Abboud,, G., Choi,, S. C., Kanda,, N., Zeumer‐Spataro,, L., Roopenian,, D. C., & Morel,, L. (2018). Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis. Frontiers in Immunology, 9, 1973.
Ahn,, J. K., Kim,, S., Hwang,, J., Kim,, J., Kim,, K. H., & Cha,, H. S. (2016). GC/TOF‐MS‐based metabolomic profiling in cultured fibroblast‐like synoviocytes from rheumatoid arthritis. Joint, Bone, Spine, 83, 707–713.
Akins,, N. S., Nielson,, T. C., & Le,, H. V. (2018). Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer. Current Topics in Medicinal Chemistry, 18, 494–504.
Almeida,, L., Lochner,, M., Berod,, L., & Sparwasser,, T. (2016). Metabolic pathways in T cell activation and lineage differentiation. Seminars in Immunology, 28, 514–524.
Basit,, F., Mathan,, T., Sancho,, D., & de Vries,, I. J. M. (2018). Human dendritic cell subsets undergo distinct metabolic reprogramming for immune response. Frontiers in Immunology, 9, 2489.
Beckers,, C., Ribbens,, C., Andre,, B., Marcelis,, S., Kaye,, O., Mathy,, L., … Malaise,, M. G. (2004). Assessment of disease activity in rheumatoid arthritis with (18)F‐FDG PET. Journal of Nuclear Medicine, 45, 956–964.
Biniecka,, M., Canavan,, M., McGarry,, T., Gao,, W., McCormick,, J., Cregan,, S., … Fearon,, U. (2016). Dysregulated bioenergetics: A key regulator of joint inflammation. Annals of the Rheumatic Diseases, 75, 2192–2200.
Bottini,, N., & Firestein,, G. S. (2013). Duality of fibroblast‐like synoviocytes in RA: Passive responders and imprinted aggressors. Nature Reviews Rheumatology, 9, 24–33.
Bustamante,, M. F., Garcia‐Carbonell,, R., Whisenant,, K. D., & Guma,, M. (2017). Fibroblast‐like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Research %26 Therapy, 19, 110.
Caro‐Maldonado,, A., Wang,, R., Nichols,, A. G., Kuraoka,, M., Milasta,, S., Sun,, L. D., … Rathmell,, J. C. (2014). Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF‐exposed B cells. Journal of Immunology, 192, 3626–3636.
Carruthers,, A., DeZutter,, J., Ganguly,, A., & Devaskar,, S. U. (2009). Will the original glucose transporter isoform please stand up! American Journal of Physiology. Endocrinology and Metabolism, 297, E836–E848.
Chang,, M., Hamilton,, J. A., Scholz,, G. M., Masendycz,, P., Macaulay,, S. L., & Elsegood,, C. L. (2009). Phosphatidylinostitol‐3 kinase and phospholipase C enhance CSF‐1‐dependent macrophage survival by controlling glucose uptake. Cellular Signalling, 21, 1361–1369.
Chen,, C., Pore,, N., Behrooz,, A., Ismail‐Beigi,, F., & Maity,, A. (2001). Regulation of glut1 mRNA by hypoxia‐inducible factor‐1. Interaction between H‐ras and hypoxia. The Journal of Biological Chemistry, 276, 9519–9525.
Choi,, S. C., Titov,, A. A., Abboud,, G., Seay,, H. R., Brusko,, T. M., Roopenian,, D. C., … Morel,, L. (2018). Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells. Nature Communications, 9, 4369.
Chung,, F. Y., Huang,, M. Y., Yeh,, C. S., Chang,, H. J., Cheng,, T. L., Yen,, L. C., … Lin,, S. R. (2009). GLUT1 gene is a potential hypoxic marker in colorectal cancer patients. BMC Cancer, 9, 241.
Cretenet,, G., Clerc,, I., Matias,, M., Loisel,, S., Craveiro,, M., Oburoglu,, L., … Taylor,, N. (2016). Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. Scientific Reports, 6, 24129.
Curiel,, R., Akin,, E. A., Beaulieu,, G., DePalma,, L., & Hashefi,, M. (2011). PET/CT imaging in systemic lupus erythematosus. Annals of the New York Academy of Sciences, 1228, 71–80.
