Al‐Khatib,, S. M., Stevenson,, W. G., Ackerman,, M. J., Bryant,, W. J., Callans,, D. J., Curtis,, A. B., … Page,, R. L. (2018). 2017 AHA/ACC/HRS Guideline for Management of Patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation, 138, e272–e391. https://doi.org/10.1161/CIR.0000000000000549
Andreu,, D., Penela,, D., Acosta,, J., Fernández‐Armenta,, J., Perea,, R. J., Soto‐Iglesias,, D., … Berruezo,, A. (2017). Cardiac magnetic resonance‐aided scar dechanneling: Influence on acute and long‐term outcomes. Heart Rhythm, 14(8), 1121–1128. https://doi.org/10.1016/j.hrthm.2017.05.018
Anter,, E., & Josephson,, M. E. (2016). Bipolar voltage amplitude: What does it really mean? Heart Rhythm, 13(1), 326–327. https://doi.org/10.1016/j.hrthm.2015.09.033
Arevalo,, H., Plank,, G., Helm,, P., Halperin,, H., & Trayanova,, N. (2013). Tachycardia in post‐infarction hearts: Insights from 3D image‐based ventricular models. PLoS One, 8(7), e68872. https://doi.org/10.1371/journal.pone.0068872
Arevalo,, H., Vadakkumpadan,, F., Guallar,, E., Jebb,, A., Malamas,, P., Wu,, K. C., & Trayanova,, N. A. (2016). Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nature Communications, 7(1), 11437. https://doi.org/10.1038/ncomms11437
Ashikaga,, H., Arevalo,, H., Vadakkumpadan,, F., Blake,, R. C., Bayer,, J. D., Nazarian,, S., … Halperin,, H. R. (2013). Feasibility of image‐based simulation to estimate ablation target in human ventricular arrhythmia. Heart Rhythm, 10(8), 1109–1116. https://doi.org/10.1016/j.hrthm.2013.04.015
Aziz,, Z., Shatz,, D., Raiman,, M., Upadhyay,, G. A., Beaser,, A., Besser,, S. A., … Tung,, R. (2019). Targeted ablation of ventricular tachycardia guided by wavefront discontinuities during sinus rhythm: A new functional substrate mapping strategy. Circulation, 140, 1383–1397. https://doi.org/10.1161/CIRCULATIONAHA.119.042423
Bai,, W., Sinclair,, M., Tarroni,, G., Oktay,, O., Rajchl,, M., Vaillant,, G., … Rueckert,, D. (2018). Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of Cardiovascular Magnetic Resonance, 20(1), 65. https://doi.org/10.1186/s12968-018-0471-x
Barr,, R. C., Ramsey,, M., & Spach,, M. S. (1977). Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Transactions on Biomedical Engineering, BME‐24(1), 1–11 10.1109/TBME.1977.326201.
Bayer,, J. D., Blake,, R. C., Plank,, G., & Trayanova,, N. A. (2012). A novel rule‐based algorithm for assigning myocardial fiber orientation to computational heart models. Annals of Biomedical Engineering, 40(10), 2243–2254. https://doi.org/10.1007/s10439-012-0593-5
Bayer,, J. D., Lalani,, G. G., Vigmond,, E. J., Narayan,, S. M., & Trayanova,, N. A. (2016). Mechanisms linking electrical alternans and clinical ventricular arrhythmia in human heart failure. Heart Rhythm, 13, 1922–1931. 10.1016/j.hrthm.2016.05.017.
Berruezo,, A., Fernández‐Armenta,, J., Andreu,, D., Penela,, D., Herczku,, C., Evertz,, R., … Mont,, L. (2015). Scar dechanneling. Circulation. Arrhythmia and Electrophysiology, 8(2), 326–336. https://doi.org/10.1161/CIRCEP.114.002386
Bettencourt,, N., Ferreira,, N. D., Leite,, D., Carvalho,, M., Ferreira,, W. D. S., Schuster,, A., … Gama,, V. (2013). CAD detection in patients with intermediate‐high pre‐test probability: Low‐dose ct delayed enhancement detects ischemic myocardial scar with moderate accuracy but does not improve performance of a stress‐rest ct perfusion protocol. JACC: Cardiovascular Imaging, 6(10), 1062–1071. https://doi.org/10.1016/j.jcmg.2013.04.013
Bogun,, F. M., Desjardins,, B., Good,, E., Gupta,, S., Crawford,, T., Oral,, H., … Morady,, F. (2009). Delayed‐enhanced magnetic resonance imaging in nonischemic cardiomyopathy: Utility for identifying the ventricular arrhythmia substrate. Journal of the American College of Cardiology, 53(13), 1138–1145. https://doi.org/10.1016/j.jacc.2008.11.052
Boyle,, P. M., Williams,, J. C., Ambrosi,, C. M., Entcheva,, E., & Trayanova,, N. A. (2013). A comprehensive multiscale framework for simulating optogenetics in the heart. Nature Communications, 4, 1–9. https://doi.org/10.1038/ncomms3370
Boyle,, P. M., Zghaib,, T., Zahid,, S., Ali,, R. L., Deng,, D., Franceschi,, W. H., … Trayanova,, N. A. (2019). Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nature Biomedical Engineering, 3, 870–879.
