Acharya,, B. R., Nestor‐Bergmann,, A., Liang,, X., Gupta,, S., Duszyc,, K., Gauquelin,, E., … Yap,, A. S. (2018). A mechanosensitive RhoA pathway that protects epithelia against acute tensile stress. Developmental Cell, 47(4), 439–452.
Aegerter‐Wilmsen,, T., Aegerter,, C. M., Hafen,, E., & Basler,, K. (2007). Model for the regulation of size in the wing imaginal disc of Drosophila. Mechanisms of Development, 124(4), 318–326.
Aegerter‐Wilmsen,, T., Heimlicher,, M. B., Smith,, A. C., de Reuille,, P. B., Smith,, R. S., Aegerter,, C. M., & Basler,, K. (2012). Integrating force‐sensing and signaling pathways in a model for the regulation of wing imaginal disc size. Development, 139(17), 3221–3231.
Affolter,, M., & Basler,, K. (2007). The decapentaplegic morphogen gradient: From pattern formation to growth regulation. Nature Reviews. Genetics, 8(9), 663–674.
Akiyama,, T., & Gibson,, M. C. (2015). Morphogen transport: Theoretical and experimental controversies. Wiley Interdisciplinary Reviews: Developmental Biology, 4(2), 99–112.
Akiyama,, T., Kamimura,, K., Firkus,, C., Takeo,, S., Shimmi,, O., & Nakato,, H. (2008). Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Developmental Biology, 313(1), 408–419.
Albert,, R., & Othmer,, H. G. (2003). The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. Journal of Theoretical Biology, 223(1), 1–18.
Ilaria Alborelli,. (2016). Characterization of the subcellular localization of the TGF‐β receptors in the wing imaginal disc. (PhD thesis). University_of_Basel.
Alégot,, H., Markosian,, C., Rauskolb,, C., Yang,, J., Kirichenko,, E., Wang,, Y.‐C., & Irvine,, K. D. (2019). Recruitment of Jub by α‐catenin promotes Yki activity and Drosophila wing growth. Journal of Cell Science, 132(5), jcs222018.
Alexandre,, C., Baena‐Lopez,, A., & Vincent,, J.‐P. (2014). Patterning and growth control by membrane‐tethered wingless. Nature, 505(7482), 180–185.
Aliee,, M., Röper,, J.‐C., Landsberg,, K. P., Pentzold,, C., Widmann,, T. J., Jülicher,, F., & Dahmann,, C. (2012). Physical mechanisms shaping the Drosophila dorsoventral compartment boundary. Current Biology, 22(11), 967–976.
Ambegaonkar,, A. A., Pan,, G., Mani,, M., Feng,, Y., & Irvine,, K. D. (2012). Propagation of Dachsous‐fat planar cell polarity. Current Biology, 22(14), 1302–1308.
Andersen,, D. S., Colombani,, J., & Léopold,, P. (2013). Coordination of organ growth: Principles and outstanding questions from the world of insects. Trends in Cell Biology, 23(7), 336–344.
Antunes,, M., Pereira,, T., Cordeiro,, J. V., Almeida,, L., & Jacinto,, A. (2013). Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding. The Journal of Cell Biology, 202(2), 365–379.
Aragona,, M., Panciera,, T., Manfrin,, A., Giulitti,, S., Michielin,, F., Elvassore,, N., … Piccolo,, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin‐processing factors. Cell, 154(5), 1047–1059.
Atzeni,, F., Lanfranconi,, F., & Aegerter,, C. M. (2019). Disentangling geometrical, viscoelastic and hyperelastic effects in force‐displacement relationships of folded biological tissues. European Physical Journal E: Soft Matter and Biological Physics, 42(4), 47.
Badouel,, C., Gardano,, L., Amin,, N., Garg,, A., Rosenfeld,, R., Le Bihan,, T., & McNeill,, H. (2009). The FERM‐domain protein expanded regulates hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Developmental Cell, 16(3), 411–420.
Baena‐Lopez,, L. A., Nojima,, H., & Vincent,, J. P. (2012). Integration of morphogen signalling within the growth regulatory network. Current Opinion in Cell Biology, 24(2), 166–172.
Baena‐Lopez,, L. A., Rodríguez,, I., & Baonza,, A. (2008). The tumor suppressor genes dachsous and fat modulate different signalling pathways by regulating dally and dally‐like. Proceedings of the National Academy of Sciences of the United States of America, 105(28), 9645–9650.
Baena‐López,, L. A., Carlos Pastor‐Pareja,, J., & Resino,, J. (2003). Wg and EGFR signalling antagonise the development of the peripodial epithelium in Drosophila wing discs. Development, 130(26), 6497–6506.
Baena‐Lopez,, L. A., Franch‐Marro,, X., & Vincent,, J.‐P. (2009). Wingless promotes proliferative growth in a gradient‐independent manner. Science Signaling, 2(91), ra60.
Balaji,, R., Bielmeier,, C., Harz,, H., Bates,, J., Stadler,, C., Hildebrand,, A., & Classen,, A.‐K. (2017). Calcium spikes, waves and oscillations in a large, patterned epithelial tissue. Scientific Reports, 7, 42786.
Bangi,, E., & Wharton,, K. (2006a). Dpp and Gbb exhibit different effective ranges in the establishment of the BMP activity gradient critical for Drosophila wing patterning. Developmental Biology, 295(1), 178–193.
Bangi,, E., & Wharton,, K. (2006b). Dual function of the Drosophila Alk1/Alk2 ortholog saxophone shapes the BMP activity gradient in the wing imaginal disc. Development, 133(17), 3295–3303.
Barrio,, L., & Milan,, M. (2017). Boundary Dpp promotes growth of medial and lateral regions of the Drosophila wing. eLife, 6, e22013.
Basler,, K., & Struhl,, G. (1994). Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature, 368, 208–214.
Bate,, M., & Martinez Arias,, A. (1991). The embryonic origin of imaginal discs in Drosophila. Development, 112(3), 755–761.
Bejsovec,, A. (2018). Wingless signaling: A genetic journey from morphogenesis to metastasis. Genetics, 208(4), 1311–1336.
Belenkaya,, T. Y., Han,, C., Yan,, D., Opoka,, R. J., Khodoun,, M., Liu,, H., & Lin,, X. (2004). Drosophila dpp morphogen movement is independent of dynamin‐mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell, 119(2), 231–244.
Ben‐Zvi,, D., Pyrowolakis,, G., Barkai,, N., & Shilo,, B. Z. (2011). Expansion‐repression mechanism for scaling the Dpp activation gradient in Drosophila wing imaginal discs. Current Biology, 21, 1391–1396.
Bhanot,, P., Brink,, M., Samos,, C. H., Hsieh,, J.‐C., Wang,, Y., Macke,, J. P., … Nusse,, R. (1996). A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature, 382(6588), 225–230.
Bieling,, P., Weichsel,, J., McGorty,, R., Jreij,, P., Bo,, H., Fletcher,, D. A., et al. (2016). Force feedback controls motor activity and mechanical properties of self‐assembling branched actin networks. Cell, 164(1–2), 115–127.
