from past clinical cases and quantitative image analysis for patient care. Annual Review of Biomedical Engineering, 15, 71–92. https://doi.org/10.1146/annurev-bioeng-071812-152335
Mori,, S., Wakana,, S., & Van Zijl,, P. C. M. (2004). MRI atlas of human white matter. Amsterdam, The Netherlands/San Diego, CA: Elsevier.
Muniak,, M. A., Connelly,, C. J., Tirko,, N. N., O`Neil,, J. N., & Ryugo,, D. K. (2013). Synaptic organization and plasticity in the auditory system of the deaf white cat. In A. Kral,, et al. (Eds.), Deafness (Vol. 47, pp. 83–128). New York: Springer.
Nath,, K., Syal,, R., Haris,, M., Goyal,, A., Purwar,, A., Rathore,, D. K., … Gupta,, R. K. (2007). Diffusion tensor imaging of auditory neural pathway in patients with sensori‐neural hearing loss. Proceedings of the International Society for Magnetic Resonance in Medicine, 15, 3513.
Niparko,, J. K. (2013). The significance of cochlear implant history. JAMA Otolaryngology. Head %26 Neck Surgery, 139, 454. https://doi.org/10.1001/jamaoto.2013.304
Nourski,, K. V., & Howard,, M. A., 3rd. (2015). Invasive recordings in the human auditory cortex. Handbook of Clinical Neurology, 129, 225–244. https://doi.org/10.1016/B978-0-444-62630-1.00013-5
Oishi,, K., Faria,, A., Jiang,, H., Li,, X., Akhter,, K., Zhang,, J., … Mori,, S. (2009). Atlas‐based whole brain white matter analysis using large deformation diffeomorphic metric mapping: Application to normal elderly and Alzheimer`s disease participants. NeuroImage, 46, 486–499.
Olulade,, O. A., Koo,, D. S., LaSasso,, C. J., & Eden,, G. F. (2014). Neuroanatomical profiles of deafness in the context of native language experience. The Journal of Neuroscience, 34, 5613–5620. https://doi.org/10.1523/JNEUROSCI.3700-13.2014
O`Neil,, J. N., Connelly,, C. J., Limb,, C. J., & Ryugo,, D. K. (2011). Synaptic morphology and the influence of auditory experience. Hearing Research, 279, 118–130. https://doi.org/10.1016/j.heares.2011.01.019
Palmer,, A. R., Bullock,, D. C., & Chambers,, J. D. (1998). A high‐output, high‐quality sound system for use in auditory fMRI. NeuroImage, 7, S357.
Panizzon,, M. S., Fennema‐Notestine,, C., Eyler,, L. T., Jernigan,, T. L., Prom‐Wormley,, E., Neale,, M., … Kremen,, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19, 2728–2735. https://doi.org/10.1093/cercor/bhp026
Park,, K. H., Chung,, W. H., Kwon,, H., & Lee,, J. M. (2018). Evaluation of cerebral white matter in prelingually deaf children using diffusion tensor imaging. BioMed Research International, 2018, 1–7. https://doi.org/10.1155/2018/6795397
Patel,, A. M., Cahill,, L. D., Ret,, J., Schmithorst,, V., Choo,, D., & Holland,, S. (2007). Functional magnetic resonance imaging of hearing‐impaired children under sedation before cochlear implantation. Archives of Otolaryngology – Head %26 Neck Surgery, 133, 677–683. https://doi.org/10.1001/archotol.133.7.677
Peelle,, J. E., Troiani,, V., Grossman,, M., & Wingfield,, A. (2011). Hearing loss in older adults affects neural systems supporting speech comprehension. The Journal of Neuroscience, 31, 12638–12643. https://doi.org/10.1523/JNEUROSCI.2559-11.2011
