Arabameri,, A., Asemani,, D., & Hajati,, J. (2019). Mathematical model of cancer immunotherapy by dendritic cells combined with tumor hypoxia treatment. 2018 25th Iranian Conference on Biomedical Engineering and 2018 3rd International Iranian Conference on Biomedical Engineering, ICBME 2018.
Arulraj,, T., & Barik,, D. (2018). Mathematical modeling identifies Lck as a potential mediator for PD‐1 induced inhibition of early TCR signaling. PLoS ONE, 13, e0206232. https://doi.org/10.1371/journal.pone.0206232
Bao,, X., Shi,, R., Zhang,, K., Xin,, S., Li,, X., Zhao,, Y., & Wang,, Y. (2019). Immune landscape of invasive ductal carcinoma tumor microenvironment identifies a prognostic and immunotherapeutically relevant gene signature. Frontiers in Oncology, 9, 903. https://doi.org/10.3389/fonc.2019.00903
Barbarroux,, L., Michel,, P., Adimy,, M., & Crauste,, F. (2018). A multiscale model of the CD8 T cell immune response structured by intracellular content. Discrete and Continuous Dynamical Systems—Series B, 23, 3969–4002. https://doi.org/10.3934/dcdsb.2018120
Brennan,, J. J., & Gilmore,, T. D. (2018). Evolutionary origins of toll‐like receptor signaling. Molecular Biology and Evolution, 35, 1576–1587. https://doi.org/10.1093/molbev/msy050
Byrne‐Hoffman,, C., & Klinke,, D. J. (2015). A quantitative systems pharmacology perspective on cancer immunology. Processes, 3, 235–256. https://doi.org/10.3390/pr3020235
Cappuccio,, A., Tieri,, P., & Castiglione,, F. (2016). Multiscale modelling in immunology: A review. Briefings in Bioinformatics, 17, 408–418. https://doi.org/10.1093/bib/bbv012
Chylek,, L. a., Akimov,, V., Dengjel,, J., Rigbolt,, K. T. G., Hu,, B., Hlavacek,, W. S., & Blagoev,, B. (2014). Phosphorylation site dynamics of early T‐cell receptor signaling. PLoS ONE, L(8), e104240. https://doi.org/10.1371/journal.pone.0104240
Couzin‐Fankel,, J. (2013). Breakthrough of the year 2013. Cancer immunotherapy Science, 342, 1432–1433.
Diefenbach,, A., Jensen,, E. R., Jamieson,, A. M., & Raulet,, D. H. (2001). Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature, 413, 165–171. https://doi.org/10.1038/35093109
Eftimie,, R., & Eftimie,, G. (2018). Tumour‐associated macrophages and oncolytic virotherapies: A mathematical investigation into a complex dynamics. Letters in Biomathematics, 5, S6–S35. https://doi.org/10.1080/23737867.2018.1430518
Eftimie,, R., Gillard,, J. J., & Cantrell,, D. A. (2016). Mathematical models for immunology: Current state of the art and future research directions. Bulletin of Mathematical Biology, 78, 2091–2134. https://doi.org/10.1007/s11538-016-0214-9
El‐Kenawi,, A., Gatenbee,, C., Robertson‐Tessi,, M., Bravo,, R., Dhillon,, J., Balagurunathan,, Y., … Gillies,, R. (2019). Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. British Journal of Cancer, 121, 556–566. https://doi.org/10.1038/s41416-019-0542-2
Fallahi‐Sichani,, M., Schaller,, M. A., Kirschner,, D. E., Kunkel,, S. L., & Linderman,, J. J. (2010). Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma. PLoS Computational Biology, 6(5), e1000778. https://doi.org/10.1371/journal.pcbi.1000778
Fesnak,, A. D., June,, C. H., & Levine,, B. L. (2016). Engineered T cells: The promise and challenges of cancer immunotherapy. Nature Reviews Cancer, 16(9), 566–581. https://doi.org/10.1038/nrc.2016.97