Davignon,, J. L., Hayder,, M., Baron,, M., Boyer,, J. F., Constantin,, A., Apparailly,, F., … Cantagrel,, A. (2013). Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology (Oxford), 52, 590–598.
De Vivo,, D. C., Trifiletti,, R. R., Jacobson,, R. I., Ronen,, G. M., Behmand,, R. A., & Harik,, S. I. (1991). Defective glucose transport across the blood‐brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. The New England Journal of Medicine, 325, 703–709.
Deng,, D., & Yan,, N. (2016). GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Science, 25, 546–558.
Doughty,, C. A., Bleiman,, B. F., Wagner,, D. J., Dufort,, F. J., Mataraza,, J. M., Roberts,, M. F., & Chiles,, T. C. (2006). Antigen receptor‐mediated changes in glucose metabolism in B lymphocytes: Role of phosphatidylinositol 3‐kinase signaling in the glycolytic control of growth. Blood, 107, 4458–4465.
Dror,, E., Dalmas,, E., Meier,, D. T., Wueest,, S., Thevenet,, J., Thienel,, C., … Donath,, M. Y. (2017). Postprandial macrophage‐derived IL‐1beta stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nature Immunology, 18, 283–292.
Dufort,, F. J., Bleiman,, B. F., Gumina,, M. R., Blair,, D., Wagner,, D. J., Roberts,, M. F., … Chiles,, T. C. (2007). Cutting edge: IL‐4‐mediated protection of primary B lymphocytes from apoptosis via Stat6‐dependent regulation of glycolytic metabolism. Journal of Immunology, 179, 4953–4957.
Elzinga,, E. H., van der Laken,, C. J., Comans,, E. F., Boellaard,, R., Hoekstra,, O. S., Dijkmans,, B. A., … Voskuyl,, A. E. (2011). 18F‐FDG PET as a tool to predict the clinical outcome of infliximab treatment of rheumatoid arthritis: An explorative study. Journal of Nuclear Medicine, 52, 77–80.
Fang,, J., Zhou,, S. H., Fan,, J., & Yan,, S. X. (2015). Roles of glucose transporter‐1 and the phosphatidylinositol 3kinase/protein kinase B pathway in cancer radioresistance (review). Molecular Medicine Reports, 11, 1573–1581.
Fearon,, U., Canavan,, M., Biniecka,, M., & Veale,, D. J. (2016). Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nature Reviews Rheumatology, 12, 385–397.
Firestein,, G. S., & McInnes,, I. B. (2017). Immunopathogenesis of rheumatoid arthritis. Immunity, 46, 183–196.
Frauwirth,, K. A., Riley,, J. L., Harris,, M. H., Parry,, R. V., Rathmell,, J. C., Plas,, D. R., … Thompson,, C. B. (2002). The CD28 signaling pathway regulates glucose metabolism. Immunity, 16, 769–777.
Freemerman,, A. J., Johnson,, A. R., Sacks,, G. N., Milner,, J. J., Kirk,, E. L., Troester,, M. A., … Makowski,, L. (2014). Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)‐mediated glucose metabolism drives a proinflammatory phenotype. The Journal of Biological Chemistry, 289, 7884–7896.
Freemerman,, A. J., Zhao,, L., Pingili,, A. K., Teng,, B., Cozzo,, A. J., Fuller,, A. M., … Makowski,, L. (2019). Myeloid Slc2a1‐deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. Journal of Immunology, 202, 1265–1286.
Freitag,, J., Berod,, L., Kamradt,, T., & Sparwasser,, T. (2016). Immunometabolism and autoimmunity. Immunology and Cell Biology, 94, 925–934.
Fu,, Y., Maianu,, L., Melbert,, B. R., & Garvey,, W. T. (2004). Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: A role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells, Molecules %26 Diseases, 32, 182–190.
Galvan‐Pena,, S., & O`Neill,, L. A. (2014). Metabolic reprograming in macrophage polarization. Frontiers in Immunology, 5, 420.
Garcia,, S., Hartkamp,, L. M., Malvar‐Fernandez,, B., van Es,, I. E., Lin,, H., Wong,, J., … Reedquist,, K. A. (2016). Colony‐stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis. Arthritis Research %26 Therapy, 18, 75.