Penhune,, V. B., Cismaru,, R., Dorsaint‐Pierre,, R., Petitto,, L. A., & Zatorre,, R. J. (2003). The morphometry of auditory cortex in the congenitally deaf measured using MRI. NeuroImage, 20, 1215–1225. https://doi.org/10.1016/S1053-8119(03)00373-2
Penicaud,, S., Klein,, D., Zatorre,, R. J., Chen,, J. K., Witcher,, P., Hyde,, K., & Mayberry,, R. I. (2013). Structural brain changes linked to delayed first language acquisition in congenitally deaf individuals. NeuroImage, 66, 42–49. https://doi.org/10.1016/j.neuroimage.2012.09.076
Pereira‐Jorge,, M. R., Andrade,, K. C., Palhano‐Fontes,, F. X., Diniz,, P. R. B., Sturzbecher,, M., Santos,, A. C., & Araujo,, D. B. (2018). Anatomical and functional MRI changes after one year of auditory rehabilitation with hearing aids. Neural Plasticity, 2018, 1–13. https://doi.org/10.1155/2018/9303674
Petersen,, B., Gjedde,, A., Wallentin,, M., & Vuust,, P. (2013). Cortical plasticity after cochlear implantation. Neural Plasticity, 2013, 1–11. https://doi.org/10.1155/2013/318521
Pollonini,, L., Olds,, C., Abaya,, H., Bortfeld,, H., Beauchamp,, M. S., & Oghalai,, J. S. (2014). Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near‐infrared spectroscopy. Hearing Research, 309, 84–93. https://doi.org/10.1016/j.heares.2013.11.007
Ponton,, C. W., Don,, M., Eggermont,, J. J., Waring,, M. D., Kwong,, B., & Masuda,, A. (1996). Auditory system plasticity in children after long periods of complete deafness. Neuroreport, 8, 61–65.
Proctor,, R. D., Gawne‐Cain,, M. L., Eyles,, J., Mitchell,, T. E., & Batty,, V. B. (2013). MRI during cochlear implant assessment: Should we image the whole brain? Cochlear Implants International, 14, 2–6. https://doi.org/10.1179/1754762811Y.0000000029
Pundir,, A. S., Hameed,, L. S., Dikshit,, P. C., Kumar,, P., Mohan,, S., Radotra,, B., … Iyengar,, S. (2012). Expression of medium and heavy chain neurofilaments in the developing human auditory cortex. Brain Structure %26 Function, 217, 303–321. https://doi.org/10.1007/s00429-011-0352-7
Qi,, R., Su,, L., Zou,, L., Yang,, J., & Zheng,, S. (2019). Altered gray matter volume and white matter integrity in sensorineural hearing loss patients: A VBM and TBSS study. Otology %26 Neurotology, 40, e569–e574. https://doi.org/10.1097/MAO.0000000000002273
Rachakonda,, T., Shimony,, J. S., Coalson,, R. S., & Lieu,, J. E. (2014). Diffusion tensor imaging in children with unilateral hearing loss: A pilot study. Frontiers in Systems Neuroscience, 8, 87. https://doi.org/10.3389/fnsys.2014.00087
Raggio,, M. W., & Schreiner,, C. E. (1994). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency. Journal of Neurophysiology, 72, 2334–2359.
Raggio,, M. W., & Schreiner,, C. E. (1999). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short‐ and long‐term deafness. Journal of Neurophysiology, 82, 3506–3526.
Raggio,, M. W., & Schreiner,, C. E. (2003). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation: IV. Activation pattern for sinusoidal stimulation. Journal of Neurophysiology, 89, 3190–3204. https://doi.org/10.1152/jn.00341.2002
Rakic,, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–176.
Rakic,, P. (1995). A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neurosciences, 18, 383–388.