Bischoff,, M., Gradilla,, A. C., Seijo,, I., Andrés,, G., Rodríguez‐Navas,, C., González‐Méndez,, L., & Guerrero,, I. (2013). Cytonemes are required for the establishment of a normal hedgehog morphogen gradient in Drosophila epithelia. Nature Cell Biology, 15, 1269–1281.
Blair,, S. S. (2007). Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annual Review of Cell and Developmental Biology, 23, 293–319.
Blair,, S. S., & McNeill,, H. (2018). Big roles for fat cadherins. Current Opinion in Cell Biology, 51, 73–80.
Blair,, S. S. (2009). Imaginal discs. In Encyclopedia of insects (pp. 489–492). Amsterdam: Elsevier.
Bollenbach,, T., Pantazis,, P., Kicheva,, A., Bökel,, C., González‐Gaitán,, M., & Jülicher,, F. (2008). Precision of the dpp gradient. Development, 135(6), 1137–1146.
Bosch,, P. S., Ziukaite,, R., Alexandre,, C., Basler,, K., & Vincent,, J.‐P. (2017). Dpp controls growth and patterning in Drosophila wing precursors through distinct modes of action. eLife, 6, e22546.
Brittle,, A., Thomas,, C., & Strutt,, D. (2012). Planar polarity specification through asymmetric subcellular localization of fat and Dachsous. Current Biology, 22(10), 907–914.
Brodskiy,, P. A., Wu,, Q., Soundarrajan,, D. K., Huizar,, F. J., Chen,, J., Liang,, P., … Zartman,, J. J. (2019). Decoding calcium signaling dynamics during Drosophila wing disc development. Biophysical Journal, 116(4), 725–740.
Brodskiy,, P. A., & Zartman,, J. J. (2018). Calcium as a signal integrator in developing epithelial tissues. Physical Biology, 15(5), 051001.
Brummel,, T., Abdollah,, S., Haerry,, T. E., Shimell,, M. J., Merriam,, J., Raftery,, L., … O`Connor,, M. B. (1999). The Drosophila activin receptor baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development. Genes %26 Development, 13(1), 98–111.
Bryant,, D. M., & Stow,, J. L. (2004). The ins and outs of E‐cadherin trafficking. Trends in Cell Biology, 14(8), 427–434.
Bryant,, P. J., & Levinson,, P. (1985). Intrinsic growth control in the imaginal primordia of Drosophila, and the autonomous action of a lethal mutation causing overgrowth. Developmental Biology, 107(2), 355–363.
Bryant,, P. J., & Simpson,, P. (1984). Intrinsic and extrinsic control of growth in developing organs. The Quarterly Review of Biology, 59(4), 387–415.
Buchmann,, A., Alber,, M., & Zartman,, J. J. (2014). Sizing it up: The mechanical feedback hypothesis of organ growth regulation. Seminars in Cell %26 Developmental Biology, 35, 73–81.
Casares,, F., & Mann,, R. S. (2000). A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Development, 127(7), 1499–1508.
Cho,, E., Feng,, Y., Rauskolb,, C., Maitra,, S., Fehon,, R., & Irvine,, K. D. (2006). Delineation of a fat tumor suppressor pathway. Nature Genetics, 38(10), 1142–1150.
Choi,, K.‐W. (2018). Upstream paths for hippo signaling in Drosophila organ development. BMB Reports, 51(3), 134–142.
Classen,, A.‐K., Anderson,, K. I., Marois,, E., & Eaton,, S. (2005). Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Developmental Cell, 9(6), 805–817.
Courjean,, O., Chevreux,, G., Perret,, E., Morel,, A., Sanglier,, S., Potier,, N., … Feracci,, H. (2008). Modulation of E‐cadherin monomer folding by cooperative binding of calcium ions. Biochemistry, 47(8), 2339–2349.
Crickmore,, M. A., & Mann,, R. S. (2008). The control of size in animals: Insights from selector genes. BioEssays, 30(9), 843–853.
Dahal,, G. R., Pradhan,, S. J., & Bates,, E. A. (2017). Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release. Development, 144(15), 2771–2783.
Dahal,, G. R., Rawson,, J., Gassaway,, B., Kwok,, B., Tong,, Y., Ptáček,, L. J., & Bates,, E. (2012). An inwardly rectifying K+ channel is required for patterning. Development, 139(19), 3653–3664.
de la Cova,, C., Abril,, M., Bellosta,, P., Gallant,, P., & Johnston,, L. A. (2004). Drosophila Myc regulates organ size by inducing cell competition. Cell, 117(1), 107–116.
Degoutin,, J. L., Milton,, C. C., Yu,, E., Tipping,, M., Bosveld,, F., Yang,, L., … Harvey,, K. F. (2013). Riquiqui and Minibrain are regulators of the hippo pathway downstream of Dachsous. Nature Cell Biology, 15(10), 1176–1185.
del Álamo Rodríguez,, D., Terriente,, J., Galindo,, M. I., Couso,, J. P., & Díaz‐Benjumea,, F. J. (2002). Different mechanisms initiate and maintain wingless expression in the Drosophila wing hinge. Development, 129(17), 3995–4004.
Djiane,, A., Zaessinger,, S., Babaoğlan,, A. B., & Bray,, S. J. (2014). Notch inhibits yorkie activity in Drosophila wing discs. PLoS ONE, 9(8), e106211.
Domínguez‐Giménez,, P., Brown,, N. H., & Martín‐Bermudo,, M. D. (2007). Integrin‐ECM interactions regulate the changes in cell shape driving the morphogenesis of the Drosophila wing epithelium. Journal of Cell Science, 120(6), 1061–1071.
Dubatolova,, T., & Omelyanchuk,, L. (2004). Analysis of cell proliferation in Drosophila wing imaginal discs using mosaic clones. Heredity, 92(4), 299–305.
Duda,, M., Kirkland,, N. J., Khalilgharibi,, N., Tozluoglu,, M., Yuen,, A. C., Carpi,, N., … Mao,, Y. (2019). Polarization of myosin II refines tissue material properties to buffer mechanical stress. Developmental Cell, 48(2), 245–260.
Eivers,, E., Demagny,, H., Choi,, R. H., & De Robertis,, E. M. (2011). Phosphorylation of mad controls competition between wingless and BMP signaling. Science Signaling, 4(194), ra68.
Eivers,, E., Demagny,, H., & De Robertis,, E. M. (2009). Integration of BMP and Wnt signaling via vertebrate Smad1/5/8 and Drosophila mad. Cytokine %26 Growth Factor Reviews, 20(5–6), 357–365.
Enderle,, L., & McNeill,, H. (2013). Hippo gains weight: Added insights and complexity to pathway control. Science Signaling, 6(296), re7.
England,, J. L., & Cardy,, J. (2005). Morphogen gradient from a noisy source. Physical Review Letters, 94(7), 078101.
Entchev,, E. V., Schwabedissen,, A., & González‐Gaitán,, M. (2000). Gradient formation of the TGF‐β homolog Dpp. Cell, 103(6), 981–992.
Etournay,, R., Popović,, M., Merkel,, M., Nandi,, A., Blasse,, C., Aigouy,, B., … Eaton,, S. (2015). Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife, 4, e07090.