Bratis,, K., Henningsson,, M., Grigoratos,, C., Dell`Omodarme,, M., Chasapides,, K., Botnar,, R., & Nagel,, E. (2017). Image‐navigated 3‐dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: Feasibility and initial clinical results. Journal of Cardiovascular Magnetic Resonance, 19(1), 1–9. https://doi.org/10.1186/s12968-017-0418-7
Bruegmann,, T., Boyle,, P. M., Vogt,, C. C., Karathanos,, T. V., Arevalo,, H. J., Fleischmann,, B. K., … Sasse,, P. (2016). Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. The Journal of Clinical Investigation, 126(10), 3894–3904. https://doi.org/10.1172/JCI88950
Buxton,, A. E. (2014). Programmed ventricular stimulation: Not dead. Circulation, 129(8), 831–833. https://doi.org/10.1161/CIRCULATIONAHA.113.007747
Cabo,, C., & Boyden,, P. A. (2003). Electrical remodeling of the epicardial border zone in the canine infarcted heart: A computational analysis. American Journal of Physiology. Heart and Circulatory Physiology, 284(1), H372–H384. https://doi.org/10.1152/ajpheart.00512.2002
Cakulev,, I., Sahadevan,, J., Arruda,, M., Goldstein,, R. N., Hong,, M., Intini,, A., … Waldo,, A. L. (2013). Confirmation of novel noninvasive high‐density electrocardiographic mapping with electrophysiology study: Implications for therapy. Circulation. Arrhythmia and Electrophysiology, 6(1), 68–75. https://doi.org/10.1161/CIRCEP.112.975813
Campos,, F. O., Whitaker,, J., Neji,, R., Roujol,, S., O`Neill,, M., Plank,, G., & Bishop,, M. J. (2019). Factors promoting conduction slowing as substrates for block and reentry in infarcted hearts. Biophysical Journal, 117, 2361–2374. https://doi.org/10.1016/j.bpj.2019.08.008
Cartoski,, M. J., Nikolov,, P. P., Prakosa,, A., Boyle,, P. M., Spevak,, P. J., & Trayanova,, N. A. (2019). Computational identification of ventricular arrhythmia risk in pediatric myocarditis. Pediatric Cardiology, 40(4), 857–864. https://doi.org/10.1007/s00246-019-02082-7
Cheng,, A., Dalal,, D., Butcher,, B., Norgard,, S., Zhang,, Y., Dickfeld,, T., … Tomaselli,, G. F. (2013). Prospective observational study of implantable cardioverter‐defibrillators in primary prevention of sudden cardiac death: Study design and cohort description. Journal of the American Heart Association, 2(1), e000083. https://doi.org/10.1161/JAHA.112.000083
Cheniti,, G., Puyo,, S., Martin,, C. A., Frontera,, A., Vlachos,, K., Takigawa,, M., … Haissaguerre,, M. (2019). Noninvasive mapping and electrocardiographic imaging in atrial and ventricular arrhythmias (CardioInsight). Cardiac Electrophysiology Clinics, 11(3), 459–471. https://doi.org/10.1016/j.ccep.2019.05.004
Clancy,, C. E., & Rudy,, Y. (2002). Na+ channel mutation that causes both Brugada and Long‐QT syndrome phenotypes. Circulation, 105(10), 1208–1213. https://doi.org/10.1161/hc1002.105183
Costa,, C. M., Plank,, G., Rinaldi,, C. A., Niederer,, S. A., & Bishop,, M. J. (2018). Modeling the electrophysiological properties of the infarct border zone. Frontiers in Physiology, 9, 356. https://doi.org/10.3389/fphys.2018.00356
Cuculich,, P. S., Schill,, M. R., Kashani,, R., Mutic,, S., Lang,, A., Cooper,, D., … Robinson,, C. G. (2017). Noninvasive cardiac radiation for ablation of ventricular tachycardia. New England Journal of Medicine, 377(24), 2325–2336. https://doi.org/10.1056/NEJMoa1613773
de Bakker,, J. M., van Capelle,, F. J., Janse,, M. J., Wilde,, A. A., Coronel,, R., Becker,, A. E., … Hauer,, R. N. (1988). Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: Electrophysiologic and anatomic correlation. Circulation, 77(3), 589–606. https://doi.org/10.1161/01.CIR.77.3.589
Decker,, K. F., & Rudy,, Y. (2010). Ionic mechanisms of electrophysiological heterogeneity and conduction block in the infarct border zone. American Journal of Physiology. Heart and Circulatory Physiology, 299(5), H1588–H1597. https://doi.org/10.1152/ajpheart.00362.2010
Deng,, D., Arevalo,, H., Pashakhanloo,, F., Prakosa,, A., Ashikaga,, H., McVeigh,, E., … Trayanova,, N. (2015). Accuracy of prediction of infarct‐related arrhythmic circuits from image‐based models reconstructed from low and high resolution MRI. Frontiers in Physiology, 6, 282. https://doi.org/10.3389/fphys.2015.00282