Ramos‐Miguel,, A., Perez‐Zaballos,, T., Perez,, D., Falconb,, J. C., & Ramosb,, A. (2014). Use of data mining to predict significant factors and benefits of bilateral cochlear implantation. European Archives of Oto‐Rhino‐Laryngology, 272, 3157–3162. https://doi.org/10.1007/s00405-014-3337-3
Ratnanather,, J. T., Arguillère,, S., Kutten,, K. S., Hubka,, P., Kral,, A., & Younes,, L. (2019). 3D normal coordinate systems for cortical areas. In S. Kushnarev,, et al. (Eds.), Mathematics of shapes and applications (Vol. 37, pp. 167–179). Singapore: World Scientific.
Ratnanather,, J. T., Cebron,, S., Ceyhan,, E., Postell,, E., Pisano,, D. V., Poynton,, C. B., … Barta,, P. E. (2014). Morphometric differences in planum temporale in schizophrenia and bipolar disorder revealed by statistical analysis of labeled cortical depth maps. Frontiers in Psychiatry, 5, 94. https://doi.org/10.3389/fpsyt.2014.00094
Ratnanather,, J. T., Lal,, R. M., An,, M., Poynton,, C. B., Li,, M., Jiang,, H., … Miller,, M. I. (2013). Cortico‐cortical, cortico‐striatal, and cortico‐thalamic white matter fiber tracts generated in the macaque brain via dynamic programming. Brain Connectivity, 3, 475–490. https://doi.org/10.1089/brain.2013.0143
Ratnanather,, J. T., Liu,, C.‐F., & Miller,, M. I. (2020). Shape diffeomorphometry of brain structures in degeneration and development diseases. In N. Thakor, (Ed.), Handbook of neuroengineering. New York: Springer.
Ratnanather,, J. T., Poynton,, C. B., Pisano,, D. V., Crocker,, B., Postell,, E., Cebron,, S., … Barta,, P. E. (2013). Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder. Schizophrenia Research, 150, 476–483. https://doi.org/10.1016/j.schres.2013.08.014
Reiman,, M., Parkkola,, R., Johansson,, R., Jaaskelainen,, S. K., Kujari,, H., Lehtonen,, L., … PIPARI Study Group. (2009). Diffusion tensor imaging of the inferior colliculus and brainstem auditory‐evoked potentials in preterm infants. Pediatric Radiology, 39, 804–809. https://doi.org/10.1007/s00247-009-1278-6
Roche,, J. P., Huang,, B. Y., Castillo,, M., Bassim,, M. K., Adunka,, O. F., & Buchman,, C. A. (2010). Imaging characteristics of children with auditory neuropathy spectrum disorder. Otology %26 Neurotology, 31, 780–788.
Roland,, P. S., & Tobey,, E. (2013). A tribute to a remarkably sound solution. Cell, 154, 1175–1177. https://doi.org/10.1016/j.cell.2013.08.047
Ryugo,, D. K., & Limb,, C. J. (2009). Brain plasticity: The impact of the environment on the brain as it relates to hearing and deafness. In J. K. Niparko, (Ed.), Cochlear implants: Principles and practices (pp. 19–37). Philadelphia, PA: Lippincott, Williams %26 Wilkins.
Ryugo,, D. K., & Menotti‐Raymond,, M. (2012). Feline deafness. The Veterinary Clinics of North America. Small Animal Practice, 42, 1179–1207. https://doi.org/10.1016/j.cvsm.2012.08.008
Saada,, A. A., Niparko,, J. K., & Ryugo,, D. K. (1996). Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Research, 736, 315–328.
Sanes,, D. H., & Kotak,, V. C. (2011). Developmental plasticity of auditory cortical inhibitory synapses. Hearing Research, 279, 140–148. https://doi.org/10.1016/j.heares.2011.03.015
Schmithorst,, V. J., Holland,, S. K., Ret,, J., Duggins,, A., Arjmand,, E., & Greinwald,, J. (2005). Cortical reorganization in children with unilateral sensorineural hearing loss. Neuroreport, 16, 463–467.
Schreiner,, C. E., & Raggio,, M. W. (1996). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding. Journal of Neurophysiology, 75, 1283–1300.