Garcia‐Carbonell,, R., Divakaruni,, A. S., Lodi,, A., Vicente‐Suarez,, I., Saha,, A., Cheroutre,, H., … Guma,, M. (2016). Critical role of glucose metabolism in rheumatoid arthritis fibroblast‐like synoviocytes. Arthritis %26 Rhematology, 68, 1614–1626.
Granchi,, C., Fortunato,, S., & Minutolo,, F. (2016). Anticancer agents interacting with membrane glucose transporters. Medchemcomm, 7, 1716–1729.
Haringman,, J. J., Gerlag,, D. M., Zwinderman,, A. H., Smeets,, T. J., Kraan,, M. C., Baeten,, D., … Tak,, P. P. (2005). Synovial tissue macrophages: A sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 64, 834–838.
Harty,, L. C., Biniecka,, M., O`Sullivan,, J., Fox,, E., Mulhall,, K., Veale,, D. J., & Fearon,, U. (2012). Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Annals of the Rheumatic Diseases, 71, 582–588.
Hernvann,, A., Cynober,, L., Aussel,, C., & Ekindjian,, O. G. (1991). Rheumatoid arthritis modifies basal and insulin‐mediated glucose uptake by human synoviocytes. Cellular and Molecular Biology, 37, 541–547.
Hogan,, A., Heyner,, S., Charron,, M. J., Copeland,, N. G., Gilbert,, D. J., Jenkins,, N. A., … Schultz,, G. A. (1991). Glucose transporter gene expression in early mouse embryos. Development, 113, 363–372.
Hollander,, A. P., Corke,, K. P., Freemont,, A. J., & Lewis,, C. E. (2001). Expression of hypoxia‐inducible factor 1alpha by macrophages in the rheumatoid synovium: Implications for targeting of therapeutic genes to the inflamed joint. Arthritis and Rheumatism, 44, 1540–1544.
Huang,, X., Chen,, J., Zeng,, W., Wu,, X., Chen,, M., & Chen,, X. (2019). Membrane‐enriched solute carrier family 2 member 1 (SLC2A1/GLUT1) in psoriatic keratinocytes confers sensitivity to 2‐deoxy‐D‐glucose (2‐DG) treatment. Experimental Dermatology, 28, 198–201.
Jacobs,, S. R., Herman,, C. E., Maciver,, N. J., Wofford,, J. A., Wieman,, H. L., Hammen,, J. J., & Rathmell,, J. C. (2008). Glucose uptake is limiting in T cell activation and requires CD28‐mediated Akt‐dependent and independent pathways. Journal of Immunology, 180, 4476–4486.
Johnson,, M. O., Wolf,, M. M., Madden,, M. Z., Andrejeva,, G., Sugiura,, A., Contreras,, D. C., … Rathmell,, J. C. (2018). Distinct regulation of Th17 and Th1 cell differentiation by glutaminase‐dependent metabolism. Cell, 175, 1780–1795 e19.
Kasahara,, M., & Hinkle,, P. C. (1977). Reconstitution and purification of the D‐glucose transporter from human erythrocytes. The Journal of Biological Chemistry, 252, 7384–7390.
Kavanagh Williamson,, M., Coombes,, N., Juszczak,, F., Athanasopoulos,, M., Khan,, M. B., Eykyn,, T. R., … Huthoff,, H. (2018). Upregulation of glucose uptake and hexokinase activity of primary human CD4+ T cells in response to infection with HIV‐1. Viruses, 10, 114.
Kim,, E. K., Kwon,, J. E., Lee,, S. Y., Lee,, E. J., Kim,, D. S., Moon,, S. J., … Cho,, M. L. (2017). IL‐17‐mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death %26 Disease, 8, e2565.
Klepper,, J., & Leiendecker,, B. (2007). GLUT1 deficiency syndrome—2007 update. Developmental Medicine and Child Neurology, 49, 707–716.
Koga,, T., Sato,, T., Furukawa,, K., Morimoto,, S., Endo,, Y., Umeda,, M., … Kawakami,, A. (2019). Promotion of calcium/calmodulin‐dependent protein kinase 4 by GLUT1‐dependent glycolysis in systemic lupus erythematosus. Arthritis %26 Rhematology, 71, 766–772.