Figueiredo,, A. S., Höfer,, T., Klotz,, C., Sers,, C., Hartmann,, S., Lucius,, R., & Hammerstein,, P. (2009). Modelling and simulating interleukin‐10 production and regulation by macrophages after stimulation with an immunomodulator of parasitic nematodes. FEBS Journal, 276, 3454–3469. https://doi.org/10.1111/j.1742-4658.2009.07068.x
Friedmann,, K. S., Bozem,, M., & Hoth,, M. (2019). Calcium signal dynamics in T lymphocytes: Comparing in vivo and in vitro measurements. Seminars in Cell and Developmental Biology, 94, 84–93. https://doi.org/10.1016/j.semcdb.2019.01.004
Gao,, X., Arpin,, C., Marvel,, J., Prokopiou,, S. A., Gandrillon,, O., & Crauste,, F. (2016). IL‐2 sensitivity and exogenous IL‐2 concentration gradient tune the productive contact duration of CD8 + T cell‐APC: A multiscale modeling study. BMC Systems Biology, 10, 77. https://doi.org/10.1186/s12918-016-0323-y
Girel,, S., Arpin,, C., Marvel,, J., Gandrillon,, O., & Crauste,, F. (2019). Model‐based assessment of the role of uneven partitioning of molecular content on heterogeneity and regulation of differentiation in CD8 T‐cell immune responses. Frontiers in Immunology, 10, 77. https://doi.org/10.3389/fimmu.2019.00230
Gong,, C., Milberg,, O., Wang,, B., Vicini,, P., Narwal,, R., Roskos,, L., & Popel,, A. S. (2017). A computational multiscale agent‐based model for simulating spatio‐temporal tumour immune response to PD1 and PDL1 inhibition. Journal of the Royal Society Interface, 14, 20170320. https://doi.org/10.1098/rsif.2017.0320
He,, L., Kniss,, A., San‐Miguel,, A., Rouse,, T., Kemp,, M. L., & Lu,, H. (2015). An automated programmable platform enabling multiplex dynamic stimuli delivery and cellular response monitoring for high‐throughput suspension single‐cell signaling studies. Lab on a Chip, 15, 1497–1507. https://doi.org/10.1039/c4lc01070a
Hoffman,, F., Gavaghan,, D., Osborne,, J., Barrett,, I. P., You,, T., Ghadially,, H., … Byrne,, H. M. (2018). A mathematical model of antibody‐dependent cellular cytotoxicity (ADCC). Journal of Theoretical Biology, 436, 39–50. https://doi.org/10.1016/j.jtbi.2017.09.031
Hui,, E., Cheung,, J., Zhu,, J., Su,, X., Taylor,, M. J., Wallweber,, H. A., … Vale,, R. D. (2017). T cell costimulatory receptor CD28 is a primary target for PD‐1–mediated inhibition. Science, 4(March), eaaf1292. https://doi.org/10.1126/science.aaf1292
Junkin,, M., Kaestli,, A. J., Cheng,, Z., Jordi,, C., Albayrak,, C., Hoffmann,, A., & Tay,, S. (2016). High‐content quantification of single‐cell immune dynamics. Cell Reports, 15, 411–422. https://doi.org/10.1016/j.celrep.2016.03.033
Kaech,, S. M., & Cui,, W. (2012). Transcriptional control of effector and memory CD8+ T cell differentiation. Nature Reviews Immunology, 12, 749–761. https://doi.org/10.1038/nri3307
Kather,, J. N., Poleszczuk,, J., Suarez‐Carmona,, M., Krisam,, J., Charoentong,, P., Valous,, N. A., … Halama,, N. (2017). In silico modeling of immunotherapy and stroma‐targeting therapies in human colorectal cancer. Cancer Research, 77, 6442–6452. https://doi.org/10.1158/0008-5472.CAN-17-2006
Kim,, R., Woods,, T., II, & Radunskaya,, A. (2018). Mathematical modeling of tumor immune interactions: A closer look at the role of a PD‐L1 inhibitor in cancer immunotherapy. SPORA: A Journal of Biomathematics, 4(1), 25–41. http://doi.org/10.30707/SPORA4.1Radunskaya
Knutsdottir,, H., Condeelis,, J. S., & Palsson,, E. (2016). 3‐D individual cell based computational modeling of tumor cell‐macrophage paracrine signaling mediated by EGF and CSF‐1 gradients. Integrative Biology (United Kingdom), 8, 104–119. https://doi.org/10.1039/c5ib00201j