Schwartz,, S. R., & Chen,, B. S. (2014). The role of preoperative imaging for cochlear implantation in postlingually deafened adults. Otology %26 Neurotology, 35, 1536–1540. https://doi.org/10.1097/MAO.0000000000000499
Selemon,, L. D. (2013). A role for synaptic plasticity in the adolescent development of executive function. Translational Psychiatry, 3, e238. https://doi.org/10.1038/tp.2013.7
Sevy,, A. B., Bortfeld,, H., Huppert,, T. J., Beauchamp,, M. S., Tonini,, R. E., & Oghalai,, J. S. (2010). Neuroimaging with near‐infrared spectroscopy demonstrates speech‐evoked activity in the auditory cortex of deaf children following cochlear implantation. Hearing Research, 270, 39–47. https://doi.org/10.1016/j.heares.2010.09.010
Sharma,, A., Campbell,, J., & Cardon,, G. (2015). Developmental and cross‐modal plasticity in deafness: Evidence from the P1 and N1 event related potentials in cochlear implanted children. International Journal of Psychophysiology, 95, 135–144. https://doi.org/10.1016/j.ijpsycho.2014.04.007
Sharma,, A., Dorman,, M. F., & Spahr,, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear and Hearing, 23, 532–539. https://doi.org/10.1097/01.AUD.0000042223.62381.01
Sharma,, A., Glick,, H., Campbell,, J., Torres,, J., Dorman,, M., & Zeitler,, D. M. (2016). Cortical plasticity and reorganization in pediatric single‐sided deafness pre‐ and postcochlear implantation: A case study. Otology %26 Neurotology, 37, e26–e34. https://doi.org/10.1097/MAO.0000000000000904
Shibata,, D. K. (2007). Differences in brain structure in deaf persons on MR imaging studied with voxel‐based morphometry. AJNR. American Journal of Neuroradiology, 28, 243–249.
Shiell,, M. M., Champoux,, F., & Zatorre,, R. J. (2015). Reorganization of auditory cortex in early‐deaf people: Functional connectivity and relationship to hearing aid use. Journal of Cognitive Neuroscience, 27, 150–163. https://doi.org/10.1162/jocn_a_00683
Shiell,, M. M., Champoux,, F., & Zatorre,, R. J. (2016). The right hemisphere planum temporale supports enhanced visual motion detection ability in deaf people: Evidence from cortical thickness. Neural Plasticity, 2016, 1–9. https://doi.org/10.1155/2016/7217630
Shiohama,, T., McDavid,, J., Levman,, J., & Takahashi,, E. (2019). The left lateral occipital cortex exhibits decreased thickness in children with sensorineural hearing loss. International Journal of Developmental Neuroscience, 76, 34–40. https://doi.org/10.1016/j.ijdevneu.2019.05.009
Skarzynski,, P. H., Wolak,, T., Skarzynski,, H., Lorens,, A., Sliwa,, L., Rusiniak,, M., … Olszewski,, L. (2013). Application of the functional magnetic resonance imaging (fMRI) for the assessment of the primary auditory cortex function in partial deafness patients—A preliminary study. Journal of International Advanced Otology, 9, 153–160.
Smith,, K. M., Mecoli,, M. D., Altaye,, M., Komlos,, M., Maitra,, R., Eaton,, K. P., … Holland,, S. K. (2011). Morphometric differences in the Heschl`s gyrus of hearing impaired and normal hearing infants. Cerebral Cortex, 21, 991–998. https://doi.org/10.1093/cercor/bhq164
Smith,, R. J. H., Shearer,, A. E., Hildebrand,, M. S., & Van Camp,, G. (1993). Deafness and hereditary hearing loss overview. In R. A. Pagon,, et al. (Eds.), GeneReviews®. Seattle, WA: University of Washington.