Fa‐Xing,, Y., & Guan,, K.‐L. (2013). The hippo pathway: Regulators and regulations. Genes %26 Development, 27(4), 355–371.
Feng,, Y., & Irvine,, K. D. (2009). Processing and phosphorylation of the fat receptor. Proceedings of the National Academy of Sciences, 106(29), 11989–11994.
Fernández,, B. G., Gaspar,, P., Brás‐Pereira,, C., Jezowska,, B., Rebelo,, S. R., & Janody,, F. (2011). Actin‐capping protein and the hippo pathway regulate F‐Actin and tissue growth in Drosophila. Development, 138(11), 2337–2346.
Fletcher,, G. C., Diaz‐de‐la‐Loza,, M. D., Borreguero‐Muñoz,, N., Holder,, M., Aguilar‐Aragon,, M., & Thompson,, B. J. (2018). Mechanical strain regulates the hippo pathway in Drosophila. Development, 145(5), dev159467.
Fletcher,, G. C., Elbediwy,, A., Khanal,, I., Ribeiro,, P. S., Tapon,, N., & Thompson,, B. J. (2015). The spectrin cytoskeleton regulates the hippo signalling pathway. The EMBO Journal, 34(7), 940–954.
Franch‐Marro,, X., Marchand,, O., Piddini,, E., Ricardo,, S., Alexandre,, C., & Vincent,, J.‐P. (2005). Glypicans shunt the wingless signal between local signalling and further transport. Development, 132(4), 659–666.
Fujise,, M., Takeo,, S., Kamimura,, K., Matsuo,, T., Aigaki,, T., Izumi,, S., & Nakato,, H. (2003). Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development, 130(8), 1515–1522.
Fulford,, A., Tapon,, N., & Ribeiro,, P. S. (2018). Upstairs, downstairs: Spatial regulation of hippo signalling. Current Opinion in Cell Biology, 51, 22–32.
Funakoshi,, Y., Minami,, M., & Tabata,, T. (2001). mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins. Development, 128(1), 67–74.
Gallant,, P. (2013). Myc function in Drosophila. Cold Spring Harbor Perspectives in Medicine, 3(10), a014324.
García‐Bellido,, A., Ripoll,, P., & Morata,, G. (1973). Developmental compartmentalisation of the wing disk of Drosophila. Nature: New Biology, 245(147), 251–253.
George,, L. F., Pradhan,, S. J., Mitchell,, D., Josey,, M., Casey,, J., Belus,, M. T., … Bates,, E. A. (2019). Ion channel contributions to wing development in Drosophila melanogaster. G3‐Genes Genom. Genet., 9(4), 999–1008.
Gerlach,, S. U., Sander,, M., Song,, S., & Herranz,, H. (2019). The miRNA bantam regulates growth and tumorigenesis by repressing the cell cycle regulator tribbles. Life Science Alliance, 2(4), e201900381.
Gibson,, M. C., Lehman,, D. A., & Schubiger,, G. (2002). Lumenal transmission of decapentaplegic in Drosophila imaginal discs. Developmental Cell, 3(3), 451–460.
Gibson,, W. T., & Gibson,, M. C. (2009). Cell topology, geometry, and morphogenesis in proliferating epithelia. Current Topics in Developmental Biology, 89, 87–114.
González‐Gaitán,, M. (2003). Endocytic trafficking during Drosophila development. Mechanisms of Development, 120(11), 1265–1282.
Goriely,, A. (2017). Five ways to model active processes in elastic solids: Active forces, active stresses, active strains, active fibers, and active metrics. Mechanics Research Communications, 93, 75–79.
Gou,, J., Lin,, L., & Othmer,, H. G. (2018). A model for the hippo pathway in the Drosophila wing disc. Biophysical Journal, 115, 737–747.
Hafezi,, Y., Bosch,, J. A., & Hariharan,, I. K. (2012). Differences in levels of the transmembrane protein crumbs can influence cell survival at clonal boundaries. Developmental Biology, 368(2), 358–369.
Hale,, R., Brittle,, A. L., Fisher,, K. H., Monk,, N. A. M., & Strutt,, D. (2015). Cellular interpretation of the long‐range gradient of four‐jointed activity in the Drosophila wing. eLife, 4, e05789.
Hall,, E. T., Hoesing,, E., Sinkovics,, E., & Verheyen,, E. M. (2019). Actomyosin contractility modulates Wnt signaling through adherens junction stability. Molecular Biology of the Cell, 30(3), 411–426.
Hamaratoglu,, F., Affolter,, M., & Pyrowolakis,, G. (2014). Dpp/BMP signaling in flies: From molecules to biology. Seminars in Cell %26 Developmental Biology, 32, 128–136.
Hamaratoglu,, F., de Lachapelle,, A. M., Pyrowolakis,, G., Bergmann,, S., & Affolter,, M. (2011). Dpp signaling activity requires pentagone to scale with tissue size in the growing Drosophila wing imaginal disc. PLoS Biology, 9(10), e1001182.
Othmer,, H. G., Painter,, K., Umulis,, D., & Xue,, C. (2009). The intersection of theory and application in biological pattern formation. Mathematical Modelling of Natural Phenomena, 4(4), 3–82.
Harmansa,, S., Alborelli,, I., Bieli,, D., Caussinus,, E., & Affolter,, M. (2017). A nanobody‐based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife, 6, e22549.
Harmansa,, S., Hamaratoglu,, F., Affolter,, M., & Caussinus,, E. (2015). Dpp spreading is required for medial but not for lateral wing disc growth. Nature, 527(7578), 317–322.
Harris,, T. J. C., & Tepass,, U. (2010). Adherens junctions: From molecules to morphogenesis. Nature Reviews Molecular Cell Biology, 11(7), 502–514.
Hayakawa,, K., Tatsumi,, H., & Sokabe,, M. (2011). Actin filaments function as a tension sensor by tension‐dependent binding of cofilin to the filament. The Journal of Cell Biology, 195(5), 721–727.
Heer,, N. C., & Martin,, A. C. (2017). Tension, contraction and tissue morphogenesis. Development, 144(23), 4249–4260.
Heisenberg,, C.‐P., & Bellaïche,, Y. (2013). Forces in tissue morphogenesis and patterning. Cell, 153(5), 948–962.
Held,, L. I. (2002). Imaginal discs: The genetic and cellular logic of pattern formation. New York: Cambridge University Press.
Helmlinger,, G., Netti,, P. A., Lichtenbeld,, H. C., Melder,, R. J., & Jain,, R. K. (1997). Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnology, 15(8), 778–783.
Herranz,, H., Weng,, R., & Cohen,, S. M. (2014). Crosstalk between epithelial and mesenchymal tissues in tumorigenesis and imaginal disc development. Current Biology, 24(13), 1476–1484.
Holtzer,, L., Kicheva,, A., Gonzalez‐Gaitan,, M., & Schmidt,, T. (2009). Morphogen gradient formation unraveled using in vivo three‐dimensional single molecule microscopy. Biophysical Journal, 96(3S1), 33–33.