Deng,, D., Prakosa,, A., Shade,, J., Nikolov,, P., & Trayanova,, N. A. (2019a). Characterizing conduction channels in postinfarction patients using a personalized virtual heart. Biophysical Journal, 117, 2287–2294. https://doi.org/10.1016/j.bpj.2019.07.024
Deng,, D., Prakosa,, A., Shade,, J., Nikolov,, P., & Trayanova,, N. A. (2019b). Sensitivity of ablation targets prediction to electrophysiological parameter variability in image‐based computational models of ventricular tachycardia in post‐infarction patients. Frontiers in Physiology, 10, 628. https://doi.org/10.3389/fphys.2019.00628
Dhamala,, J., Arevalo,, H. J., Sapp,, J., Horácek,, B. M., Wu,, K. C., Trayanova,, N. A., & Wang,, L. (2018). Quantifying the uncertainty in model parameters using Gaussian process‐based Markov chain Monte Carlo in cardiac electrophysiology. Medical Image Analysis, 48, 43–57. https://doi.org/10.1016/j.media.2018.05.007
Dhamala,, J., Arevalo,, H. J., Sapp,, J., Horacek,, M., Wu,, K. C., Trayanova,, N. A., & Wang,, L. (2017). Spatially adaptive multi‐scale optimization for local parameter estimation in cardiac electrophysiology. IEEE Transactions on Medical Imaging, 36(9), 1966–1978. https://doi.org/10.1109/TMI.2017.2697820
Di Biase,, L., Santangeli,, P., Burkhardt,, D. J., Bai,, R., Mohanty,, P., Carbucicchio,, C., … Natale,, A. (2012). Endo‐epicardial homogenization of the scar versus limited substrate ablation for the treatment of electrical storms in patients with ischemic cardiomyopathy. Journal of the American College of Cardiology, 60(2), 132–141. https://doi.org/10.1016/j.jacc.2012.03.044
Doste,, R., Soto‐Iglesias,, D., Bernardino,, G., Alcaine,, A., Sebastian,, R., Giffard‐Roisin,, S., … Camara,, O. (2019). A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts. International Journal for Numerical Methods in Biomedical Engineering, 35(4), 1–17. https://doi.org/10.1002/cnm.3185
Dukkipati,, S. R., Koruth,, J. S., Choudry,, S., Miller,, M. A., Whang,, W., & Reddy,, V. Y. (2017). Catheter ablation of ventricular tachycardia in structural heart disease. Journal of the American College of Cardiology, 70(23), 2924–2941. https://doi.org/10.1016/j.jacc.2017.10.030
Dutta,, S., Mincholé,, A., Quinn,, T. A., & Rodriguez,, B. (2017). Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Progress in Biophysics and Molecular Biology, 129, 40–52. https://doi.org/10.1016/j.pbiomolbio.2017.02.007
Esposito,, A., Palmisano,, A., Antunes,, S., Maccabelli,, G., Colantoni,, C., Rancoita,, P. M. V., … Del Maschio,, A. (2016). Cardiac CT with delayed enhancement in the characterization of ventricular tachycardia structural substrate. JACC: Cardiovascular Imaging, 9(7), 822–832. https://doi.org/10.1016/j.jcmg.2015.10.024
Estner,, H. L., Zviman,, M. M., Herzka,, D., Miller,, F., Castro,, V., Nazarian,, S., … Halperin,, H. R. (2011). The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging. Heart Rhythm, 8(12), 1942–1949. https://doi.org/10.1016/j.hrthm.2011.07.027
Fenoglio,, J. J., Pham,, T. D., Harken,, A. H., Horowitz,, L. N., Josephson,, M. E., & Wit,, A. L. (1983). Recurrent sustained ventricular tachycardia: Structure and ultrastructure of subendocardial regions in which tachycardia originates. Circulation, 68(3), 518–533. https://doi.org/10.1161/01.cir.68.3.518
Fermini,, B., Hancox,, J. C., Abi‐Gerges,, N., Bridgland‐Taylor,, M., Chaudhary,, K. W., Colatsky,, T., … Vandenberg,, J. I. (2016). A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. Journal of Biomolecular Screening, 21(1), 1–11. https://doi.org/10.1177/1087057115594589
Fernández‐Armenta,, J., Penela,, D., Acosta,, J., Andreu,, D., Evertz,, R., Cabrera,, M., … Berruezo,, A. (2016). Substrate modification or ventricular tachycardia induction, mapping, and ablation as the first step? A randomized study. Heart Rhythm, 13(8), 1589–1595. https://doi.org/10.1016/j.hrthm.2016.05.013
Flett,, A. S., Hasleton,, J., Cook,, C., Hausenloy,, D., Quarta,, G., Ariti,, C., … Moon,, J. C. (2011). Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC: Cardiovascular Imaging, 4(2), 150–156. https://doi.org/10.1016/J.JCMG.2010.11.015
Gökoğlan,, Y., Mohanty,, S., Gianni,, C., Santangeli,, P., Trivedi,, C., Güneş,, M. F., … Natale,, A. (2016). Scar homogenization versus limited‐substrate ablation in patients with nonischemic cardiomyopathy and ventricular tachycardia. Journal of the American College of Cardiology, 68(18), 1990–1998. https://doi.org/10.1016/j.jacc.2016.08.033