Smittenaar,, C. R., MacSweeney,, M., Sereno,, M. I., & Schwarzkopf,, D. S. (2016). Does congenital deafness affect the structural and functional architecture of primary visual cortex? Open Neuroimaging Journal, 10, 1–19. https://doi.org/10.2174/1874440001610010001
Steinschneider,, M., Nourski,, K. V., & Fishman,, Y. I. (2013). Representation of speech in human auditory cortex: Is it special? Hearing Research, 305, 57–73. https://doi.org/10.1016/j.heares.2013.05.013
Strelnikov,, K., Marx,, M., Lagleyre,, S., Fraysse,, B., Deguine,, O., & Barone,, P. (2014). PET‐imaging of brain plasticity after cochlear implantation. Hearing Research, 322, 180–187. https://doi.org/10.1016/j.heares.2014.10.001
Sweeney,, A. D., Carlson,, M. L., Rivas,, A., Bennett,, M. L., Haynes,, D. S., & Wanna,, G. B. (2014). The limitations of computed tomography in adult cochlear implant evaluation. American Journal of Otolaryngology, 35, 396–399. https://doi.org/10.1016/j.amjoto.2014.03.002
Tae,, W.‐S. (2015). Reduced gray matter volume of auditory cortical and subcortical areas in congenitally deaf adolescents: A voxel‐based morphometric study. Investigative Magnetic Resonance Imaging, 19, 1–9.
Takesian,, A. E., Kotak,, V. C., Sharma,, N., & Sanes,, D. H. (2013). Hearing loss differentially affects thalamic drive to two cortical interneuron subtypes. Journal of Neurophysiology, 110, 999–1008. https://doi.org/10.1152/jn.00182.2013
Tan,, L., Chen,, Y., Maloney,, T. C., Care,, M. M., Holland,, S. K., & Lu,, L. J. (2013). Combined analysis of sMRI and fMRI imaging data provides accurate disease markers for hearing impairment. NeuroImage, 3, 416–428. https://doi.org/10.1016/j.nicl.2013.09.008
Tarabichi,, O., Kozin,, E. D., Kanumuri,, V. V., Barber,, S., Ghosh,, S., Sitek,, K. R., … Lee,, D. J. (2018). Diffusion tensor imaging of central auditory pathways in patients with sensorineural hearing loss: A systematic review. Otolaryngology and Head and Neck Surgery, 158, 432–442. https://doi.org/10.1177/0194599817739838
Teschner,, M., Polite,, C., Lenarz,, T., & Lustig,, L. (2013). Cochlear implantation in different health‐care systems: Disparities between Germany and the United States. Otology %26 Neurotology, 34, 66–74. https://doi.org/10.1097/MAO.0b013e318278bf58
Thompson,, P. M., Stein,, J. L., Medland,, S. E., Hibar,, D. P., Vasquez,, A. A., Renteria,, M. E., … Saguenay Youth Study (SYS) Group. (2014). The ENIGMA Consortium: Large‐scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8, 153–182. https://doi.org/10.1007/s11682-013-9269-5
Trimble,, K., Blaser,, S., James,, A. L., & Papsin,, B. C. (2007). Computed tomography and/or magnetic resonance imaging before pediatric cochlear implantation? Developing an investigative strategy. Otology %26 Neurotology, 28, 317–324. https://doi.org/10.1097/01.mao.0000253285.40995.91
Tromp,, D. (2016). DTI Scalars (FA, MD, AD, RD)—How do they relate to brain structure? The Winnower, 6, e146119.94778. https://doi.org/10.15200/winn.146119.94778
Vaden,, K. I., Jr., Kuchinsky,, S. E., Ahlstrom,, J. B., Dubno,, J. R., & Eckert,, M. A. (2015). Cortical activity predicts which older adults recognize speech in noise and when. The Journal of Neuroscience, 35, 3929–3937. https://doi.org/10.1523/JNEUROSCI.2908-14.2015
Van Essen,, D. C. (1997). A tension‐based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385, 313–318. https://doi.org/10.1038/385313a0
Wagstyl,, K., & Lerch,, J. P. (2018). Cortical thickness. In G. Spalletta,, et al. (Eds.), Brain morphometry (pp. 35–49). New York, NY: Springer.