Kozlovsky,, N., Rudich,, A., Potashnik,, R., Ebina,, Y., Murakami,, T., & Bashan,, N. (1997). Transcriptional activation of the Glut1 gene in response to oxidative stress in L6 myotubes. The Journal of Biological Chemistry, 272, 33367–33372.
Krawczyk,, C. M., Holowka,, T., Sun,, J., Blagih,, J., Amiel,, E., DeBerardinis,, R. J., … Pearce,, E. J. (2010). Toll‐like receptor‐induced changes in glycolytic metabolism regulate dendritic cell activation. Blood, 115, 4742–4749.
Kubota,, K., Ito,, K., Morooka,, M., Mitsumoto,, T., Kurihara,, K., Yamashita,, H., … Mimori,, A. (2009). Whole‐body FDG‐PET/CT on rheumatoid arthritis of large joints. Annals of Nuclear Medicine, 23, 783–791.
Kubota,, K., Yamashita,, H., & Mimori,, A. (2017). Clinical value of FDG‐PET/CT for the evaluation of rheumatic diseases: Rheumatoid arthritis, polymyalgia rheumatica, and relapsing polychondritis. Seminars in Nuclear Medicine, 47, 408–424.
Kundu‐Raychaudhuri,, S., Mitra,, A., Datta‐Mitra,, A., Chaudhari,, A. J., & Raychaudhuri,, S. P. (2016). In vivo quantification of mouse autoimmune arthritis by PET/CT. International Journal of Rheumatic Diseases, 19, 452–458.
Lee,, S. Y., Abel,, E. D., & Long,, F. (2018). Glucose metabolism induced by Bmp signaling is essential for murine skeletal development. Nature Communications, 9, 4831.
Leitch,, J. M., & Carruthers,, A. (2007). ATP‐dependent sugar transport complexity in human erythrocytes. American Journal of Physiology. Cell Physiology, 292, C974–C986.
Levine,, K. B., Cloherty,, E. K., Hamill,, S., & Carruthers,, A. (2002). Molecular determinants of sugar transport regulation by ATP. Biochemistry, 41, 12629–12638.
Li,, G. Q., Zhang,, Y., Liu,, D., Qian,, Y. Y., Zhang,, H., Guo,, S. Y., … Liu,, Y. Q. (2013). PI3 kinase/Akt/HIF‐1alpha pathway is associated with hypoxia‐induced epithelial‐mesenchymal transition in fibroblast‐like synoviocytes of rheumatoid arthritis. Molecular and Cellular Biochemistry, 372, 221–231.
Li,, W., Qu,, G., Choi,, S. C., Cornaby,, C., Titov,, A., Kanda,, N., … Morel,, L. (2019). Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters. Frontiers in Immunology, 10, 833.
Littlewood‐Evans,, A., Sarret,, S., Apfel,, V., Loesle,, P., Dawson,, J., Zhang,, J., … Carballido,, J. M. (2016). GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. The Journal of Experimental Medicine, 213, 1655–1662.
Liu,, Y., Cao,, Y., Zhang,, W., Bergmeier,, S., Qian,, Y., Akbar,, H., … Chen,, X. (2012). A small‐molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell‐cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Molecular Cancer Therapeutics, 11, 1672–1682.
Macintyre,, A. N., Gerriets,, V. A., Nichols,, A. G., Michalek,, R. D., Rudolph,, M. C., Deoliveira,, D., … Rathmell,, J. C. (2014). The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metabolism, 20, 61–72.
MacIver,, N. J., Michalek,, R. D., & Rathmell,, J. C. (2013). Metabolic regulation of T lymphocytes. Annual Review of Immunology, 31, 259–283.
Maratou,, E., Dimitriadis,, G., Kollias,, A., Boutati,, E., Lambadiari,, V., Mitrou,, P., & Raptis,, S. A. (2007). Glucose transporter expression on the plasma membrane of resting and activated white blood cells. European Journal of Clinical Investigation, 37, 282–290.
Matsui,, T., Nakata,, N., Nagai,, S., Nakatani,, A., Takahashi,, M., Momose,, T., … Koyasu,, S. (2009). Inflammatory cytokines and hypoxia contribute to 18F‐FDG uptake by cells involved in pannus formation in rheumatoid arthritis. Journal of Nuclear Medicine, 50, 920–926.