Hu,, J., Matzavinos,, A., & Othmer,, H. G. (2007). A theoretical approach to actin filament dynamics. Journal of Statistical Physics, 128(1–2), 111–138.
Hufnagel,, L., Kreuger,, J., Cohen,, S. M., & Shraiman,, B. I. (2006). On the role of glypicans in the process of morphogen gradient formation. Developmental Biology, 300(2), 512–522.
Hufnagel,, L., Teleman,, A. A., Rouault,, H., Cohen,, S. M., & Shraiman,, B. I. (2007). On the mechanism of wing size determination in fly development. Proceedings of the National Academy of Sciences, 104(10), 3835–3840.
Ikmi,, A., Gaertner,, B., Seidel,, C., Srivastava,, M., Zeitlinger,, J., & Gibson,, M. C. (2014). Molecular evolution of the yap/yorkie proto‐oncogene and elucidation of its core transcriptional program. Molecular Biology and Evolution, 31(6), 1375–1390.
Kenneth D. Irvine,. Integration of intercellular signaling through the hippo pathway. In Seminars in Cell %26 Developmental Biology 23, pages 812–817. Elsevier, 2012.
Irvine,, K. D., & Harvey,, K. F. (2015). Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harbor Perspectives in Biology, 7(6), a019224.
Janody,, F., & Treisman,, J. E. (2006). Actin capping protein α maintains vestigial‐expressing cells within the Drosophila wing disc epithelium. Development, 133(17), 3349–3357.
Kale,, G. R., Yang,, X., Philippe,, J.‐M., Mani,, M., Lenne,, P.‐F., & Lecuit,, T. (2018). Distinct contributions of tensile and shear stress on E‐cadherin levels during morphogenesis. Nature Communications, 9(1), 5021.
Kamiya,, Y., Miyazono,, K., & Miyazawa,, K. (2008). Specificity of the inhibitory effects of dad on TGF‐β family type I receptors, Thickveins, saxophone, and baboon in Drosophila. FEBS Letters, 582(17), 2496–2500.
Kane,, N. S., Vora,, M., Padgett,, R. W., & Li,, Y. (2018). Bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway. Fly, 12(2), 105–117.
Keller,, A., Lanfranconi,, F., & Aegerter,, C. M. (2018). The influence of geometry on the elastic properties of the Drosophila wing disc. Physica A, 510, 208–218.
Kicheva,, A., Pantazis,, P., Bollenbach,, T., Kalaidzidis,, Y., Bittig,, T., Jülicher,, F., & Gonzalez‐Gaitan,, M. (2007). Kinetics of morphogen gradient formation. Science, 315(5811), 521–525.
Kim,, J., Sebring,, A., Esch,, J. J., Kraus,, M. E., Vorwerk,, K., Magee,, J., & Carroll,, S. B. (1996). Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature, 382(6587), 133–138.
Kim,, Y., Stolarska,, M. A., & Othmer,, H. G. (2007). A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results. Mathematical Models and Methods in Applied Sciences, 17(10S), 1–26.
Klein,, T. (2001). Wing disc development in the fly: The early stages. Current Opinion in Genetics %26 Development, 11(4), 470–475.
Klein,, T., & Martinez Arias,, A. (1999). The vestigial gene product provides a molecular context for the interpretation of signals during the development of the wing in Drosophila. Development, 126(5), 913–925.
Kreuger,, J., Perez,, L., Giraldez,, A. J., & Cohen,, S. M. (2004). Opposing activities of dally‐like glypican at high and low levels of wingless morphogen activity. Developmental Cell, 7(4), 503–512.
Lander,, A. D., Nie,, Q., & Wan,, F. Y. M. (2002). Do morphogen gradients arise by diffusion? Developmental Cell, 2(6), 785–796.
Landsberg,, K. P., Farhadifar,, R., Ranft,, J., Umetsu,, D., Widmann,, T. J., Bittig,, T., … Dahmann,, C. (2009). Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Current Biology, 19(22), 1950–1955.
Leckband,, D. E., & De Rooij,, J. (2014). Cadherin adhesion and mechanotransduction. Annual Review of Cell and Developmental Biology, 30, 291–315.
Lee,, L. A., & Orr‐Weaver,, T. L. (2003). Regulation of cell cycles in Drosophila development: Intrinsic and extrinsic cues. Annual Review of Genetics, 37(1), 545–578.
LeGoff,, L., & Lecuit,, T. (2016). Mechanical forces and growth in animal tissues. Cold Spring Harbor Perspectives in Biology, 8(3), a019232.
LeGoff,, L., Rouault,, H., & Lecuit,, T. (2013). A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Development, 140(19), 4051–4059.
Levayer,, R., & Moreno,, E. (2013). Mechanisms of cell competition: Themes and variations. The Journal of Cell Biology, 200(6), 689–698.
Li,, Y., Naveed,, H., Kachalo,, S., Xu,, L. X., & Liang,, J. (2014). Mechanisms of regulating tissue elongation in Drosophila wing: Impact of oriented cell divisions, oriented mechanical forces, and reduced cell size. PLoS ONE, 9(2), e86725.
Lin,, L., & Othmer,, H. G. (2017). Improving parameter inference from FRAP data: An analysis motivated by pattern formation in the Drosophila wing disc. Bulletin of Mathematical Biology, 79(3), 448–497.
Ling,, C., Zheng,, Y., Yin,, F., Yu,, J., Huang,, J., Hong,, Y., … Pan,, D. (2010). The apical transmembrane protein crumbs functions as a tumor suppressor that regulates hippo signaling by binding to expanded. Proceedings of the National Academy of Sciences, 107(23), 10532–10537.
Ma,, M., Cao,, X., Dai,, J., & Pastor‐Pareja,, J. C. (2017). Basement membrane manipulation in Drosophila wing discs affects Dpp retention but not growth mechanoregulation. Developmental Cell, 42(1), 97–106.
Ma,, S., Meng,, Z., Chen,, R., & Guan,, K.‐L. (2019). The hippo pathway: Biology and pathophysiology. Annual Review of Biochemistry, 88, 577–604.
Madan,, E., Gogna,, R., & Moreno,, E. (2018). Cell competition in development: Information from flies and vertebrates. Current Opinion in Cell Biology, 55, 150–157.
Major,, R. J., & Irvine,, K. D. (2005). Influence of notch on dorsoventral compartmentalization and actin organization in the Drosophila wing. Development, 132(17), 3823–3833.
Major,, R. J., & Irvine,, K. D. (2006). Localization and requirement for myosin II at the dorsal‐ventral compartment boundary of the Drosophila wing. Developmental Dynamics, 235(11), 3051–3058.
Mani,, M., Goyal,, S., Irvine,, K. D., & Shraiman,, B. I. (2013). Collective polarization model for gradient sensing via Dachsous‐fat intercellular signaling. Proceedings of the National Academy of Sciences, 110(51), 20420–20425.
Manning,, S. A., Dent,, L. G., Kondo,, S., Zhao,, Z. W., Plachta,, N., & Harvey,, K. F. (2018). Dynamic fluctuations in subcellular localization of the hippo pathway effector Yorkie in vivo. Current Biology, 28(10), 1651–1660.