Knútsdóttir,, H., Pálsson,, E., & Edelstein‐Keshet,, L. (2014). Mathematical model of macrophage‐facilitated breast cancer cells invasion. Journal of Theoretical Biology, 357, 184–199. https://doi.org/10.1016/j.jtbi.2014.04.031
Konstorum,, A., Vella,, A. T., Adler,, A. J., & Laubenbacher,, R. C. (2017). Addressing current challenges in cancer immunotherapy with mathematical and computational modelling. Journal of the Royal Society Interface, 14, 20170150. https://doi.org/10.1098/rsif.2017.0150
Köse,, E., Moore,, S., Ofodile,, C., Radunskaya,, A., Swanson,, E. R., & Zollinger,, E. (2017). Immuno‐kinetics of immunotherapy: Dosing with DCs. Letters in Biomathematics, 4, 39–58. https://doi.org/10.1080/23737867.2017.1289129
Lavin,, Y., Kobayashi,, S., Leader,, A., Amir,, E., Elefant,, N., Bigenwald,, C., … Merad,, M. (2017). Innate immune landscape in early lung adenocarcinoma by paired single‐cell analyses. Cell, 169, 750–765.e17. https://doi.org/10.1016/j.cell.2017.04.014
Leonard,, F., Curtis,, L. T., Yesantharao,, P., Tanei,, T., Alexander,, J. F., Wu,, M., … Godin,, B. (2016). Enhanced performance of macrophage‐encapsulated nanoparticle albumin‐bound‐paclitaxel in hypo‐perfused cancer lesions. Nanoscale, 8, 12544–12552. https://doi.org/10.1039/c5nr07796f
Li,, X., & Xu,, J. X. (2015). A mathematical model of immune response to tumor invasion incorporated with danger model. Journal of Biological Systems, 23, 505–526. https://doi.org/10.1142/S0218339015500266
Li,, X., Jolly,, M. K., George,, J. T., Pienta,, K. J., & Levine,, H. (2019). Computational modeling of the crosstalk between macrophage polarization and tumor cell plasticity in the tumor microenvironment. Frontiers in Oncology, 9, 505–526 https://doi.org/10.3389/fonc.2019.00010
Liao,, K. L., Bai,, X. F., & Friedman,, A. (2014a). Mathematical modeling of Interleukin‐27 induction of anti‐tumor T cells response. PLoS ONE, 9, e91844. https://doi.org/10.1371/journal.pone.0091844
Liao,, K. L., Bai,, X. F., & Friedman,, A. (2014b). Mathematical modeling of Interleukin‐35 promoting tumor growth and angiogenesis. PLoS ONE, 9, e110126. https://doi.org/10.1371/journal.pone.0110126
Luckheeram,, R. V., Zhou,, R., Verma,, A. D., & Xia,, B. (2012). CD4 +T cells: Differentiation and functions. Clinical and Developmental Immunology, 2012, 1–12. https://doi.org/10.1155/2012/925135
Mahasa,, K. J., Ouifki,, R., Eladdadi,, A., & de Pillis,, L. (2016). Mathematical model of tumor–immune surveillance. Journal of Theoretical Biology, 404, 312–330. https://doi.org/10.1016/j.jtbi.2016.06.012
Mahlbacher,, G., Curtis,, L. T., Lowengrub,, J., & Frieboes,, H. B. (2018). Mathematical modeling of tumor‐associated macrophage interactions with the cancer microenvironment. Journal for ImmunoTherapy of Cancer, 6, 10. https://doi.org/10.1186/s40425-017-0313-7
Mahlbacher,, G. E., Reihmer,, K. C., & Frieboes,, H. B. (2019). Mathematical modeling of tumor‐immune cell interactions. Journal of Theoretical Biology, 469, 47–60. https://doi.org/10.1016/j.jtbi.2019.03.002
Maiti,, S., Dai,, W., Alaniz,, R. C., Hahn,, J., & Jayaraman,, A. (2015). Mathematical modeling of pro‐ and anti‐inflammatory signaling in macrophages. Pro, 3, 1–18. https://doi.org/10.3390/pr3010001