Wang,, H., Liang,, Y., Fan,, W., Zhou,, X., Huang,, M., Shi,, G., … Shen,, G. (2019). DTI study on rehabilitation of the congenital deafness auditory pathway and speech center by cochlear implantation. European Archives of Oto‐Rhino‐Laryngology, 276, 2411–2417. https://doi.org/10.1007/s00405-019-05477-7
Wang,, S., Chen,, B., Yu,, Y., Yang,, H., Cui,, W., Li,, J., & Fan,, G. G. (2019). Alterations of structural and functional connectivity in profound sensorineural hearing loss infants within an early sensitive period: A combined DTI and fMRI study. Developmental Cognitive Neuroscience, 38, 100654. https://doi.org/10.1016/j.dcn.2019.100654
Wang,, S., Li,, Y.‐H., Zhou,, Y., Yu,, C.‐S., Xu,, C.‐L., Qin,, W., … Jiang,, T.‐Z. (2009). Diffusion tensor imaging observation of brain white matter in congenitally deaf. Chinese Journal of Medical Imaging Technology, 25, 585–587.
Williams,, C. (2013). Hearing restoration: Graeme Clark, Ingeborg Hochmair, and Blake Wilson receive the 2013 Lasker–DeBakey Clinical Medical Research Award. The Journal of Clinical Investigation, 123, 4102–4106. https://doi.org/10.1172/JCI72707
Willis,, H. (2018). The feasibility of the dual‐task paradigm as a framework for a clinical test of listening effort in cochlear implant users. (PhD thesis). University College London.
Wilson,, B. S. (2014). Getting a decent (but sparse) signal to the brain for users of cochlear implants. Hearing Research, 322, 24–38. https://doi.org/10.1016/j.heares.2014.11.009
Winkler,, A. M., Kochunov,, P., Blangero,, J., Almasy,, L., Zilles,, K., Fox,, P. T., … Glahn,, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53, 1135–1146. https://doi.org/10.1016/j.neuroimage.2009.12.028
World Health Organization. (2013). Millions of people in the world have hearing loss that can be treated or prevented.
Wu,, C. M., Ng,, S. H., & Liu,, T. C. (2009). Diffusion tensor imaging of the subcortical auditory tract in subjects with long‐term unilateral sensorineural hearing loss. Audiology %26 Neuro‐Otology, 14, 248–253. https://doi.org/10.1159/000191282
Wu,, C. X., Huang,, L. X., Tan,, H., Wang,, Y. T., Zheng,, H. Y., Kong,, L. M., & Zheng,, W. B. (2014). Diffusion tensor imaging and MR spectroscopy of microstructural alterations and metabolite concentration changes in the auditory neural pathway of pediatric congenital sensorineural hearing loss patients. Brain Research, 1639, 228–234. https://doi.org/10.1016/j.brainres.2014.12.025
Xia,, S., & Qi,, J. (2008). The study of diffusion weighted imaging and MR spectroscopy in auditory cortex and related area of prelingual hearing‐loss patients. Chinese Journal of Radiology, 42, 702–705.
Xia,, S., Qi,, J., & Li,, Q. (2008). High‐resolution MR study of auditory cortex in prelingual sensorineural hearing loss. Chinese Journal of Medical Imaging Technology, 24, 1705–1707.
