Ahrens,, P. B., Solursh,, M., & Reiter,, R. S. (1977). Stage‐related capacity for limb chondrogenesis in cell culture. Developmental Biology, 60, 69–82.
Alber,, M., Glimm,, T., Hentschel,, H. G. E., Kazmierczak,, B., Zhang,, Y.‐T., Zhu,, J., & Newman,, S. A. (2008). The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb. Bulletin of Mathematical Biology, 70, 460–483.
Alber,, M., Hentschel,, H. G. E., Kazmierczak,, B., & Newman,, S. A. (2005). Existence of solutions to a new model of biological pattern formation. Journal of Mathematical Analysis and Applications, 308, 175–194.
Armstrong,, N. J., Painter,, K. J., & Sherratt,, J. A. (2006). A continuum approach to modelling cell–cell adhesion. Journal of Theoretical Biology, 243, 98–113.
Badugu,, A., Kraemer,, C., Germann,, P., Menshykau,, D., & Iber,, D. (2012). Digit patterning during limb development as a result of the BMP‐receptor interaction. Scientific Reports, 2, 991.
Baker,, R. E., Schnell,, S., & Maini,, P. K. (2006). A clock and wavefront mechanism for somite formation. Developmental Biology, 293, 116–126.
Baker,, R. E., Schnell,, S., & Maini,, P. K. (2008). Mathematical models for somite formation. Current Topics in Developmental Biology, 81, 183–203.
Barna,, M., & Niswander,, L. (2007). Visualization of cartilage formation: Insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. Developmental Cell, 12, 931–941.
Bhat,, R., Chakraborty,, M., Glimm,, T., Stewart,, T. A., & Newman,, S. A. (2016). Deep phylogenomics of a tandem‐repeat galectin regulating appendicular skeletal pattern formation. BMC Evolutionary Biology, 16, 162.
Bhat,, R., Chakraborty,, M., Mian,, I. S., & Newman,, S. A. (2014). Structural divergence in vertebrate phylogeny of a duplicated prototype galectin. Genome Biology and Evolution, 6, 2721–2730.
Bhat,, R., Glimm,, T., Linde‐Medina,, M., Cui,, C., & Newman,, S. A. (2019). Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton. Mechanisms of Development, 156, 41–54.
Bhat,, R., Lerea,, K. M., Peng,, H., Kaltner,, H., Gabius,, H. J., & Newman,, S. A. (2011). A regulatory network of two galectins mediates the earliest steps of avian limb skeletal morphogenesis. BMC Developmental Biology, 11, 6.
Boehm,, B., Westerberg,, H., Lesnicar‐Pucko,, G., Raja,, S., Rautschka,, M., Cotterell,, J., … Sharpe,, J. (2010). The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biology, 8, e1000420.
Bolouri,, H., & Davidson,, E. H. (2002). Modeling DNA sequence‐based cis‐regulatory gene networks. Developmental Biology, 246, 2–13.
Borckmans,, A., De Wit,, A., & Dewel,, G. (1992). Competition in ramped Turing structures. Physica A, 188, 137–157.
Bornholdt,, S., & Kauffman,, S. (2019). Ensembles, dynamics, and cell types: Revisiting the statistical mechanics perspective on cellular regulation. Journal of Theoretical Biology, 467, 15–22.
Chaturvedi,, R., Huang,, C., Kazmierczak,, B., Schneider,, T., Izaguirre,, J. A., Glimm,, T., … Alber,, M. S. (2005). On multiscale approaches to three‐dimensional modelling of morphogenesis. Journal of the Royal Society, Interface, 2, 237–253.
Chiang,, C., Litingtung,, Y., Harris,, M. P., Simandl,, B. K., Li,, Y., Beachy,, P. A., & Fallon,, J. F. (2001). Manifestation of the limb prepattern: Limb development in the absence of sonic hedgehog function. Developmental Biology, 236, 421–435.