Gray,, R. A., & Pathmanathan,, P. (2018). Patient‐specific cardiovascular computational modeling: Diversity of personalization and challenges. Journal of Cardiovascular Translational Research, 11(2), 80–88. https://doi.org/10.1007/s12265-018-9792-2
Heijman,, J., Volders,, P. G. A., Westra,, R. L., & Rudy,, Y. (2011). Local control of β‐adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca2+‐transient. Journal of Molecular and Cellular Cardiology, 50(5), 863–871. https://doi.org/10.1016/j.yjmcc.2011.02.007
Irie,, T., Yu,, R., Bradfield,, J. S., Vaseghi,, M., Buch,, E. F., Ajijola,, O., … Tung,, R. (2015). Relationship between sinus rhythm late activation zones and critical sites for scar‐related ventricular tachycardia. Circulation. Arrhythmia and Electrophysiology, 8(2), 390–399. https://doi.org/10.1161/CIRCEP.114.002637
Jaïs,, P., Maury,, P., Khairy,, P., Sacher,, F., Nault,, I., Komatsu,, Y., … Haïssaguerre,, M. (2012). Elimination of local abnormal ventricular activities. Circulation, 125(18), 2184–2196. https://doi.org/10.1161/CIRCULATIONAHA.111.043216
Jamil‐Copley,, S., Bokan,, R., Kojodjojo,, P., Qureshi,, N., Koa‐Wing,, M., Hayat,, S., … Lim,, P. B. (2014). Noninvasive electrocardiographic mapping to guide ablation of outflow tract ventricular arrhythmias. Heart Rhythm, 11(4), 587–594. https://doi.org/10.1016/j.hrthm.2014.01.013
Keldermann,, R. H., ten Tusscher,, K. H. W. J., Nash,, M. P., Hren,, R., Taggart,, P., & Panfilov,, A. V. (2008). Effect of heterogeneous APD restitution on VF organization in a model of the human ventricles. American Journal of Physiology. Heart and Circulatory Physiology, 294(2), H764–H774. https://doi.org/10.1152/ajpheart.00906.2007
Komatsu,, Y., Cochet,, H., Jadidi,, A., Sacher,, F., Shah,, A., Derval,, N., … Jaïs,, P. (2013). Regional myocardial wall thinning at multidetector computed tomography correlates to arrhythmogenic substrate in postinfarction ventricular tachycardia. Circulation. Arrhythmia and Electrophysiology, 6(2), 342–350. https://doi.org/10.1161/CIRCEP.112.000191
Kuck,, K. H., Schaumann,, A., Eckardt,, L., Willems,, S., Ventura,, R., Delacrétaz,, E., … VTACH Study Group. (2010). Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): A multicentre randomised controlled trial. The Lancet, 375(9708), 31–40. https://doi.org/10.1016/S0140-6736(09)61755-4
Lascano,, E. C., Said,, M., Vittone,, L., Mattiazzi,, A., Mundiña‐Weilenmann,, C., & Negroni,, J. A. (2013). Role of CaMKII in post acidosis arrhythmias: A simulation study using a human myocyte model. Journal of Molecular and Cellular Cardiology, 60, 172–183. https://doi.org/10.1016/j.yjmcc.2013.04.018
Lopez‐Perez,, A., Sebastian,, R., & Ferrero,, J. M. (2015). Three‐dimensional cardiac computational modelling: Methods, features and applications. Biomedical Engineering Online, 14(1), 35. https://doi.org/10.1186/s12938-015-0033-5
Lopez‐Perez,, A., Sebastian,, R., Izquierdo,, M., Ruiz,, R., Bishop,, M., & Ferrero,, J. M. (2019). Personalized cardiac computational models: From clinical data to simulation of infarct‐related ventricular tachycardia. Frontiers in Physiology, 10, 580. https://doi.org/10.3389/fphys.2019.00580
Luo,, C. H., & Rudy,, Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation Research, 68(6), 1501–1526. https://doi.org/10.1161/01.RES.68.6.1501
Marchlinski,, F. E., Callans,, D. J., Gottlieb,, C. D., & Zado,, E. (2000). Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation, 101(11), 1288–1296. https://doi.org/10.1161/01.CIR.101.11.1288
McDowell,, K. S., Vadakkumpadan,, F., Blake,, R., Blauer,, J., Plank,, G., MacLeod,, R. S., & Trayanova,, N. A. (2012). Methodology for patient‐specific modeling of atrial fibrosis as a substrate for atrial fibrillation. Journal of Electrocardiology, 45(6), 640–645. https://doi.org/10.1016/j.jelectrocard.2012.08.005
McDowell,, K. S., Vadakkumpadan,, F., Blake,, R., Blauer,, J., Plank,, G., MacLeod,, R. S., & Trayanova,, N. A. (2013). Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation. Biophysical Journal, 104(12), 2764–2773. https://doi.org/10.1016/j.bpj.2013.05.025
