Andasari,, V., Roper,, R. T., Swat,, M. H., & Chaplain,, M. A. J. (2012). Integrating intracellular dynamics using CompuCell3D and Bionetsolver: Applications to multiscale modelling of cancer cell growth and invasion. PLoS One, 7(3), e33726. https://doi.org/10.1371/journal.pone.0033726
Antony,, J., Thiery,, J. P., & Huang,, R. U.‐J. (2019). Epithelial‐to‐mesenchymal transition: Lessons from development, insights into cancer and the potential of EMT‐subtype based therapeutic intervention. Physical Biology, 16, 041004. https://doi.org/10.1088/1478-3975/ab157a
Basu,, S., Cheriyamundath,, S., & Ben‐Ze`ev,, A. (2018). Cell‐cell adhesion: Linking Wnt/β‐catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Research, 7:F1000 Faculty Rev‐1488. https://doi.org/10.12688/f1000research.15782.1
Benetatos,, L., Hatzimichael,, E., Londin,, E., Vartholomatos,, G., Loher,, P., Rigoutsos,, I., & Briasoulis,, E. (2013). The microRNAs within the DLK1‐DIO3 genomic region: Involvement in disease pathogenesis. Cellular and Molecular Life Sciences, 70(5), 795–814. https://doi.org/10.1007/s00018-012-1080-8
Bierie,, B., Pierce,, S. E., Kroeger,, C., Stover,, D. G., Pattabiraman,, D. R., Thiru,, P., … Weinberg,, R. A. (2017). Integrin‐β4 identifies cancer stem cell‐enriched populations of partially mesenchymal carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 114(12), E2337–E2346. https://doi.org/10.1073/pnas.1618298114
Boaredo,, M., Jolly,, M. K., Goldman,, A., Pietila,, M., Mani,, S. A., Sengupta,, S., … Onuchic,, J. N. (2015). Notch‐jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/ mesenchymal phenotype. Journal of the Royal Society Interface, 13, 20151106. https://doi.org/10.1098/rsif.2015.1106
Bocci,, F., Jolly,, M. K., Tripathi,, S. C., Aguilar,, M., Hanash,, S. M., Levine,, H., & Onuchic,, J. N. (2017). Numb prevents a complete epithelial–mesenchymal transition by modulating Notch signalling. Journal of the Royal Society Interface, 14, 20170512. https://doi.org/10.1098/rsif.2017.0512
Bronsert,, P., Enderle‐Ammour,, K., Bader,, M., Timme,, S., Kuehs,, M., Csanadi,, A., … Wellner,, U. F. (2014). Cancer cell invasion and EMT marker expression: A three‐dimensional study of the human cancer–host interface. Journal of Pathology, 234, 410–422. https://doi.org/10.1002/path.4416
Burger,, G. A., Danen,, E. H. J., & Beltman,, J. B. (2017). Deciphering epithelial–mesenchymal transition regulatory networks in cancer through computational approaches. Frontiers in Oncology, 7, 162. https://doi.org/10.3389/fonc.2017.00162
Celia‐Terrassa,, T., Bastian,, C., Liu,, D., Ell,, B., Aiello,, N. M., Wei,, Y., … Kang,, Y. (2018). Hysteresis control of epithelial–mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nature Communications, 9, 5005. https://doi.org/10.1038/s41467-018-07538-7
Chanrion,, M., Kuperstein,, I., Barrière,, C., El Marjou,, F., Cohen,, D., Vignjevic,, D., … Robine,, S. (2014). Concomitant Notch activation and p53 deletion trigger epithelial‐to‐mesenchymal transition and metastasis in mouse gut. Nature Communications, 5, 5005. https://doi.org/10.1038/ncomms6005
Cheng,, W.‐Y., Kandel,, J. J., Yamashiro,, D. J., Canoll,, P., & Anastassiou,, D. (2012). A multi‐cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PLoS One, 7(4), e34705. https://doi.org/10.1371/journal.pone.0034705
Choudhary,, K. S., Rohatgi,, N., Halldorsson,, S., Briem,, E., Gudjonsson,, T., Gudmundsson,, S., & Rolfsson,, O. (2016). EGFR signal‐network reconstruction demonstrates metabolic crosstalk in EMT. PLOS Computational Biology, 12(6), e1004924. https://doi.org/10.1371/journal.pcbi.1004924
Conacci‐Sorrell,, M., Simcha,, I., Ben‐Yedidia,, T., Biechman,, J., Savagner,, P., & Ben‐Ze`ev,, A. (2003). Autoregulation of E‐cadherin expression by cadherin‐cadherin interactions: The roles of beta‐catenin signaling, Slug, and MAPK. The Journal of Cell Biology, 163(4), 847–857. https://doi.org/10.1083/jcb.200308162
Cortesi,, M., Pasini,, A., Furini,, S., & Giordano,, E. (2019). Identification via numerical computation of transcriptional determinants of a cell phenotype decision making. Frontiers in Genetics, 10, 575. https://doi.org/10.3389/fgene.2019.00575
De Domenico,, S., & Vergara,, D. (2017). The many‐faced program of epithelial–mesenchymal transition: A system biology‐based view. Frontiers in Oncology, 7, 274. https://doi.org/10.3389/fonc.2017.00274