Chickarmane,, V., Enver,, T., & Peterson,, C. (2009). Computational modeling of the hematopoietic erythroid–myeloid switch reveals insights into cooperativity, priming, and irreversibility. PLoS Computational Biology, 5, e1000268.
Christley,, S., Alber,, M. S., & Newman,, S. A. (2007). Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Computational Biology, 3, e76.
Cickovski,, T. M., Huang,, C., Chaturvedi,, R., Glimm,, T., Hentschel,, H. G., Alber,, M. S., … Izaguirre,, J. A. (2005). A framework for three‐dimensional simulation of morphogenesis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2, 273–288.
Collier,, J. R., Mcinerney,, D., Schnell,, S., Maini,, P. K., Gavaghan,, D. J., Houston,, P., & Stern,, C. D. (2000). A cell cycle model for somitogenesis: Mathematical formulation and numerical simulation. Journal of Theoretical Biology, 207, 305–316.
Cooke,, J., & Zeeman,, E. C. (1976). A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. Journal of Theoretical Biology, 58, 455–476.
Corson,, F., & Siggia,, E. D. (2012). Geometry, epistasis, and developmental patterning. Proceedings of the National Academy of Sciences of the United States of America, 109, 5568–5575.
Crampin,, E. J., Gaffney,, E. A., & Maini,, P. K. (1999). Reaction and diffusion on growing domains: Scenarios for robust pattern formation. Bulletin of Mathematical Biology, 61, 1093–1120.
De Lise,, A. M., Stringa,, E., Woodward,, W. A., Mello,, M. A., & Tuan,, R. S. (2000). Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation. In R. S. Tuan, & C. W. Lo, (Eds.), Developmental biology protocols: Methods in molecular biology (pp. 359–375). Totowa, NJ: Humana Press.
Diekmann,, O., 1999. Modeling and analysing physiologically structured populations, in: Mathematics inspired by biology (Martina Franca, 1997), Lecture Notes in Mathematics. Springer, Berlin, pp. 1–37.
Dillon,, R., Gadgil,, C., & Othmer,, H. G. (2003). Short‐ and long‐range effects of sonic hedgehog in limb development. Proceedings of the National Academy of Sciences of the United States of America, 100, 10152–10157.
Dillon,, R., & Othmer,, H. G. (1999). A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. Journal of Theoretical Biology, 197, 295–330.
Downie,, S. A., & Newman,, S. A. (1994). Morphogenetic differences between fore and hind limb precartilage mesenchyme: Relation to mechanisms of skeletal pattern formation. Developmental Biology, 162, 195–208.
Dudley,, A. T., Ros,, M. A., & Tabin,, C. J. (2002). A re‐examination of proximodistal patterning during vertebrate limb development. Nature, 418, 539–544.
Ede,, D. A., & Law,, J. T. (1969). Computer simulation of vertebrate limb morphogenesis. Nature, 221, 244–248.
Frenz,, D. A., Akiyama,, S. K., Paulsen,, D. F., & Newman,, S. A. (1989). Latex beads as probes of cell surface‐extracellular matrix interactions during chondrogenesis: Evidence for a role for amino‐terminal heparin‐binding domain of fibronectin. Developmental Biology, 136, 87–96.
Frenz,, D. A., Jaikaria,, N. S., & Newman,, S. A. (1989). The mechanism of precartilage mesenchymal condensation: A major role for interaction of the cell surface with the amino‐terminal heparin‐binding domain of fibronectin. Developmental Biology, 136, 97–103.
Gehrke,, A. R., Schneider,, I., de la Calle‐Mustienes,, E., Tena,, J. J., Gomez‐Marin,, C., Chandran,, M., … Shubin,, N. H. (2015). Deep conservation of wrist and digit enhancers in fish. Proceedings of the National Academy of Sciences, 112, 803–808.
Giurumescu,, C. A., Sternberg,, P. W., & Asthagiri,, A. R. (2009). Predicting phenotypic diversity and the underlying quantitative molecular transitions. PLoS Computational Biology, 5, e1000354.