McDowell,, K. S., Zahid,, S., Vadakkumpadan,, F., Blauer,, J., MacLeod,, R. S., & Trayanova,, N. A. (2015). Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS One, 10(2), 1–16. https://doi.org/10.1371/journal.pone.0117110
Mesubi,, O., Ego‐Osuala,, K., Jeudy,, J., Purtilo,, J., Synowski,, S., Abutaleb,, A., … Dickfeld,, T. (2015). Differences in quantitative assessment of myocardial scar and gray zone by LGE‐CMR imaging using established gray zone protocols. International Journal of Cardiovascular Imaging, 31(2), 359–368. https://doi.org/10.1007/s10554-014-0555-0
Moreno,, J. D., Zhu,, Z. I., Yang,, P.‐C., Bankston,, J. R., Jeng,, M.‐T., Kang,, C., … Clancy,, C. E. (2011). A computational model to predict the effects of class I anti‐arrhythmic drugs on ventricular rhythms. Science Translational Medicine, 3(98), 98ra83. https://doi.org/10.1126/scitranslmed.3002588
Mountantonakis,, S. E., Park,, R. E., Frankel,, D. S., Hutchinson,, M. D., Dixit,, S., Cooper,, J., … Gerstenfeld,, E. P. (2013). Relationship between voltage map “channels” and the location of critical isthmus sites in patients with post‐infarction cardiomyopathy and ventricular tachycardia. Journal of the American College of Cardiology, 61(20), 2088–2095. https://doi.org/10.1016/j.jacc.2013.02.031
Nazarian,, S., Hansford,, R., Rahsepar,, A. A., Weltin,, V., McVeigh,, D., Gucuk Ipek,, E., … Halperin,, H. R. (2017). Safety of magnetic resonance imaging in patients with cardiac devices. New England Journal of Medicine, 377(26), 2555–2564. https://doi.org/10.1056/NEJMoa1604267
Neic,, A., Campos,, F. O., Prassl,, A. J., Niederer,, S. A., Bishop,, M. J., Vigmond,, E. J., & Plank,, G. (2017). Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction‐eikonal model. Journal of Computational Physics, 346, 191–211. https://doi.org/10.1016/j.jcp.2017.06.020
Ng,, J., Jacobson,, J. T., Ng,, J. K., Gordon,, D., Lee,, D. C., Carr,, J. C., & Goldberger,, J. J. (2012). Virtual electrophysiological study in a 3‐dimensional cardiac magnetic resonance imaging model of porcine myocardial infarction. Journal of the American College of Cardiology, 60(5), 423–430. https://doi.org/10.1016/j.jacc.2012.03.029
Niederer,, S. A., Lumens,, J., & Trayanova,, N. A. (2019). Computational models in cardiology. Nature Reviews Cardiology, 16(2), 100–111. https://doi.org/10.1038/s41569-018-0104-y
Pashakhanloo,, F., Herzka,, D. A., Ashikaga,, H., Mori,, S., Gai,, N., Bluemke,, D. A., … McVeigh,, E. R. (2016). Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circulation. Arrhythmia and Electrophysiology, 9(4), e004133. https://doi.org/10.1161/CIRCEP.116.004133
Pashakhanloo,, F., Herzka,, D. A., Halperin,, H., McVeigh,, E. R., & Trayanova,, N. A. (2018). Role of 3‐dimensional architecture of scar and surviving tissue in ventricular tachycardia: Insights from high‐resolution ex vivo porcine models. Circulation. Arrhythmia and Electrophysiology, 11(6), e006131. https://doi.org/10.1161/CIRCEP.117.006131
Pashakhanloo,, F., Herzka,, D. A., Mori,, S., Zviman,, M., Halperin,, H., Gai,, N., … McVeigh,, E. R. (2017). Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 19(1), 9. https://doi.org/10.1186/s12968-016-0317-3
Piccini,, J. P., Hafley,, G. E., Lee,, K. L., Fisher,, J. D., Josephson,, M. E., Prystowsky,, E. N., … MUSTT Investigators. (2009). Mode of induction of ventricular tachycardia and prognosis in patients with coronary disease: The multicenter unsustained tachycardia trial (MUSTT). Journal of Cardiovascular Electrophysiology, 20(8), 850–855. https://doi.org/10.1111/j.1540-8167.2009.01469.x
Porta‐Sánchez,, A., Jackson,, N., Lukac,, P., Kristiansen,, S. B., Nielsen,, J. M., Gizurarson,, S., … Nanthakumar,, K. (2018). Multicenter study of ischemic ventricular tachycardia ablation with decrement‐evoked potential (DEEP) mapping with extra stimulus. JACC. Clinical Electrophysiology, 4(3), 307–315. https://doi.org/10.1016/j.jacep.2017.12.005
Prakosa,, A., Arevalo,, H. J., Deng,, D., Boyle,, P. M., Nikolov,, P. P., Ashikaga,, H., … Trayanova,, N. A. (2018). Personalized virtual‐heart technology for guiding the ablation of infarct‐related ventricular tachycardia. Nature Biomedical Engineering, 2(10), 732–740. https://doi.org/10.1038/s41551-018-0282-2