Mao,, J., Wang,, J., Bo,, L., Pan,, W., Gist H Farr,, I. I. I., Flynn,, C., et al. (2001). Low‐density lipoprotein receptor‐related protein‐5 binds to axin and regulates the canonical Wnt signaling pathway. Molecular Cell, 7(4), 801–809.
Mao,, Y., & Baum,, B. (2015). Tug of war‐the influence of opposing physical forces on epithelial cell morphology. Developmental Biology, 401(1), 92–102.
Mao,, Y., Kucuk,, B., & Irvine,, K. D. (2009). Drosophila lowfat, a novel modulator of fat signaling. Development, 136(19), 3223–3233.
Marciniak‐Czochra,, A., & Ptashnyk,, M. (2008). Derivation of a macroscopic receptor‐based model using homogenization techniques. SIAM Journal on Numerical Analysis, 40(1), 215–237.
Marois,, E., Mahmoud,, A., & Eaton,, S. (2006). The endocytic pathway and formation of the wingless morphogen gradient. Development, 133(2), 307–317.
Martín,, F. A., Herrera,, S. C., & Morata,, G. (2009). Cell competition, growth and size control in the Drosophila wing imaginal disc. Development, 136(22), 3747–3756.
Martín,, F. A., Pérez‐Garijo,, A., Moreno,, E., & Morata,, G. (2004). The brinker gradient controls wing growth in Drosophila. Development, 131(20), 4921–4930.
Martin‐Castellanos,, C., & Edgar,, B. A. (2002). A characterization of the effects of Dpp signaling on cell growth and proliferation in the Drosophila wing. Development, 129(4), 1003–1013.
Martinez Arias,, A. (2003). Wnts as morphogens? The view from the wing of Drosophila. Nature Reviews. Molecular Cell Biology, 4(4), 321–325.
Mata,, J., Curado,, S., Ephrussi,, A., & Rørth,, P. (2000). Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/cdc25 proteolysis. Cell, 101(5), 511–522.
Matamoro‐Vidal,, A., Salazar‐Ciudad,, I., & Houle,, D. (2015). Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Developmental Dynamics, 244(9), 1058–1073.
Matsuda,, S., Harmansa,, S., & Affolter,, M. (2016). Bmp morphogen gradients in flies. Cytokine %26 Growth Factor Reviews, 27, 119–127.
McClure,, K. D., & Schubiger,, G. (2005). Developmental analysis and squamous morphogenesis of the peripodial epithelium in Drosophila imaginal discs. Development, 132(22), 5033–5042.
Melinda, G Mundt. 2013. Characterization of a unique basolateral targeting domain in the Drosophila TGF‐β type II receptor Punt. (Master`s thesis). University of Minnesota.
Meyer,, E. J., Ikmi,, A., & Gibson,, M. C. (2011). Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia. Current Biology, 21(6), 485–491.
Michel,, M., Aliee,, M., Rudolf,, K., Bialas,, L., Jülicher,, F., & Dahmann,, C. (2016). The selector gene apterous and notch are required to locally increase mechanical cell bond tension at the Drosophila dorsoventral compartment boundary. PLoS ONE, 11(8), e0161668.
Michel,, M., & Dahmann,, C. (2016). Regulating mechanical tension at compartment boundaries in Drosophila. Fly, 10(4), 204–209.
Milán,, M. (2014). Tumor models: Tumor–stroma interactions drive neoplastic transformation in Drosophila. Current Biology, 24(14), R658–R659.
Milán,, M., Campuzano,, S., & García‐Bellido,, A. (1996a). Cell cycling and patterned cell proliferation in the wing primordium of Drosophila. Proceedings of the National Academy of Sciences, 93(2), 640–645.
Milán,, M., Campuzano,, S., & García‐Bellido,, A. (1996b). Cell cycling and patterned cell proliferation in the Drosophila wing during metamorphosis. Proceedings of the National Academy of Sciences, 93(21), 11687–11692.
Milán,, M., Campuzano,, S., & García‐Bellido,, A. (1997). Developmental parameters of cell death in the wing disc of Drosophila. Proceedings of the National Academy of Sciences, 94(11), 5691–5696.
Misra,, J. R., & Irvine,, K. D. (2018). The hippo signaling network and its biological functions. Annual Review of Genetics, 52, 65–87.
Moss‐Taylor,, L., Upadhyay,, A., Pan,, X., Kim,, M.‐J., & O`Connor,, M. B. (2019). Body size and tissue‐scaling is regulated by motoneuron‐derived activinβ in Drosophila melanogaster. Genetics, 213, 1447–1464.
Müller,, P., Rogers,, K. W., Shuizi,, R. Y., Brand,, M., & Schier,, A. F. (2013). Morphogen transport. Development, 140(8), 1621–1638.
Muñoz‐Nava,, L. M., Alvarez,, H. A., Chara,, O., Flores‐Flores,, M., & Nahmad,, M. (2019). A dynamic cell recruitment process drives growth of the Drosophila wing by overscaling the vestigial expression pattern. bioRxiv, 688796.
Muñoz‐Nava, L. M.,, Alvarez, H. A.,, Chara, O.,, & Nahmad, M,. Cell recruitment drives growth of the Drosophila wing by overscaling the vestigial expression pattern. Available at SSRN 3330882, 2019.
Narciso,, C. E., Contento,, N. M., Storey,, T. J., Hoelzle,, D. J., & Zartman,, J. J. (2017). Release of applied mechanical loading stimulates intercellular calcium waves in Drosophila wing discs. Biophysical Journal, 113(2), 491–501.
Narciso,, C., Wu,, Q., Brodskiy,, P., Garston,, G., Baker,, R., Fletcher,, A., & Zartman,, J. (2015). Patterning of wound‐induced intercellular Ca2+ flashes in a developing epithelium. Physical Biology, 12(5), 056005.
Nelson,, C. M., Jean,, R. P., Tan,, J. L., Liu,, W. F., Sniadecki,, N. J., Spectorand,, A. A., & Chen,, C. S. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11594–11599.
Neto‐Silva,, R. M., de Beco,, S., & Johnston,, L. A. (2010). Evidence for a growth‐stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of yap. Developmental Cell, 19(4), 507–520.
Neufeld,, T. P., de la Cruz,, A. F. A., Johnston,, L. A., & Edgar,, B. A. (1998). Coordination of growth and cell division in the Drosophila wing. Cell, 93(7), 1183–1193.
Neumann,, C. J., & Cohen,, S. M. (1996). A hierarchy of cross‐regulation involving notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development, 122(11), 3477–3485.
Nienhaus,, U., Aegerter‐Wilmsen,, T., & Aegerter,, C. M. (2009). Determination of mechanical stress distribution in Drosophila wing discs using photoelasticity. Mechanisms of Development, 126(11–12), 942–949.
Nienhaus,, U., Aegerter‐Wilmsen,, T., & Aegerter,, C. M. (2012). In‐vivo imaging of the Drosophila wing imaginal disc over time: Novel insights on growth and boundary formation. PLoS ONE, 7(10), e47594.
Nijhout,, H. F., Riddiford,, L. M., Mirth,, C., Shingleton,, A. W., Suzuki,, Y., & Callier,, V. (2014). The developmental control of size in insects. Wiley Interdisciplinary Reviews: Developmental Biology, 3(1), 113–134.