Glazier,, J. A., & Graner,, F. (1993). Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 47, 2128–2154.
Glimm,, T., Bhat,, R., & Newman,, S. A. (2014). Modeling the morphodynamic galectin patterning network of the developing avian limb skeleton. Journal of Theoretical Biology, 346, 86–108.
Glimm,, T., Zhang,, J., & Shen,, Y.‐Q. (2009). Interaction of Turing patterns with an external linear morphogen gradient. Nonlinearity, 22, 2541–2560.
Glimm,, T., Zhang,, J., & Shen,, Y.‐Q. (2017). Stability of Turing‐type patterns in a reaction–diffusion system with an external gradient. International Journal of Bifurcation and Chaos, 27, 1750003.
Green,, J. B. A., & Sharpe,, J. (2015). Positional information and reaction‐diffusion: Two big ideas in developmental biology combine. Development, 142, 1203–1211.
Grigorian,, A., & Demetriou,, M. (2010). Manipulating cell surface glycoproteins by targeting N‐glycan‐galectin interactions. Methods in Enzymology, 480, 245–266.
Hamburger,, V., & Hamilton,, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88, 49–92.
Harfe,, B. D., Scherz,, P. J., Nissim,, S., Tian,, H., McMahon,, A. P., & Tabin,, C. J. (2004). Evidence for an expansion‐based temporal Shh gradient in specifying vertebrate digit identities. Cell, 118, 517–528.
Harris,, A. K., Stopak,, D., & Warner,, P. (1984). Generation of spatially periodic patterns by a mechanical instability: A mechanical alternative to the Turing model. Journal of Embryology and Experimental Morphology, 80, 1–20.
Harris,, A. K., Stopak,, D., & Wild,, P. (1981). Fibroblast traction as a mechanism for collagen morphogenesis. Nature, 290, 249–251.
Hentschel,, H. G. E., Glimm,, T., Glazier,, J. A., & Newman,, S. A. (2004). Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 1713–1722.
Hong,, T., Oguz,, C., & Tyson,, J. J. (2015). A mathematical framework for understanding four‐dimensional heterogeneous differentiation of CD4+ T cells. Bulletin of Mathematical Biology, 77, 1046–1064.
Hoyos,, E., Kim,, K., Milloz,, J., Barkoulas,, M., Pénigault,, J.‐B., Munro,, E., & Félix,, M.‐A. (2011). Quantitative variation in autocrine signaling and pathway crosstalk in the Caenorhabditis vulva network. Current Biology CB, 21, 527–538.
Hubaud,, A., & Pourquié,, O. (2014). Signalling dynamics in vertebrate segmentation. Nature Reviews. Molecular Cell Biology, 15, 709–721.
Iber,, D., & Zeller,, R. (2012). Making sense‐data‐based simulations of vertebrate limb development. Current Opinion in Genetics %26 Development, 22, 570–577.
Jiang,, Y. J., Aerne,, B. L., Smithers,, L., Haddon,, C., Ish‐Horowicz,, D., & Lewis,, J. (2000). Notch signalling and the synchronization of the somite segmentation clock. Nature, 408, 475–479.
Jörg,, D. J., Morelli,, L. G., Soroldoni,, D., Oates,, A. C., & Jülicher,, F. (2015). Continuum theory of gene expression waves during vertebrate segmentation. New Journal of Physics, 17, 093042.
Kaneko,, K., & Yomo,, T. (1999). Isologous diversification for robust development of cell society. Journal of Theoretical Biology, 199, 243–256.
Kauffman,, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22, 437–467.
Kinast,, S., Zelnik,, Y. R., Bel,, G., & Meron,, E. (2014). Interplay between Turing mechanisms can increase pattern diversity. Physical Review Letters, 112, 078701.