McGarry,, T., Biniecka,, M., Gao,, W., Cluxton,, D., Canavan,, M., Wade,, S., … Fearon,, U. (2017). Resolution of TLR2‐induced inflammation through manipulation of metabolic pathways in rheumatoid arthritis. Scientific Reports, 7, 43165.
McKinney,, E. F., & Smith,, K. G. C. (2018). Metabolic exhaustion in infection, cancer and autoimmunity. Nature Immunology, 19, 213–221.
Medina,, R. A., Southworth,, R., Fuller,, W., & Garlick,, P. B. (2002). Lactate‐induced translocation of GLUT1 and GLUT4 is not mediated by the phosphatidyl‐inositol‐3‐kinase pathway in the rat heart. Basic Research in Cardiology, 97, 168–176.
Menni,, C., Zierer,, J., Valdes,, A. M., & Spector,, T. D. (2017). Mixing omics: Combining genetics and metabolomics to study rheumatic diseases. Nature Reviews Rheumatology, 13, 174–181.
Michalek,, R. D., Gerriets,, V. A., Jacobs,, S. R., Macintyre,, A. N., MacIver,, N. J., Mason,, E. F., … Rathmell,, J. C. (2011). Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. Journal of Immunology, 186, 3299–3303.
Montel‐Hagen,, A., Blanc,, L., Boyer‐Clavel,, M., Jacquet,, C., Vidal,, M., Sitbon,, M., & Taylor,, N. (2008). The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis. Blood, 112, 4729–4738.
Montel‐Hagen,, A., Kinet,, S., Manel,, N., Mongellaz,, C., Prohaska,, R., Battini,, J. L., … Taylor,, N. (2008). Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell, 132, 1039–1048.
Mueckler,, M., & Thorens,, B. (2013). The SLC2 (GLUT) family of membrane transporters. Molecular Aspects of Medicine, 34, 121–138.
Naughton,, D., Whelan,, M., Smith,, E. C., Williams,, R., Blake,, D. R., & Grootveld,, M. (1993). An investigation of the abnormal metabolic status of synovial fluid from patients with rheumatoid arthritis by high field proton nuclear magnetic resonance spectroscopy. FEBS Letters, 317, 135–138.
Neildez‐Nguyen,, T. M. A., Bigot,, J., Da Rocha,, S., Corre,, G., Boisgerault,, F., Paldi,, A., & Galy,, A. (2015). Hypoxic culture conditions enhance the generation of regulatory T cells. Immunology, 144, 431–443.
Newby,, A. C. (2008). Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 2108–2114.
O`Neill,, L. A. (2015). A broken krebs cycle in macrophages. Immunity, 42, 393–394.
O`Neill,, L. A., Kishton,, R. J., & Rathmell,, J. (2016). A guide to immunometabolism for immunologists. Nature Reviews Immunology, 16, 553–565.
Okamura,, K., Yonemoto,, Y., Arisaka,, Y., Takeuchi,, K., Kobayashi,, T., Oriuchi,, N., … Takagishi,, K. (2012). The assessment of biologic treatment in patients with rheumatoid arthritis using FDG‐PET/CT. Rheumatology (Oxford), 51, 1484–1491.
Okamura,, K., Yonemoto,, Y., Okura,, C., Higuchi,, T., Tsushima,, Y., & Takagishi,, K. (2014). Evaluation of tocilizumab therapy in patients with rheumatoid arthritis based on FDG‐PET/CT. BMC Musculoskeletal Disorders, 15, 393.
Okano,, T., Saegusa,, J., Nishimura,, K., Takahashi,, S., Sendo,, S., Ueda,, Y., & Morinobu,, A. (2017). 3‐bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Scientific Reports, 7, 42412.
Palmer,, C. S., Ostrowski,, M., Balderson,, B., Christian,, N., & Crowe,, S. M. (2015). Glucose metabolism regulates T cell activation, differentiation, and functions. Frontiers in Immunology, 6, 1.
Palmer,, W. E., Rosenthal,, D. I., Schoenberg,, O. I., Fischman,, A. J., Simon,, L. S., Rubin,, R. H., & Polisson,, R. P. (1995). Quantification of inflammation in the wrist with gadolinium‐enhanced MR imaging and PET with 2‐[F‐18]‐fluoro‐2‐deoxy‐D‐glucose. Radiology, 196, 647–655.