Nolo,, R., Morrison,, C. M., Tao,, C., Zhang,, X., & Halder,, G. (2006). The bantam microRNA is a target of the hippo tumor‐suppressor pathway. Current Biology, 16(19), 1895–1904.
Norman,, M., Vuilleumier,, R., Springhorn,, A., Gawlik,, J., & Pyrowolakis,, G. (2016). Pentagone internalises glypicans to fine‐tune multiple signalling pathways. eLife, 5, e13301.
Ogiso,, Y., Tsuneizumi,, K., Masuda,, N., Sato,, M., & Tabata,, T. (2011). Robustness of the dpp morphogen activity gradient depends on negative feedback regulation by the inhibitory smad, dad. Development, Growth %26 Differentiation, 53(5), 668–678.
Oh,, H., & Irvine,, K. D. (2011). Cooperative regulation of growth by Yorkie and mad through bantam. Developmental Cell, 20(1), 109–122.
Othmer,, H. G., & Pate,, E. (1980). Scale‐invariance in reaction‐diffusion models of spatial pattern formation. Proceedings of the National Academy of Sciences of the United States of America, 77(7), 4180–4184.
Pan,, Y., Alégot,, H., Rauskolb,, C., & Irvine,, K. D. (2018). The dynamics of hippo signaling during Drosophila wing development. Development, 145(20), dev165712.
Pan,, Y., Heemskerk,, I., Ibar,, C., Shraiman,, B. I., & Irvine,, K. D. (2016). Differential growth triggers mechanical feedback that elevates hippo signaling. Proceedings of the National Academy of Sciences of the United States of America, 113(45), E6974–E6983.
Paravitorghabeh,, R., Soundarrajan,, D., & Zartman,, J. J. (2019). From spikes to intercellular waves: Tuning the strength of calcium stimulation modulates organ size control. bioRxiv, 649582.
Parisi,, F., Riccardo,, S., Daniel,, M., Saqcena,, M., Kundu,, N., Pession,, A., … Bellosta,, P. (2011). Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo. BMC Biology, 9(1), 65.
Parker,, J., & Struhl,, G. (2015). Scaling the Drosophila wing: TOR‐dependent target gene access by the hippo pathway transducer Yorkie. PLoS Biology, 13(10), e1002274.
Pastor‐Pareja,, J. C., & Xu,, T. (2011). Shaping cells and organs in Drosophila by opposing roles of fat body‐secreted collagen IV and perlecan. Developmental Cell, 21(2), 245–256.
Paul,, L., Wang,, S.‐H., Manivannan,, S. N., Bonanno,, L., Lewis,, S., Austin,, C. L., & Simcox,, A. (2013). Dpp‐induced EGFR signaling triggers postembryonic wing development in Drosophila. Proceedings of the National Academy of Sciences, 110(13), 5058–5063.
Perea,, D., Terriente,, J., & Díaz‐Benjumea,, F. J. (2009). Temporal and spatial windows delimit activation of the outer ring of wingless in the Drosophila wing. Developmental Biology, 328(2), 445–455.
Pérez‐Garijo,, A., Shlevkov,, E., & Morata,, G. (2009). The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development, 136(7), 1169–1177.
Peterson,, A. J., Jensen,, P. A., Shimell,, M. J., Stefancsik,, R., Wijayatonge,, R., Herder,, R., … O`Connor,, M. B. (2012). R‐smad competition controls activin receptor output in Drosophila. PLoS ONE, 7(5), e36548.
Peterson,, A. J., & O`Connor,, M. B. (2013). Activin receptor inhibition by Smad2 regulates Drosophila wing disc patterning through BMP‐response elements. Development, 140(3), 649–659.
Pinheiro,, D., & Bellaïche,, Y. (2018). Mechanical force‐driven adherens junction remodeling and epithelial dynamics. Developmental Cell, 47(1), 3–19.
Pinheiro,, D., Hannezo,, E., Herszterg,, S., Bosveld,, F., Gaugue,, I., Balakireva,, M., … Bellaïche,, Y. (2017). Transmission of cytokinesis forces via E‐cadherin dilution and actomyosin flows. Nature, 545(7652), 103–107.
Pocha,, S. M., & Knust,, E. (2013). Complexities of crumbs function and regulation in tissue morphogenesis. Current Biology, 23(7), R289–R293.
Raftery,, L. A., & Umulis,, D. M. (2012). Regulation of BMP activity and range in Drosophila wing development. Current Opinion in Cell Biology, 24(2), 158–165.
Rauskolb,, C., Cervantes,, E., Madere,, F., & Irvine,, K. D. (2019). Organization and function of tension‐dependent complexes at adherens junctions. Journal of Cell Science, 132(7), jcs224063.
Rauskolb,, C., Sun,, S., Sun,, G., Pan,, Y., & Irvine,, K. D. (2014). Cytoskeletal tension inhibits hippo signaling through an Ajuba‐warts complex. Cell, 158(1), 143–156.
Razzell,, W., Bustillo,, M. E., & Zallen,, J. A. (2018). The force‐sensitive protein Ajuba regulates cell adhesion during epithelial morphogenesis. The Journal of Cell Biology, 217(10), 3715–3730.
Reddy,, B. V. V. G., & Irvine,, K. D. (2013). Regulation of hippo signaling by EGFR‐MAPK signaling through Ajuba family proteins. Developmental Cell, 24(5), 459–471.
Restrepo,, S., & Basler,, K. (2016). Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R‐mediated intercellular calcium waves. Nature Communications, 7, 12450.
Restrepo,, S., Zartman,, J. J., & Basler,, K. (2014). Coordination of patterning and growth by the morphogen Dpp. Current Biology, 24(6), R245–R255.
Robins,, H., Li,, Y., & Padgett,, R. W. (2005). Incorporating structure to predict microRNA targets. Proceedings of the National Academy of Sciences, 102(11), 4006–4009.
Rodríguez,, I. (2004). The dachsous gene, a member of the cadherin family, is required for wg‐dependent pattern formation in the Drosophila wing disc. Development, 131(13), 3195–3206.
Rogulja,, D., & Irvine,, K. D. (2005). Regulation of cell proliferation by a morphogen gradient. Cell, 123(3), 449–461.
Rogulja,, D., Rauskolb,, C., & Irvine,, K. D. (2008). Morphogen control of wing growth through the fat signaling pathway. Developmental Cell, 15(2), 309–321.
Röper,, J.‐C., Mitrossilis,, D., Stirnemann,, G., Waharte,, F., Brito,, I., Fernandez‐Sanchez,, M.‐E., … Farge,, E. (2018). The major β‐catenin/E‐cadherin junctional binding site is a primary molecular mechano‐transductor of differentiation in vivo. eLife, 7, e33381.
Ruberte,, E., Marty,, T., Nellen,, D., Affolter,, M., & Basler,, K. (1995). An absolute requirement for both the type II and type I receptors, punt and thick veins, for Dpp signaling in vivo. Cell, 80(6), 889–897.