Kiskowski,, M. A., Alber,, M. S., Thomas,, G. L., Glazier,, J. A., Bronstein,, N. B., Pu,, J., & Newman,, S. A. (2004). Interplay between activator‐inhibitor coupling and cell‐matrix adhesion in a cellular automaton model for chondrogenic patterning. Developmental Biology, 271, 372–387.
Kühn,, C., Wierling,, C., Kühn,, A., Klipp,, E., Panopoulou,, G., Lehrach,, H., & Poustka,, A. J. (2009). Monte Carlo analysis of an ODE model of the sea urchin endomesoderm network. BMC Systems Biology, 3, 83.
Kuramoto,, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin, Heidelberg: Springer Verlag.
Kurics,, T., Menshykau,, D., & Iber,, D. (2014). Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand‐receptor‐based Turing models. Physical Review E, 90, 022716.
Leonard,, C. M., Fuld,, H. M., Frenz,, D. A., Downie,, S. A., Massagué,, J., & Newman,, S. A. (1991). Role of transforming growth factor‐β in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF‐β and evidence for endogenous TGF‐β‐like activity. Developmental Biology, 145, 99–109.
Lewis,, C. A., Pratt,, R. M., Pennypacker,, J. P., & Hassell,, J. R. (1978). Inhibition of limb chondrogenesis in vitro by vitamin A: Alterations in cell surface characteristics. Developmental Biology, 64, 31–47.
Li,, Y., Toole,, B. P., Dealy,, C. N., & Kosher,, R. A. (2007). Hyaluronan in limb morphogenesis. Developmental Biology, 305, 411–420.
Litingtung,, Y., Dahn,, R. D., Li,, Y., Fallon,, J. F., & Chiang,, C. (2002). Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature, 418, 979–983.
Madzvamuse,, A., Maini,, P. K., & Wathen,, A. J. (2005). A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. Journal of Scientific Computing, 24, 247–262.
Madzvamuse,, A., Wathen,, A. J., & Maini,, P. K. (2003). A moving grid finite element method applied to a model biological pattern generator. Journal of Computational Physics, 190, 478–500.
Maini,, P. K., & Solursh,, M. (1991). Cellular mechanisms of pattern formation in the developing limb. International Review of Cytology, 129, 91–133.
Marcon,, L., Diego,, X., Sharpe,, J., & Muller,, P. (2016). High‐throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife, 5, e14022. https://doi.org/10.7554/eLife.14022.
Mariani,, F. V., & Martin,, G. R. (2003). Deciphering skeletal patterning: Clues from the limb. Nature, 423, 319–325.
Meinhardt,, H., & Gierer,, A. (2000). Pattern formation by local self‐activation and lateral inhibition. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 22, 753–760.
Metz,, J. A., & Diekmann,, O. (1986). The dynamics of physiologically structured populations. Berlin, Heidelberg: Springer.
Miura,, T. (2013). Turing and Wolpert work together during limb development. Science Signaling, 6, pe14.
Miura,, T., & Maini,, P. K. (2004). Speed of pattern appearance in reaction‐diffusion models: Implications in the pattern formation of limb bud mesenchyme cells. Bulletin of Mathematical Biology, 66, 627–649.
Miura,, T., Shiota,, K., Morriss‐Kay,, G., & Maini,, P. K. (2006). Mixed‐mode pattern in Double foot mutant mouse limb–Turing reaction‐diffusion model on a growing domain during limb development. Journal of Theoretical Biology, 240, 562–573.
Mochizuki,, A., Wada,, N., Ide,, H., & Iwasa,, Y. (1998). Cell‐cell adhesion in limb‐formation, estimated from photographs of cell sorting experiments based on a spatial stochastic model. Developmental Dynamics, 211, 204–214.
Moftah,, M. Z., Downie,, S. A., Bronstein,, N. B., Mezentseva,, N., Pu,, J., Maher,, P. A., & Newman,, S. A. (2002). Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Developmental Biology, 249, 270–282.
Murray,, J. D. (2002). Mathematical biology II: Interdisciplinary Applied Mathematics (3rd. ed.). New York: Springer‐Verlag.