Prakosa,, A., Malamas,, P., Zhang,, S., Pashakhanloo,, F., Arevalo,, H., Herzka,, D. A., … Vadakkumpadan,, F. (2014). Methodology for image‐based reconstruction of ventricular geometry for patient‐specific modeling of cardiac electrophysiology. Progress in Biophysics and Molecular Biology, 115(2–3), 226–234. https://doi.org/10.1016/j.pbiomolbio.2014.08.009
Prassl,, A. J., Kickinger,, F., Ahammer,, H., Grau,, V., Schneider,, J. E., Hofer,, E., … Plank,, G. (2009). Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems. IEEE Transactions on Biomedical Engineering, 56(5), 1318–1330. https://doi.org/10.1109/TBME.2009.2014243
Rashid,, S., Rapacchi,, S., Shivkumar,, K., Plotnik,, A., Finn,, J. P., & Hu,, P. (2016). Modified wideband three‐dimensional late gadolinium enhancement MRI for patients with implantable cardiac devices. Magnetic Resonance in Medicine, 75(2), 572–584. https://doi.org/10.1002/mrm.25601
Reddy,, V. Y., Reynolds,, M. R., Neuzil,, P., Richardson,, A. W., Taborsky,, M., Jongnarangsin,, K., … Josephson,, M. E. (2007). Prophylactic catheter ablation for the prevention of defibrillator therapy. New England Journal of Medicine, 357(26), 2657–2665. https://doi.org/10.1056/NEJMoa065457
Relan,, J., Chinchapatnam,, P., Sermesant,, M., Rhode,, K., Ginks,, M., Delingette,, H., … Ayache,, N. (2011). Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus, 1(3), 396–407. https://doi.org/10.1098/rsfs.2010.0041
Reumann,, M., Gurev,, V., & Rice,, J. J. (2009). Computational modeling of cardiac disease: Potential for personalized medicine. Personalized Medicine, 6(1), 45–66. https://doi.org/10.2217/17410541.6.1.45
Rodríguez,, B., Tice,, B. M., Eason,, J. C., Aguel,, F., Ferrero,, J. M., & Trayanova,, N. (2004). Effect of acute global ischemia on the upper limit of vulnerability: A simulation study. American Journal of Physiology. Heart and Circulatory Physiology, 286(6), H2078–H2088. https://doi.org/10.1152/ajpheart.01175.2003
Rodriguez‐Granillo,, G. A. (2017). Delayed enhancement cardiac computed tomography for the assessment of myocardial infarction: From bench to bedside. Cardiovascular Diagnosis and Therapy, 7(2), 159–170. https://doi.org/10.21037/cdt.2017.03.16
Sapp,, J. L., Wells,, G. A., Parkash,, R., Stevenson,, W. G., Blier,, L., Sarrazin,, J.‐F., … Tang,, A. S. L. (2016). Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. New England Journal of Medicine, 375(2), 111–121. https://doi.org/10.1056/NEJMoa1513614
Sasaki,, T., Hansford,, R., Zviman,, M. M., Kolandaivelu,, A., Bluemke,, D. A., Berger,, R. D., … Nazarian,, S. (2011). Quantitative assessment of artifacts on cardiac magnetic resonance imaging of patients with pacemakers and implantable cardioverter‐defibrillators. Circulation. Cardiovascular Imaging, 4(6), 662–670. https://doi.org/10.1161/CIRCIMAGING.111.965764
Schmidt,, A., Azevedo,, C. F., Cheng,, A., Gupta,, S. N., Bluemke,, D. A., Foo,, T. K., … Wu,, K. C. (2007). Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation, 115(15), 2006–2014. https://doi.org/10.1161/CIRCULATIONAHA.106.653568
Shade,, J. K., Cartoski,, M. J., Nikolov,, P., Prakosa,, A., Doshi,, A., Binka,, E., … Trayanova,, N. A. (2019). Ventricular arrhythmia risk prediction in repaired tetralogy of Fallot using personalized computational cardiac models. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2019.10.002
Shinbane,, J. S., Colletti,, P. M., & Shellock,, F. G. (2011). Magnetic resonance imaging in patients with cardiac pacemakers: Era of “MR Conditional” designs. Journal of Cardiovascular Magnetic Resonance, 13(1), 63. https://doi.org/10.1186/1532-429X-13-63
Stevenson,, W. G., Wilber,, D. J., Natale,, A., Jackman,, W. M., Marchlinski,, F. E., Talbert,, T., … Multicenter Thermocool VT Ablation Trial Investigators. (2008). Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction. Circulation, 118(25), 2773–2782. https://doi.org/10.1161/CIRCULATIONAHA.108.788604
Streeter,, D. D., Jr., Spotnitz,, H. M., Patel,, D. P., Ross,, J., Jr., & Sonnenblick,, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research, 24(3), 339–347. https://doi.org/10.1161/01.res.24.3.339
Sung,, E., Prakosa,, A., Zimmerman,, S., & Trayanova,, N. (2019). Contrast‐enhanced computed tomography‐based virtual hearts predict ventricular tachycardias due to intramyocardial fat infiltration. Heart Rhythm, 16(5), S122.