Rudolf,, K., Umetsu,, D., Aliee,, M., Sui,, L., Jülicher,, F., & Dahmann,, C. (2015). A local difference in hedgehog signal transduction increases mechanical cell bond tension and biases cell intercalations along the Drosophila anteroposterior compartment boundary. Development, 142(22), 3845–3858.
Salbreux,, G., Charras,, G., & Paluch,, E. (2012). Actin cortex mechanics and cellular morphogenesis. Trends in Cell Biology, 22(10), 536–545.
Sample,, C., & Shvartsman,, S. Y. (2010). Multiscale modeling of diffusion in the early Drosophila embryo. Proceedings of the National Academy of Sciences, 107, 10092–10096.
Sander,, V., Eivers,, E., Choi,, R. H., & De Robertis,, E. M. (2010). Drosophila Smad2 opposes mad signaling during wing vein development. PLoS ONE, 5(4), e10383.
Sansores‐Garcia,, L., Bossuyt,, W., Wada,, K.‐I., Yonemura,, S., Tao,, C., Sasaki,, H., & Halder,, G. (2011). Modulating F‐Actin organization induces organ growth by affecting the hippo pathway. The EMBO Journal, 30(12), 2325–2335.
Schluck,, T., & Aegerter,, C. M. (2010). Photo‐elastic properties of the wing imaginal disc of Drosophila. European Physical Journal E: Soft Matter and Biological Physics, 33(2), 111–115.
Schluck,, T., Nienhaus,, U., Aegerter‐Wilmsen,, T., & Aegerter,, C. M. (2013). Mechanical control of organ size in the development of the Drosophila wing disc. PLoS ONE, 8(10), e76171.
Schwank,, G., Dalessi,, S., Yang,, S. F., Yagi,, R., de Lachapelle,, A. M., Affolter,, M., … Basler,, K. (2011). Formation of the long range Dpp morphogen gradient. PLoS Biology, 9(7), e1001111.
Schwank,, G., Restrepo,, S., & Basler,, K. (2008). Growth regulation by Dpp: An essential role for Brinker and a non‐essential role for graded signaling levels. Development, 135(24), 4003–4013.
Schwank,, G., & Basler,, K. (2010). Regulation of organ growth by morphogen gradients. Cold Spring Harbor Perspectives in Biology, 2(1), a001669.
Schwank,, G., Tauriello,, G., Yagi,, R., Kranz,, E., Koumoutsakos,, P., & Basler,, K. (2011). Antagonistic growth regulation by Dpp and fat drives uniform cell proliferation. Developmental Cell, 20(1), 123–130.
Shimmi,, O., Umulis,, D., Othmer,, H. G., & O`Connor,, M. B. (2005). Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell, 120(6), 873–886.
Shimmi,, O., & O`Connor,, M. B. (2003). Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in bmp signals during dorsoventral patterning of the Drosophila embryo. Development, 130(19), 4673–4682.
Shraiman,, B. I. (2005). Mechanical feedback as a possible regulator of tissue growth. Proceedings of the National Academy of Sciences, 102(9), 3318–3323.
Singh,, A., Saha,, T., Begemann,, I., Ricker,, A., Nüsse,, H., Thorn‐Seshold,, O., … Matis,, M. (2018). Polarized microtubule dynamics directs cell mechanics and coordinates forces during epithelial morphogenesis. Nature Cell Biology, 20(10), 1126–1133.
Sopko,, R., & McNeill,, H. (2009). The skinny on fat: An enormous cadherin that regulates cell adhesion, tissue growth, and planar cell polarity. Current Opinion in Cell Biology, 21(5), 717–723.
Strutt,, H., & Strutt,, D. (2002). Nonautonomous planar polarity patterning in Drosophila: Dishevelled‐independent functions of frizzled. Developmental Cell, 3(6), 851–863.
Sugimura,, K., & Ishihara,, S. (2013). The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing. Development, 140(19), 4091–4101.
Sui,, L., Alt,, S., Weigert,, M., Dye,, N., Eaton,, S., Jug,, F., … Dahmann,, C. (2018). Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. Nature Communications, 9(1), 4620.
Sui,, L., Pflugfelder,, G. O., & Shen,, J. (2012). The dorsocross T‐box transcription factors promote tissue morphogenesis in the Drosophila wing imaginal disc. Development, 139(15), 2773–2782.
Suisse,, A., & Treisman,, J. E. (2019). Reduced SERCA function preferentially affects Wnt signaling by retaining E‐cadherin in the endoplasmic reticulum. Cell Reports, 26(2), 322–329.
Sun,, S., & Irvine,, K. D. (2016). Cellular organization and cytoskeletal regulation of the hippo signaling network. Trends in Cell Biology, 26(9), 694–704.
Sun,, S., Reddy,, B. V. V. G., & Irvine,, K. D. (2015). Localization of hippo signalling complexes and warts activation in vivo. Nature Communications, 6, 8402.
Swarup,, S., & Verheyen,, E. M. (2012). Wnt/wingless signaling in Drosophila. Cold Spring Harbor Perspectives in Biology, 4(6), a007930.
Takada,, S., Fujimori,, S., Shinozuka,, T., Takada,, R., & Mii,, Y. (2017). Differences in the secretion and transport of wnt proteins. The Biochemical Journal, 161(1), 1–7.
Takaesu,, N. T., Hyman‐Walsh,, C., Ye,, Y., Wisotzkey,, R. G., Stinchfield,, M. J., O`Connor,, M. B., … Newfeld,, S. J. (2006). dSno facilitates baboon signaling in the Drosophila brain by switching the affinity of Medea away from mad and toward dSmad2. Genetics, 174(3), 1299–1313.
Takeo,, S., Akiyama,, T., Firkus,, C., Aigaki,, T., & Nakato,, H. (2005). Expression of a secreted form of dally, a Drosophila glypican, induces overgrowth phenotype by affecting action range of hedgehog. Developmental Biology, 284(1), 204–218.
Teleman,, A. A., & Cohen,, S. M. (2000). Dpp gradient formation in the Drosophila wing imaginal disc. Cell, 103(6), 971–980.
Terriente,, J., Perea,, D., Suzanne,, M., & Díaz‐Benjumea,, F. J. (2008). The Drosophila gene zfh2 is required to establish proximal‐distal domains in the wing disc. Developmental Biology, 320(1), 102–112.
Thompson,, D.`. A. W. (1942). On growth and form (Vol. 2, 2nd ed.). Cambridge: Cambridge University Press.
Tlili,, S., Gay,, C., Graner,, F., Marcq,, P., Molino,, F., & Saramito,, P. (2015). Colloquium: Mechanical formalisms for tissue dynamics. European Physical Journal E: Soft Matter and Biological Physics, 38(5), 33.
Tozluoğlu,, M., Duda,, M., Kirkland,, N. J., Barrientos,, R., Burden,, J. J., Muñoz,, J. J., & Mao,, Y. (2019). Planar differential growth rates determine the position of folds in complex epithelia. bioRxiv, 515528.
Tsoumpekos,, G., Nemetschke,, L., & Knust,, E. (2018). Drosophila big bang regulates the apical cytocortex and wing growth through junctional tension. The Journal of Cell Biology, 217, 1033–1045.