Nakamura,, T., Gehrke,, A. R., Lemberg,, J., Szymaszek,, J., & Shubin,, N. H. (2016). Digits and fin rays share common developmental histories. Nature, 537, 225–228.
Needham,, J. (1937). Chemical aspects of morphogenetic fields. In J. Needham, & D. E. Green, (Eds.), Perspectives in biochemistry (pp. 66–80). London: Cambridge University Press.
Newman,, S. A. (1988). Lineage and pattern in the developing vertebrate limb. Trends in Genetics, 4, 329–332.
Newman,, S. A. (1996). Sticky fingers: Hox genes and cell adhesion in vertebrate limb development. BioEssays, 18, 171–174.
Newman,, S. A. (2007). The Turing mechanism in vertebrate limb patterning. Nature Reviews. Molecular Cell Biology, 8, 1. https://doi.org/10.1038/nrm1830-c1
Newman,, S. A. (2020). Cell differentiation: What have we learned in 50 years? Journal of Theoretical Biology, 485, 11031.
Newman,, S. A., & Bhat,, R. (2007). Activator‐inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Research Part C: Embryo Today, 81, 305–319.
Newman,, S. A., & Frisch,, H. L. (1979). Dynamics of skeletal pattern formation in developing chick limb. Science, 205, 662–668.
Newman,, S. A., Frisch,, H. L., & Percus,, J. K. (1988). On the stationary state analysis of reaction‐diffusion mechanisms for biological pattern formation. Journal of Theoretical Biology, 134, 183–197.
Newman,, S. A., Glimm,, T., & Bhat,, R. (2018). The vertebrate limb: An evolving complex of self‐organizing systems. Progress in Biophysics and Molecular Biology, 137, 12–24.
Newman,, S. A., & Müller,, G. B. (2005). Origination and innovation in the vertebrate limb skeleton: An epigenetic perspective. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 304, 593–609.
Oates,, A. C., Morelli,, L. G., & Ares,, S. (2012). Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock. Development, 139, 625–639.
Onimaru,, K., Marcon,, L., Musy,, M., Tanaka,, M., & Sharpe,, J. (2016). The fin‐to‐limb transition as the re‐organization of a Turing pattern. Nature Communications, 7, 11582.
Oster,, G. F., Murray,, J. D., & Harris,, A. K. (1983). Mechanical aspects of mesenchymal morphogenesis. Development, 78, 83–125.
Oster,, G. F., Murray,, J. D., & Maini,, P. K. (1985). A model for chondrogenic condensations in the developing limb: The role of extracellular matrix and cell tractions. Journal of Embryology and Experimental Morphology, 89, 93–112.
Pecze,, L. (2018). A solution to the problem of proper segment positioning in the course of digit formation. Biosystems, Computational, Theoretical, and Experimental Approaches to Morphogenesis, 173, 266–272.
Pickering,, J., Rich,, C. A., Stainton,, H., Aceituno,, C., Chinnaiya,, K., Saiz‐Lopez,, P., … Towers,, M. (2018). An intrinsic cell cycle timer terminates limb bud outgrowth. eLife, 7, e37429. https://doi.org/10.7554/eLife.37429.
Popławski,, N. J., Swat,, M., Gens,, J. S., & Glazier,, J. A. (2007). Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb. Physica A, 373, 521–532.
Raspopovic,, J., Marcon,, L., Russo,, L., & Sharpe,, J. (2014). Modeling digits. Digit patterning is controlled by a bmp‐Sox9‐Wnt Turing network modulated by morphogen gradients. Science, 345, 566–570.
Riddle,, R. D., Johnson,, R. L., Laufer,, E., & Tabin,, C. (1993). Sonic hedgehog mediates the polarizing activity of the ZPA. Cell, 75, 1401–1416.