Takigawa,, M., Duchateau,, J., Sacher,, F., Martin,, R., Vlachos,, K., Kitamura,, T., … Jaïs,, P. (2019). Are wall thickness channels defined by computed tomography predictive of isthmuses of postinfarction ventricular tachycardia? Heart Rhythm, 16(11), 1661–1668. https://doi.org/10.1016/j.hrthm.2019.06.012
ten Tusscher,, K. H. W. J., Noble,, D., Noble,, P. J., & Panfilov,, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology. Heart and Circulatory Physiology, 286(4), H1573–H1589. https://doi.org/10.1152/ajpheart.00794.2003
ten Tusscher,, K. H. W. J., Hren,, R., & Panfilov,, A. V. (2007). Organization of ventricular fibrillation in the human heart. Circulation Research, 100(12), e87–e101. https://doi.org/10.1161/CIRCRESAHA.107.150730
Tian,, J., Jeudy,, J., Smith,, M. F., Jimenez,, A., Yin,, X., Bruce,, P. A., … Dickfeld,, T. (2010). Three‐dimensional contrast‐enhanced multidetector CT for anatomic, dynamic, and perfusion characterization of abnormal myocardium to guide ventricular tachycardia ablations. Circulation. Arrhythmia and Electrophysiology, 3(5), 496–504. https://doi.org/10.1161/CIRCEP.109.889311
Tilz,, R. R., Eitel,, C., Lyan,, E., Yalin,, K., Liosis,, S., Vogler,, J., … Proietti,, R. (2019). Preventive ventricular tachycardia ablation in patients with ischaemic cardiomyopathy: Meta‐analysis of randomised trials. Arrhythmia %26 Electrophysiology Review, 8(3), 173–179. https://doi.org/10.15420/aer.2019.31.3
Tilz,, R. R., Kuck,, K. H., Kääb,, S., Wegscheider,, K., Thiem,, A., Wenzel,, B., … Steven,, D. (2019). Rationale and design of Berlin VT study: A multicenter randomised trial comparing preventive versus deferred ablation of ventricular tachycardia. BMJ Open, 9(5), 1–8. https://doi.org/10.1136/bmjopen-2018-022910
Trayanova,, N. (2001). Concepts of ventricular defibrillation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 359(1783), 1327–1337. https://doi.org/10.1098/rsta.2001.0834
Trayanova,, N., Li,, W., Eason,, J., & Kohl,, P. (2004). Effect of stretch‐activated channels on defibrillation efficacy. Heart Rhythm, 1(1), 67–77. https://doi.org/10.1016/j.hrthm.2004.01.002
Tse,, G., & Yan,, B. P. (2017). Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace, 19(5), 712–721. https://doi.org/10.1093/europace/euw280
Tsyganov,, A., Wissner,, E., Metzner,, A., Mironovich,, S., Chaykovskaya,, M., Kalinin,, V., … Kuck,, K. H. (2018). Mapping of ventricular arrhythmias using a novel noninvasive epicardial and endocardial electrophysiology system. Journal of Electrocardiology, 51(1), 92–98. https://doi.org/10.1016/j.jelectrocard.2017.07.018
Tung,, R., Josephson,, M. E., Reddy,, V., Reynolds,, M. R., & SMASH‐VT Investigators. (2010). Influence of clinical and procedural predictors on ventricular tachycardia ablation outcomes: An analysis from the substrate mapping and ablation in sinus rhythm to halt ventricular tachycardia trial (SMASH‐VT). Journal of Cardiovascular Electrophysiology, 21(7), 799–803. https://doi.org/10.1111/j.1540-8167.2009.01705.x
Turk,, G., & O`Brien,, J. (2005). Shape transformation using variational implicit functions. ACM SIGGRAPH 2005 Courses, Los Angeles, California.
Tzou,, W. S., Frankel,, D. S., Hegeman,, T., Supple,, G. E., Garcia,, F. C., Santangeli,, P., … Marchlinski,, F. E. (2015). Core isolation of critical arrhythmia elements for treatment of multiple scar‐based ventricular tachycardias. Circulation. Arrhythmia and Electrophysiology, 8(2), 353–361. https://doi.org/10.1161/CIRCEP.114.002310
Ukwatta,, E., Arevalo,, H., Li,, K., Yuan,, J., Qiu,, W., Malamas,, P., … Vadakkumpadan,, F. (2016). Myocardial infarct segmentation from magnetic resonance images for personalized modeling of cardiac electrophysiology. IEEE Transactions on Medical Imaging, 35(6), 1408–1419. https://doi.org/10.1109/TMI.2015.2512711
Ukwatta,, E., Arevalo,, H., Rajchl,, M., White,, J., Pashakhanloo,, F., Prakosa,, A., … Vadakkumpadan,, F. (2015). Image‐based reconstruction of three‐dimensional myocardial infarct geometry for patient‐specific modeling of cardiac electrophysiology. Medical Physics, 42(8), 4579–4590. https://doi.org/10.1118/1.4926428
Ukwatta,, E., Rajchl,, M., White,, J., Pashakhanloo,, F., Herzka,, D. A., McVeigh,, E., … Vadakkumpadan,, F. (2015). Image‐based reconstruction of 3D myocardial infarct geometry for patient specific applications. Proceedings of SPIE, 9413, 94132W. https://doi.org/10.1117/12.2082113
Ukwatta,, E., Yuan,, J., Qiu,, W., Wu,, K. C., Trayanova,, N., & Vadakkumpadan,, F. (2014). Myocardial infarct segmentation and reconstruction from 2D late‐gadolinium enhanced magnetic resonance images. Medical Image Computing and Computer‐Assisted Intervention, 17(Pt. 2), 554–561. https://doi.org/10.1007/978-3-319-10470-6_69