Panneton,, V., Bagherzadeh Yazdchi,, S., Witalis,, M., Chang,, J., & Suh,, W. K. (2018). ICOS signaling controls induction and maintenance of collagen‐induced arthritis. Journal of Immunology, 200, 3067–3076.
Pantel,, A., Teixeira,, A., Haddad,, E., Wood,, E. G., Steinman,, R. M., & Longhi,, M. P. (2014). Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biology, 12, e1001759.
Patching,, S. G. (2017). Glucose transporters at the blood‐brain barrier: Function, regulation and gateways for drug delivery. Molecular Neurobiology, 54, 1046–1077.
Perl,, A., Hanczko,, R., Lai,, Z. W., Oaks,, Z., Kelly,, R., Borsuk,, R., … Phillips,, P. E. (2015). Comprehensive metabolome analyses reveal N‐acetylcysteine‐responsive accumulation of kynurenine in systemic lupus erythematosus: Implications for activation of the mechanistic target of rapamycin. Metabolomics, 11, 1157–1174.
Quinonez‐Flores,, C. M., Gonzalez‐Chavez,, S. A., & Pacheco‐Tena,, C. (2016). Hypoxia and its implications in rheumatoid arthritis. Journal of Biomedical Science, 23, 62.
Rhoads,, J. P., Major,, A. S., & Rathmell,, J. C. (2017). Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nature Reviews Rheumatology, 13, 313–320.
Roiniotis,, J., Dinh,, H., Masendycz,, P., Turner,, A., Elsegood,, C. L., Scholz,, G. M., & Hamilton,, J. A. (2009). Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. Journal of Immunology, 182, 7974–7981.
Roivainen,, A., Hautaniemi,, S., Mottonen,, T., Nuutila,, P., Oikonen,, V., Parkkola,, R., … Yli‐Kerttula,, T. (2013). Correlation of 18F‐FDG PET/CT assessments with disease activity and markers of inflammation in patients with early rheumatoid arthritis following the initiation of combination therapy with triple oral antirheumatic drugs. European Journal of Nuclear Medicine and Molecular Imaging, 40, 403–410.
Shao,, Y., Wellman,, T. L., Lounsbury,, K. M., & Zhao,, F. Q. (2014). Differential regulation of GLUT1 and GLUT8 expression by hypoxia in mammary epithelial cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 307, R237–R247.
Shi,, L. Z., Wang,, R., Huang,, G., Vogel,, P., Neale,, G., Green,, D. R., & Chi,, H. (2011). HIF1alpha‐dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. The Journal of Experimental Medicine, 208, 1367–1376.
Shibuya,, K., Okada,, M., Suzuki,, S., Seino,, M., Seino,, S., Takeda,, H., & Kitanaka,, C. (2015). Targeting the facilitative glucose transporter GLUT1 inhibits the self‐renewal and tumor‐initiating capacity of cancer stem cells. Oncotarget, 6, 651–661.
Smolen,, J. S., & Aletaha,, D. (2015). Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nature Reviews Rheumatology, 11, 276–289.
Song,, G., Lu,, Q., Fan,, H., Zhang,, X., Ge,, L., Tian,, R., … Wang,, L. (2019). Inhibition of hexokinases holds potential as treatment strategy for rheumatoid arthritis. Arthritis Research %26 Therapy, 21, 87.
Suto,, T., Okamura,, K., Yonemoto,, Y., Okura,, C., Tsushima,, Y., & Takagishi,, K. (2016). Prediction of large joint destruction in patients with rheumatoid arthritis using 18F‐FDG PET/CT and disease activity score. Medicine (Baltimore), 95, e2841.
Thwe,, P. M., Pelgrom,, L. R., Cooper,, R., Beauchamp,, S., Reisz,, J. A., D`Alessandro,, A., … Amiel,, E. (2017). Cell‐intrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses. Cell Metabolism, 26, 558–567 e5.
Tsokos,, G. C., Lo,, M. S., Costa Reis,, P., & Sullivan,, K. E. (2016). New insights into the immunopathogenesis of systemic lupus erythematosus. Nature Reviews Rheumatology, 12, 716–730.