Roberts,, C. J., Birkenmeier,, T. M., McQuillan,, J. J., Akiyama,, S. K., Yamada,, S. S., Chen,, W. T., … McDonald,, J. A. (1988). Transforming growth factor beta stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. The Journal of Biological Chemistry, 263, 4586–4592.
Ros,, M. A., Dahn,, R. D., Fernandez‐Teran,, M., Rashka,, K., Caruccio,, N. C., Hasso,, S. M., … Fallon,, J. F. (2003). The chick oligozeugodactyly (ozd) mutant lacks sonic hedgehog function in the limb. Development, 130, 527–537.
Ros,, M. A., Lyons,, G. E., Mackem,, S., & Fallon,, J. F. (1994). Recombinant limbs as a model to study Homeobox gene regulation during limb development. Developmental Biology, 166, 59–72.
Saga,, Y. (2012). The synchrony and cyclicity of developmental events. Cold Spring Harbor Perspectives in Biology, 4, a008201.
Salazar‐Ciudad,, I., Jernvall,, J., & Newman,, S. A. (2003). Mechanisms of pattern formation in development and evolution. Development, 130, 2027–2037.
Salerno,, L., Cosentino,, C., Morrone,, G., & Amato,, F. (2015). Computational modeling of a transcriptional switch underlying B‐lymphocyte lineage commitment of hematopoietic multipotent cells. PLoS One, 10, e0132208.
Saunders,, J. W., Jr. (1948). The proximo‐distal sequence of origin of the parts of the chick wing and the role of the ectoderm. The Journal of Experimental Zoology, 108, 363–402.
Saunders,, J. W., Jr., & Gasseling,, M. (1968). Ectodermal–mesenchymal interactions in the origin of limb symmetry. In R. Fleischmajer, & R. Billingham, (Eds.), Epithelial–Mesenchymal interactions (pp. 78–97). Baltimore: Williams %26 Wilkins.
Saunders,, J. W. (2002). Is the Progress Zone Model a Victim of Progress? Cell, 110, 541–543.
Schnakenberg,, J. (1979). Simple chemical reaction systems with limit cycle behaviour. Journal of Theoretical Biology, 81, 389–400.
Sheeba,, C. J., Andrade,, R. P., & Palmeirim,, I. (2014). Limb patterning: From signaling gradients to molecular oscillations. Journal of Molecular Biology, 426, 780–784.
Sheth,, R., Marcon,, L., Bastida,, M. F., Junco,, M., Quintana,, L., Dahn,, R., … Ros,, M. A. (2012). Hox genes regulate digit patterning by controlling the wavelength of a Turing‐type mechanism. Science, 338, 1476–1480.
Silver,, M. H., Foidart,, J. M., & Pratt,, R. M. (1981). Distribution of fibronectin and collagen during mouse limb and palate development. Differentiation, 18, 141–149.
Steinberg,, M. S. (2007). Differential adhesion in morphogenesis: A modern view. Current Opinion in Genetics and Development, 17, 281–286.
Stewart,, T. A., Bhat,, R., & Newman,, S. A. (2017). The evolutionary origin of digit patterning. EvoDevo, 8, 21.
Stewart,, T. A., Liang,, C., Cotney,, J. L., Noonan,, J. P., Sanger,, T. J., & Wagner,, G. P. (2019). Evidence against tetrapod‐wide digit identities and for a limited frame shift in bird wings. Nature Communications, 10, 1–13.
Summerbell,, D., Lewis,, J. H., & Wolpert,, L. (1973). Positional Information in Chick Limb Morphogenesis. Nature, 244, 492–496.
Summerbell,, D. (1976). A descriptive study of the rate of elongation and differentiation of the skeleton of the developing chick wing. Journal of Embryology and Experimental Morphology, 35, 241–260.
Suzuki,, T., & Morishita,, Y. (2017). A quantitative approach to understanding vertebrate limb morphogenesis at the macroscopic tissue level. Current Opinion in Genetics %26 Development, 45, 108–114. https://doi.org/10.1016/j.gde.2017.04.005.