Vagos,, M., van Herck,, I. G. M., Sundnes,, J., Arevalo,, H. J., Edwards,, A. G., & Koivumäki,, J. T. (2018). Computational modeling of electrophysiology and pharmacotherapy of atrial fibrillation: Recent advances and future challenges. Frontiers in Physiology, 9, 1221. https://doi.org/10.3389/fphys.2018.01221
Van Nieuwenhuyse,, E., Seemann,, G., Panfilov,, A. V., & Vandersickel,, N. (2017). Effects of early after depolarizations on excitation patterns in an accurate model of the human ventricles. PLoS One, 12(12), 1–19. https://doi.org/10.1371/journal.pone.0188867
Vandersickel,, N., de Boer,, T. P., Vos,, M. A., & Panfilov,, A. V. (2016). Perpetuation of torsade de pointes in heterogeneous hearts: Competing foci or re‐entry? The Journal of Physiology, 594(23), 6865–6878. https://doi.org/10.1113/JP271728
Vandersickel,, N., Van Nieuwenhuyse,, E., Van Cleemput,, N., Goedgebeur,, J., El Haddad,, M., De Neve,, J., … Panfilov,, A. V. (2019). Directed networks as a novel way to describe and analyze cardiac excitation: Directed graph mapping. Frontiers in Physiology, 10, 1138. https://doi.org/10.3389/fphys.2019.01138
Vergara,, P., Trevisi,, N., Ricco,, A., Petracca,, F., Baratto,, F., Cireddu,, M., … Della Bella,, P. (2012). Late potentials abolition as an additional technique for reduction of arrhythmia recurrence in scar related ventricular tachycardia ablation. Journal of Cardiovascular Electrophysiology, 23(6), 621–627. https://doi.org/10.1111/j.1540-8167.2011.02246.x
Wang,, L., Gharbia,, O. A., Nazarian,, S., Horácek,, B. M., & Sapp,, J. L. (2018). Non‐invasive epicardial and endocardial electrocardiographic imaging for scar‐related ventricular tachycardia. Europace, 20(FI2), f263–f272. https://doi.org/10.1093/europace/euy082
Winslow,, R. L., Trayanova,, N., Geman,, D., & Miller,, M. I. (2012). Computational medicine: Translating models to clinical care. Science Translational Medicine, 4(158), 158rv11. https://doi.org/10.1126/scitranslmed.3003528
Wolf,, M., Sacher,, F., Cochet,, H., Kitamura,, T., Takigawa,, M., Yamashita,, S., … Jaïs,, P. (2018). Long‐term outcome of substrate modification in ablation of post‐myocardial infarction ventricular tachycardia. Circulation. Arrhythmia and Electrophysiology, 11(2), e005635. https://doi.org/10.1161/CIRCEP.117.005635
Wu,, J., Naiki,, N., Ding,, W.‐G., Ohno,, S., Kato,, K., Zang,, W.‐J., … Horie,, M. (2014). A molecular mechanism for adrenergic‐induced long QT syndrome. Journal of the American College of Cardiology, 63(8), 819–827. https://doi.org/10.1016/j.jacc.2013.08.1648
Yamashita,, S., Sacher,, F., Mahida,, S., Berte,, B., Lim,, H. S., Komatsu,, Y., … Cochet,, H. (2016). Image integration to guide catheter ablation in scar‐related ventricular tachycardia. Journal of Cardiovascular Electrophysiology, 27(6), 699–708. https://doi.org/10.1111/jce.12963
Zahid,, S., Cochet,, H., Boyle,, P. M., Schwarz,, E. L., Whyte,, K. N., Vigmond,, E. J., … Trayanova,, N. A. (2016). Patient‐derived models link re‐entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovascular Research, 110(3), 443–454. https://doi.org/10.1093/cvr/cvw073
Zahid,, S., Whyte,, K. N., Schwarz,, E. L., Blake,, R. C., Boyle,, P. M., Chrispin,, J., … Trayanova,, N. A. (2016). Feasibility of using patient‐specific models and the “minimum cut” algorithm to predict optimal ablation targets for left atrial flutter. Heart Rhythm, 13(8), 1687–1698. https://doi.org/10.1016/j.hrthm.2016.04.009
Zettinig,, O., Mansi,, T., Neumann,, D., Georgescu,, B., Rapaka,, S., Seegerer,, P., … Comaniciu,, D. (2014). Data‐driven estimation of cardiac electrical diffusivity from 12‐lead ECG signals. Medical Image Analysis, 18(8), 1361–1376. https://doi.org/10.1016/j.media.2014.04.011
Zghaib,, T., Ipek,, E. G., Hansford,, R., Ashikaga,, H., Berger,, R. D., Marine,, J. E., … Nazarian,, S. (2018). Standard ablation versus magnetic resonance imaging‐guided ablation in the treatment of ventricular tachycardia. Circulation. Arrhythmia and Electrophysiology, 11(1), e005973. https://doi.org/10.1161/CIRCEP.117.005973
Zhang,, J., Cooper,, D. H., Desouza,, K. A., Cuculich,, P. S., Woodard,, P. K., Smith,, T. W., & Rudy,, Y. (2016). Electrophysiologic scar substrate in relation to VT: Noninvasive high‐resolution mapping and risk assessment with ECGI. Pacing and Clinical Electrophysiology, 39(8), 781–791. https://doi.org/10.1111/pace.12882
Zhu,, X., Wei,, D., & Okazaki,, O. (2012). Computer simulation of clinical electrophysiological study. Pacing and Clinical Electrophysiology, 35(6), 718–729. https://doi.org/10.1111/j.1540-8159.2012.03379.x