Udalova,, I. A., Mantovani,, A., & Feldmann,, M. (2016). Macrophage heterogeneity in the context of rheumatoid arthritis. Nature Reviews Rheumatology, 12, 472–485.
Wang,, D., Pascual,, J. M., Yang,, H., Engelstad,, K., Jhung,, S., Sun,, R. P., & De Vivo,, D. C. (2005). Glut‐1 deficiency syndrome: Clinical, genetic, and therapeutic aspects. Annals of Neurology, 57, 111–118.
Wang,, D., Pascual,, J. M., Yang,, H., Engelstad,, K., Mao,, X., Cheng,, J., … De Vivo,, D. C. (2006). A mouse model for Glut‐1 haploinsufficiency. Human Molecular Genetics, 15, 1169–1179.
Wang,, R., Dillon,, C. P., Shi,, L. Z., Milasta,, S., Carter,, R., Finkelstein,, D., … Green,, D. R. (2011). The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity, 35, 871–882.
Warburg,, O. (1956). On the origin of cancer cells. Science, 123, 309–314.
Waters,, L. R., Ahsan,, F. M., Wolf,, D. M., Shirihai,, O., & Teitell,, M. A. (2018). Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience, 5, 99–109.
Weyand,, C. M., & Goronzy,, J. J. (2017). Immunometabolism in early and late stages of rheumatoid arthritis. Nature Reviews Rheumatology, 13, 291–301.
Wieman,, H. L., Wofford,, J. A., & Rathmell,, J. C. (2007). Cytokine stimulation promotes glucose uptake via phosphatidylinositol‐3 kinase/Akt regulation of Glut1 activity and trafficking. Molecular Biology of the Cell, 18, 1437–1446.
Yang,, P. T., Kasai,, H., Xiao,, W. G., Zhao,, L. J., He,, L. M., Yamashita,, A., … Ito,, M. (2006). Increased expression of macrophage colony‐stimulating factor in ankylosing spondylitis and rheumatoid arthritis. Annals of the Rheumatic Diseases, 65, 1671–1672.
Yang,, X. Y., Zheng,, K. D., Lin,, K., Zheng,, G., Zou,, H., Wang,, J. M., … Wang,, J. G. (2015). Energy metabolism disorder as a contributing factor of rheumatoid arthritis: A comparative proteomic and metabolomic study. PLoS One, 10, e0132695.
Yang,, Z., Fujii,, H., Mohan,, S. V., Goronzy,, J. J., & Weyand,, C. M. (2013). Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. The Journal of Experimental Medicine, 210, 2119–2134.
Yang,, Z., Shen,, Y., Oishi,, H., Matteson,, E. L., Tian,, L., Goronzy,, J. J., & Weyand,, C. M. (2016). Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Science Translational Medicine, 8, 331ra38.
Yin,, Y., Choi,, S. C., Xu,, Z., Perry,, D. J., Seay,, H., Croker,, B. P., … Morel,, L. (2015). Normalization of CD4+ T cell metabolism reverses lupus. Science Translational Medicine, 7, 274ra18.
Yin,, Y., Choi,, S. C., Xu,, Z., Zeumer,, L., Kanda,, N., Croker,, B. P., & Morel,, L. (2016). Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. Journal of Immunology, 196, 80–90.
Young,, S. P., Kapoor,, S. R., Viant,, M. R., Byrne,, J. J., Filer,, A., Buckley,, C. D., … Raza,, K. (2013). The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis and Rheumatism, 65, 2015–2023.
Zeng,, H., Cohen,, S., Guy,, C., Shrestha,, S., Neale,, G., Brown,, S. A., … Chi,, H. (2016). mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity, 45, 540–554.
Zhang,, Z., Zi,, Z., Lee,, E. E., Zhao,, J., Contreras,, D. C., South,, A. P., … Wang,, R. C. (2018). Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nature Medicine, 24, 617–627.
Zhou,, M., Qin,, S., Chu,, Y., Wang,, F., Chen,, L., & Lu,, Y. (2014). Immunolocalization of MMP‐2 and MMP‐9 in human rheumatoid synovium. International Journal of Clinical and Experimental Pathology, 7, 3048–3056.