Szebenyi,, G., Savage,, M. P., Olwin,, B. B., & Fallon,, J. F. (1995). Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning. Developmental Dynamics, 204, 446–456.
Thieme,, H. R. (2003). Mathematics in population biology, Princeton series in theoretical and computational biology. Princeton, NJ: Princeton University Press.
Tickle,, C. (2003). Patterning systems—from one end of the limb to the other. Developmental Cell, 4, 449–458.
Tickle,, C., Summerbell,, D., & Wolpert,, L. (1975). Positional signalling and specification of digits in chick limb morphogenesis. Nature, 254, 199–202.
Tickle,, C., & Towers,, M. (2017). Sonic hedgehog signaling in limb development. Frontiers in Cell and Development Biology, 5. https://doi.org/10.3389/fcell.2017.00014.
Tomasek,, J. J., Mazurkiewicz,, J. E., & Newman,, S. A. (1982). Nonuniform distribution of fibronectin during avian limb development. Developmental Biology, 90, 118–126.
Turing,, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37–72.
Van Obberghen‐Schilling,, E., Roche,, N. S., Flanders,, K. C., Sporn,, M. B., & Roberts,, A. B. (1988). Transforming growth factor beta 1 positively regulates its own expression in normal and transformed cells. The Journal of Biological Chemistry, 263, 7741–7746.
Verheyden,, J. M., & Sun,, X. (2008). An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth. Nature, 454, 638–641.
Wolpert,, L. (1969). Positional information and the spatial pattern of cellular differentiation. Journal of Theoretical Biology, 25, 1–47.
Wolpert,, L. (1989). Positional information revisited. Development, 107(Suppl), 3–12.
Woolley,, T. E., Baker,, R. E., Tickle,, C., Maini,, P. K., & Towers,, M. (2014). Mathematical modelling of digit specification by a sonic hedgehog gradient. Developmental Dynamics, 243, 290–298.
Yokouchi,, Y., Nakazato,, S., Yamamoto,, M., Goto,, Y., Kameda,, T., Iba,, H., & Kuroiwa,, A. (1995). Misexpression of Hoxa‐13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes %26 Development, 9, 2509–2522.
Yuh,, C. H., Bolouri,, H., & Davidson,, E. H. (2001). Cis‐regulatory logic in the endo16 gene: Switching from a specification to a differentiation mode of control. Development, 128, 617–629.
Zeng,, W., Thomas,, G. L., & Glazier,, J. A. (2004). Non‐Turing stripes and spots: A novel mechanism for biological cell clustering. Physica A: Statistical Mechanics and its Applications, 341, 482–494.
Zeng,, W., Thomas,, G. L., Newman,, S. A., & Glazier,, J. A. (2002). A novel mechanism for mesenchymal condensation during limb chondrogenesis in vitro. In Mathematical Modelling and computing in biology and medicine, 5th ESMTB conference (pp. 80–86). Bologna: Esculapio.
Zhang,, Y. T., Alber,, M. S., & Newman,, S. A. (2012). Mathematical modeling of vertebrate limb development. Mathematical Biosciences, 243, 1–17.
Zhu,, J., Nakamura,, E., Nguyen,, M.‐T., Bao,, X., Akiyama,, H., & Mackem,, S. (2008). Uncoupling sonic hedgehog control of pattern and expansion of the developing limb bud. Developmental Cell, 14, 624–632.
Zhu,, J., Zhang,, Y. T., Alber,, M. S., & Newman,, S. A. (2010). Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One, 5, e10892.
Zhu,, J., Zhang,, Y.‐T., Newman,, S. A., & Alber,, M. S. (2009). A finite element model based on discontinuous Galerkin methods on moving grids for vertebrate limb pattern formation. Mathematical Modelling of Natural Phenomena, 4, 131–148.
Zwilling,, E. (1964). Development of fragmented and of dissociated limb bud mesoderm. Developmental Biology, 89, 20–37.