Mandal,, R., Şenbabaoğlu,, Y., Desrichard,, A., Havel,, J. J., Dalin,, M. G., Riaz,, N., … Morris,, L. G. T. (2016). The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight, 1, e89829. https://doi.org/10.1172/jci.insight.89829
Mesecke,, S., Urlaub,, D., Busch,, H., Eils,, R., & Watzl,, C. (2014). Integration of activating and inhibitory receptor signaling by regulated phosphorylation of Vav1 in immune cells. Science Signaling, 4(175), ra36. https://doi.org/10.1126/scisignal.2001325
Milberg,, O., Gong,, C., Jafarnejad,, M., Bartelink,, I. H., Wang,, B., Vicini,, P., … Popel,, A. S. (2019). A QSP model for predicting clinical responses to monotherapy, combination and sequential therapy following CTLA‐4, PD‐1, and PD‐L1 checkpoint blockade. Scientific Reports, 9, 11286. https://doi.org/10.1038/s41598-019-47802-4
Musante,, C. J., Ramanujan,, S., Schmidt,, B. J., Ghobrial,, O. G., Lu,, J., & Heatherington,, A. C. (2017). Quantitative systems pharmacology: A case for disease models. Clinical Pharmacology and Therapeutics, 101, 24–27. https://doi.org/10.1002/cpt.528
Norton,, K.‐A., Gong,, C., Jamalian,, S., & Popel,, A. S. (2019). Multiscale agent‐based and hybrid modeling of the tumor immune microenvironment. Processes (Basel, Switzerland), 7(1), 37. https://doi.org/10.3390/pr7010037
O`Malley,, G., Treacy,, O., Lynch,, K., Naicker,, S. D., Leonard,, N. A., Lohan,, P., … Ryan,, A. E. (2018). Stromal cell PD‐L1 inhibits CD8 + T‐cell antitumor immune responses and promotes colon cancer. Cancer Immunology Research, 6, 1426–1441. https://doi.org/10.1158/2326-6066.CIR-17-0443
Oiseth,, S. J., & Aziz,, M. S. (2017). Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. Journal of Cancer Metastasis and Treatment, 3, 250. https://doi.org/10.20517/2394-4722.2017.41
Owen,, M. R., Stamper,, I. J., Muthana,, M., Richardson,, G. W., Dobson,, J., Lewis,, C. E., & Byrne,, H. M. (2011). Mathematical modeling predicts synergistic antitumor effects of combining a macrophage‐based, hypoxia‐targeted gene therapy with chemotherapy. Cancer Research, 71, 2826–2837. https://doi.org/10.1158/0008-5472.CAN-10-2834
Pandya,, P. H., Murray,, M. E., Pollok,, K. E., & Renbarger,, J. L. (2016). The immune system in cancer pathogenesis: Potential therapeutic approaches. Journal of Immunology Research, 2016, 4273943. https://doi.org/10.1155/2016/4273943
Poggi,, A., Varesano,, S., & Zocchi,, M. R. (2018). How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive. Frontiers in Immunology, 9, 262. https://doi.org/10.3389/fimmu.2018.00262
Prokopiou,, S. A., Barbarroux,, L., Bernard,, S., Mafille,, J., Leverrier,, Y., Arpin,, C., … Crauste,, F. (2014). Multiscale modeling of the early CD8 T‐cell immune response in lymph nodes: An integrative study. Computation, 2, 159–181. https://doi.org/10.3390/computation2040159
Ray,, J. C. J., Wang,, J., Chan,, J., & Kirschner,, D. E. (2008). The timing of TNF and IFN‐γ signaling affects macrophage activation strategies during Mycobacterium tuberculosis infection. Journal of Theoretical Biology, 252, 24–38. https://doi.org/10.1016/j.jtbi.2008.01.010
Ribas,, A., & Wolchok,, J. D. (2018). Cancer immunotherapy using checkpoint blockade. Science, 359, 1350–1355. https://doi.org/10.1126/science.aar4060
Robertson‐Tessi,, M., El‐Kareh,, A., & Goriely,, A. (2012). A mathematical model of tumor‐immune interactions. Journal of Theoretical Biology, 294, 56–73. https://doi.org/10.1016/j.jtbi.2011.10.027