Xiong,, X., Zhu,, L. N., Dong,, X. X., Wang,, W., Yan,, J., & Chen,, A. G. (2018). Aerobic exercise intervention alters executive function and white matter integrity in deaf children: A randomized controlled study. Neural Plasticity, 2018, 1–8. https://doi.org/10.1155/2018/3735208
Xu,, X. M., Jiao,, Y., Tang,, T. Y., Zhang,, J., Lu,, C. Q., Salvi,, R., & Teng,, G. J. (2019b). Sensorineural hearing loss and cognitive impairments: Contributions of thalamus using multiparametric MRI. Journal of Magnetic Resonance Imaging, 50, 787–797. https://doi.org/10.1002/jmri.26665
Xu,, X. M., Jiao,, Y., Tang,, T. Y., Zhang,, J., Salvi,, R., & Teng,, G. J. (2019a). Inefficient involvement of insula in sensorineural hearing loss. Frontiers in Neuroscience, 13, 133. https://doi.org/10.3389/fnins.2019.00133
Xu,, X.‐Q., Wu,, F.‐Y., Hu,, H., Su,, G.‐Y., & Shen,, J. (2015). Incidence of brain abnormalities detected on preoperative brain MR imaging and their effect on the outcome of cochlear implantation in children with sensorineural hearing loss. International Journal of Biomedical Imaging, 2015, 6–6. https://doi.org/10.1155/2015/275786
Yang,, M., Chen,, H. J., Liu,, B., Huang,, Z. C., Feng,, Y., Li,, J., … Teng,, G. J. (2014). Brain structural and functional alterations in patients with unilateral hearing loss. Hearing Research, 316, 37–43. https://doi.org/10.1016/j.heares.2014.07.006
Younes,, L., Kutten,, K. S., & Ratnanather,, J. T. (In press). Normal and equivolumetric coordinate systems for cortical areas. In M., Breuβ, A. M., Bruckstein, C. O., Kiselman, & P., Maragos (Eds.), Shape Analysis: Euclidean, discrete and algebraic geometric methods. New York, NY: Springer. Available from https://arxiv.org/pdf/1911.07999.pdf
Young,, J. Y., Ryan,, M. E., & Young,, N. M. (2014). Preoperative imaging of sensorineural hearing loss in pediatric candidates for cochlear implantation. Radiographics, 34, E133–E149. https://doi.org/10.1148/rg.345130083
Yushkevich,, P. A., Zhang,, H., Simon,, T. J., & Gee,, J. C. (2008). Structure‐specific statistical mapping of white matter tracts. NeuroImage, 41, 448–461. https://doi.org/10.1016/j.neuroimage.2008.01.013
Zeng,, F. G., & Canlon,, B. (2015). Recognizing the journey and celebrating the achievement of cochlear implants. Hearing Research, 322, 1–3. https://doi.org/10.1016/j.heares.2015.02.003
Zhang,, G. Y., Yang,, M., Liu,, B., Huang,, Z. C., Chen,, H., Zhang,, P. P., … Teng,, G. J. (2015). Changes in the default mode networks of individuals with long‐term unilateral sensorineural hearing loss. Neuroscience, 285, 333–342. https://doi.org/10.1016/j.neuroscience.2014.11.034
Zhou,, X., Seghouane,, A. K., Shah,, A., Innes‐Brown,, H., Cross,, W., Litovsky,, R., & McKay,, C. M. (2018). Cortical speech processing in postlingually deaf adult cochlear implant users, as revealed by functional near‐infrared spectroscopy. Trends in Hearing, 22, 2331216518786850. https://doi.org/10.1177/2331216518786850
Zoellner,, S., Benner,, J., Zeidler,, B., Seither‐Preisler,, A., Christiner,, M., Seitz,, A., … Schneider,, P. (2019). Reduced cortical thickness in Heschl`s gyrus as an in vivo marker for human primary auditory cortex. Human Brain Mapping, 40, 1139–1154. https://doi.org/10.1002/hbm.24434
Zou,, Y., Yang,, Y., Fan,, W., Yu,, Q., Wang,, M., Han,, P., & Ma,, H. (2018). Microstructural alterations in the brains of adults with prelingual sensorineural hearing loss: A diffusion kurtosis imaging study. Otology %26 Neurotology, 39, e936–e943. https://doi.org/10.1097/MAO.0000000000002000