Tsukasaki,, Y., Miyazaki,, N., Matsumoto,, A., Nagae,, S., Yonemura,, S., Tanoue,, T., … Takeichi,, M. (2014). Giant cadherins fat and Dachsous self‐bend to organize properly spaced intercellular junctions. Proceedings of the National Academy of Sciences, 111(45), 16011–16016.
Umulis,, D. M., & Othmer,, H. G. (2013a). Mechanisms of scaling in pattern formation. Development, 140(24), 4830–4843.
D. M. Umulis, and H. G. Othmer,. Scale invariance of morphogen‐mediated patterning by flux optimization. In 2012 5th International Conference on BioMedical Engineering and Informatics. IEEE, 2013b.
Uroz,, M., Wistorf,, S., Serra‐Picamal,, X., Conte,, V., Sales‐Pardo,, M., Roca‐Cusachs,, P., … Trepat,, X. (2018). Regulation of cell cycle progression by cell–cell and cell–matrix forces. Nature Cell Biology, 20(6), 646–654.
Venkatesan Iyer,, K., Piscitello‐Gómez,, R., Paijmans,, J., Jülicher,, F., & Eaton,, S. (2019). Epithelial viscoelasticity is regulated by mechanosensitive E‐cadherin turnover. Current Biology, 29(4), 578–591.
Vollmer,, J., Casares,, F., & Iber,, D. (2017). Growth and size control during development. Open Biology, 7(11), 170190.
Vuilleumier,, R., Springhorn,, A., Patterson,, L., Koidl,, S., Hammerschmidt,, M., Affolter,, M., & Pyrowolakis,, G. (2010). Control of Dpp morphogen signalling by a secreted feedback regulator. Nature Cell Biology, 12(6), 611–617.
Wang,, S.‐H., Simcox,, A., & Campbell,, G. (2000). Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development. Genes %26 Development, 14(18), 2271–2276.
Wang,, X., Zhang,, Y., & Blair,, S. S. (2019). Fat‐regulated adaptor protein dlish binds the growth suppressor expanded and controls its stability and ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 116(4), 1319–1324.
Wartlick,, O., Mumcu,, P., Jülicher,, F., & Gonzalez‐Gaitan,, M. (2011). Understanding morphogenetic growth control – Lessons from flies. Nature Reviews. Molecular Cell Biology, 12(9), 594–604.
Wartlick,, O., Mumcu,, P., Kicheva,, A., Bittig,, T., Seum,, C., Jülicher,, F., & Gonzalez‐Gaitan,, M. (2011). Dynamics of dpp signaling and proliferation control. Science, 331(6021), 1154–1159.
Wehrli,, M., Dougan,, S. T., Caldwell,, K., O`Keefe,, L., Schwartz,, S., Vaizel‐Ohayon,, D., … DiNardo,, S. (2000). Arrow encodes an ldl‐receptor‐related protein essential for wingless signalling. Nature, 407(6803), 527–530.
Wei,, S.‐Y., Escudero,, L. M., Yu,, F., Chang,, L.‐H., Chen,, L.‐Y., Ho,, Y.‐H., et al. (2005). Echinoid is a component of adherens junctions that cooperates with DE‐cadherin to mediate cell adhesion. Developmental Cell, 8(4), 493–504.
Weigmann,, K., Cohen,, S. M., & Lehner,, C. F. (1997). Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila cdc2 kinase. Development, 124(18), 3555–3563.
Whitworth,, A. J., & Russell,, S. (2003). Temporally dynamic response to wingless directs the sequential elaboration of the proximodistal axis of the Drosophila wing. Developmental Biology, 254(2), 277–288.
Widmann,, T. J., & Dahmann,, C. (2009). Wingless signaling and the control of cell shape in Drosophila wing imaginal discs. Developmental Biology, 334(1), 161–173.
Williams,, J. A., Paddock,, S. W., & Carroll,, S. B. (1993). Pattern formation in a secondary field: A hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development, 117(2), 571–584.
Wong,, H.‐C., Bourdelas,, A., Krauss,, A., Lee,, H.‐J., Shao,, Y., Wu,, D., … Zheng,, J. (2003). Direct binding of the PDZ domain of dishevelled to a conserved internal sequence in the c‐terminal region of frizzled. Molecular Cell, 12(5), 1251–1260.
Worley,, M. I., Setiawan,, L., & Hariharan,, I. K. (2013). TIE‐DYE: A combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development, 140(15), 3275–3284.
Xu,, J., Vanderzalm,, P. l. J., Ludwig,, M., Su,, T., Tokamov,, S. A., & Fehon,, R. G. (2018). Yorkie functions at the cell cortex to promote myosin activation in a non‐transcriptional manner. Developmental Cell, 46(3), 271–284.
Yamazaki,, Y., Palmer,, L., Alexandre,, C., Kakugawa,, S., Beckett,, K., Gaugue,, I., … Vincent,, J.‐P. (2016). Godzilla‐dependent transcytosis promotes wingless signalling in Drosophila wing imaginal discs. Nature Cell Biology, 18(4), 451–457.
Yan,, D., & Lin,, X. (2009). Shaping morphogen gradients by proteoglycans. Cold Spring Harbor Perspectives in Biology, 1(3), a002493.
Yang,, L., Meng,, F., Da Ma,, W. X., & Fang,, M. (2013). Bridging decapentaplegic and wingless signaling in Drosophila wings through repression of naked cuticle by Brinker. Development, 140(2), 413–422.
Yue,, T., Tian,, A., & Jiang,, J. (2012). The cell adhesion molecule echinoid functions as a tumor suppressor and upstream regulator of the hippo signaling pathway. Developmental Cell, 22(2), 255–267.
Zecca,, M., & Struhl,, G. (2002). Control of growth and patterning of the Drosophila wing imaginal disc by EGFR‐mediated signaling. Development, 129(6), 1369–1376.
Zecca,, M., & Struhl,, G. (2007a). Recruitment of cells into the Drosophila wing primordium by a feed‐forward circuit of vestigial autoregulation. Development, 134(16), 3001–3010.
Zecca,, M., & Struhl,, G. (2007b). Control of Drosophila wing growth by the vestigial quadrant enhancer. Development, 134(16), 3011–3020.
Zecca,, M., & Struhl,, G. (2010). A feed‐forward circuit linking wingless, fat‐dachsous signaling, and the warts‐hippo pathway to Drosophila wing growth. PLoS Biology, 8(6), e1000386.
Zeng,, Y. A., Rahnama,, M., Wang,, S., Lee,, W., & Verheyen,, E. M. (2008). Inhibition of Drosophila Wg signaling involves competition between mad and armadillo/β‐catenin for dTCF binding. PLoS ONE, 3(12), e3893.
Zheng,, Y., & Pan,, D. (2019). The hippo signaling pathway in development and disease. Developmental Cell, 50(3), 264–282.
Zhou,, S., Lo,, W.‐C., Suhalim,, J. L., Digman,, M. A., Gratton,, E., Nie,, Q., & Lander,, A. D. (2012). Free extracellular diffusion creates the Dpp morphogen gradient of the Drosophila wing disc. Current Biology, 22(8), 668–675.