Robertson‐Tessi,, M., El‐Kareh,, A., & Goriely,, A. (2015). A model for effects of adaptive immunity on tumor response to chemotherapy and chemoimmunotherapy. Journal of Theoretical Biology, 380, 569–584. https://doi.org/10.1016/j.jtbi.2015.06.009
Rohrs,, J. A., Wang,, P., & Finley,, S. D. (2019). Understanding the dynamics of T‐cell activation in health and disease through the lens of computational modeling. JCO Clinical Cancer Informatics, 3, 1–8. https://doi.org/10.1200/cci.18.00057
Shen,, M., Sun,, Q., Wang,, J., Pan,, W., & Ren,, X. (2016). Positive and negative functions of B lymphocytes in tumors. Oncotarget, 7, 55828–55839. https://doi.org/10.18632/oncotarget.10094
Sung,, M. H., Li,, N., Lao,, Q., Gottschalk,, R. A., Hager,, G. L., & Fraser,, I. D. C. (2014). Switching of the relative dominance between feedback mechanisms in lipopolysaccharide‐induced NF‐κB signaling. Science Signaling, 7, ra6. https://doi.org/10.1126/scisignal.2004764
Swat,, M. H., Thomas,, G. L., Belmonte,, J. M., Shirinifard,, A., Hmeljak,, D., & Glazier,, J. A. (2012). Chapter 13 ‐ multi‐scale modeling of tissues using CompuCell3D. In A. R. Asthagiri, & C. B. Arkin, (Eds.), Computational methods in cell biology (Vol. 110, pp. 325–366). Waltham, MA: Academic Press.
Szeto,, G. L., & Finley,, S. D. (2019). Integrative approaches to cancer immunotherapy. Trends in Cancer, 5, 400–410. https://doi.org/10.1016/j.trecan.2019.05.010
Thorsson,, V., Gibbs,, D. L., Brown,, S. D., Wolf,, D., Bortone,, D. S., Ou Yang,, T. H., … Shmulevich,, I. (2018). The immune landscape of cancer. Immunity, 48, 812–830. https://doi.org/10.1016/j.immuni.2018.03.023
Vaughan,, L. E., Ranganathan,, P. R., Kumar,, R. G., Wagner,, A. K., & Rubin,, J. E. (2018). A mathematical model of neuroinflammation in severe clinical traumatic brain injury. Journal of Neuroinflammation, 15, 345. https://doi.org/10.1186/s12974-018-1384-1
Xue,, Q., Lu,, Y., Eisele,, M. R., Sulistijo,, E. S., Khan,, N., Fan,, R., & Miller‐Jensen,, K. (2015). Analysis of single‐cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Science Signaling, 8, ra59. https://doi.org/10.1126/scisignal.aaa2155
Zhang,, L., Zhao,, Y., Dai,, Y., Cheng,, J. N., Gong,, Z., Feng,, Y., … Zhu,, B. (2018). Immune landscape of colorectal cancer tumor microenvironment from different primary tumor location. Frontiers in Immunology, 9, 1578. https://doi.org/10.3389/fimmu.2018.01578
Zhao,, S. G., Lehrer,, J., Chang,, S. L., Das,, R., Erho,, N., Liu,, Y., … Feng,, F. Y. (2019). The immune landscape of prostate cancer and nomination of PD‐L2 as a potential therapeutic target. Journal of the National Cancer Institute, 111, 301–310. https://doi.org/10.1093/jnci/djy141
Zheng,, Y., Bao,, J., Zhao,, Q., Zhou,, T., & Sun,, X. (2018). A spatio‐temporal model of macrophage‐mediated drug resistance in glioma immunotherapy. Molecular Cancer Therapeutics, 17, 814–824. https://doi.org/10.1158/1535-7163.MCT-17-0634
Ziani,, L., Chouaib,, S., & Thiery,, J. (2018). Alteration of the antitumor immune response by cancer‐associated fibroblasts. Frontiers in Immunology, 9, 414. https://doi.org/10.3389/fimmu.2018.00414
Ziegler,, C. G. K., Kim,, J., Piersanti,, K., Oyler‐Yaniv,, A., Argyropoulos,, K. V., van den Brink,, M. R. M., … Altan‐Bonnet,, G. (2019). Constitutive activation of the B cell receptor underlies dysfunctional signaling in chronic lymphocytic leukemia. Cell Reports, 28, 923–937.e3. https://doi.org/10.1016/j.celrep.2019.06.069