Dhawan,, A., Tonekaboni,, S. A. M., Taube,, J. H., Hu,, S., Sphyris,, N., Mani,, S. A., & Kohandel,, M. (2016). Mathematical modelling of phenotypic plasticity and conversion to a stem‐cell state under hypoxia. Scientific Reports, 6, 18074. https://doi.org/10.1038/srep18074
Dongre,, A., & Weinberg,, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews. Molecular Cell Biology, 20, 69–84. https://doi.org/10.1038/s41580-018-0080-4
Drago‐Garcìa,, D., Espinal‐Enrìquez,, J., & Hernàndez‐Lemus,, E. (2017). Network analysis of EMT and MET micro‐RNA regulation in breast cancer. Scientific Reports, 7, 13534. https://doi.org/10.1038/s41598-017-13903-1
Ellsworth,, R. E., Blackburn,, H. L., Shriver,, C. D., Soon‐Shiong,, P., & Ellsworth,, D. L. (2017). Molecular heterogeneity in breast cancer: State of the science and implications for patient care. Seminars in Cell and Developmental Biology., 64, 65–72. https://doi.org/10.1016/j.semcdb.2016.08.025
Engwer,, C., Hillen,, T., Knappitsch,, M., & Surulescu,, C. (2015). Glioma follow white matter tracts: A multiscale DTI‐based model. Journal of Mathematical Biology, 71(3), 551–582. https://doi.org/10.1007/s00285-014-0822-7
Fabisiewicz,, A., & Grzybowska,, E. (2017). CTC clusters in cancer progression and metastasis. Medical Oncology, 34(1), 12. https://doi.org/10.1007/s12032-016-0875-0
Ferrell,, J. E., Jr. (2002). Self‐perpetuating states in signal transduction: Positive feedback, double‐negative feedback and bistability. Current Opinion in Cell Biology, 14(2), 140–148. https://doi.org/10.1016/s0955-0674(02)00314-9
Flöttmann,, M., Scharp,, T., & Klipp,, E. (2012). A stochastic model of epigenetic dynamics in somatic cell reprogramming. Frontiers in Physiology, 3, 216. https://doi.org/10.3389/fphys.2012.00216
Ford,, C. E., Punnia‐Moorthy,, G., Henry,, C. E., Llamosas,, E., Nixdorf,, S., Olivier,, J., … Heinzelmann‐Schwarz,, V. (2014). The non‐canonical Wnt ligand, Wnt5a, is upregulated and associated with epithelial to mesenchymal transition in epithelial ovarian cancer. Gynecologic Oncology, 134(2), 338–345. https://doi.org/10.1016/j.ygyno.2014.06.004
Gasior,, K., Hauck,, M., Wilson,, A., & Bhattacharya,, S. A. (2017). Theoretical model of the Wnt signaling pathway in the epithelial mesenchymal transition. Theoretical Biology %26 Medical Modelling, 14, 19. https://doi.org/10.1186/s12976-017-0064-7
Ginnebaugh,, K. R., Ahmad,, A., & Sarkar,, F. H. (2014). The therapeutic potential of targeting the epithelial–mesenchymal transition in cancer. Expert Opinion on Therapeutic Targets, 18(7), 731–745. https://doi.org/10.1517/14728222.2014.909807
Gregory,, P. A., Bracken,, C. P., Smith,, E., Bert,, A. G., Wright,, J. A., Rosian,, S., … Goodall,, G. J. (2011). An autocrine TGF‐beta/ZEB/miR‐200 signaling network regulates establishment and maintenance of epithelial‐mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698. https://doi.org/10.1091/mbc.E11-02-0103
Grigore,, A. D., Kumar Jolly,, M., Jia,, D., Farach‐Carson,, M. C., & Levine,, H. (2016). Tumor budding: The name is EMT. Partial EMT. Journal of Clinical Medicine, 5(5), 51. https://doi.org/10.3390/jcm5050051
Grosse‐Wilde,, A., Foquier d`Herouel,, A., McIntosh,, E., Ertaylan,, G., Skupin,, A., Kuestner,, R. E., … Huang,, S. (2015). Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One, 10(5), e0126522. https://doi.org/10.1371/journal.pone.0126522
Hong,, J., Liu,, Z., Zhu,, H., Zhang,, X., Liang,, Y., Yao,, S., … Cheng,, C. (2014). The tumor suppressive role of NUMB isoform 1 in esophageal squamous cell carcinoma. Oncotarget, 5(14), 5602–5614. https://doi.org/10.18632/oncotarget.2136
Hong,, T., Watanabe,, K., Ha Ta,, C., Villareal‐Ponce,, A., Nie,, Q., & Dai,, X. (2015). An Ovol2‐Zeb1 mutual inhibitory circuit governs bidirectional and multi‐step transition between epithelial and mesenchymal states, 11(11), e1004569. https://doi.org/10.1371/journal.pcbi.1004569
Huang,, R. Y.‐J., Wong,, M. K., Tan,, T. Z., Kuay,, K. T., Ng,, A. H. C., Chung,, V. Y., … Thiery,, J. P. (2013). An EMT spectrum defines an anoikis‐resistant and spheroidogenic intermediate mesenchymal state that is sensitive to E‐cadherin restoration by a Src‐kinase inhibitor, saracatinib (AZD0530). Cell Death and Disease, 4(11), e915. https://doi.org/10.1038/cddis.2013.442
Jia,, D., Jolly,, M. K., Boareto,, M., Parsana,, P., Mooney,, S. M., Pienta,, K. J., … Ben‐Jacob,, E. (2015). OVOL guides the epithelial–hybrid–mesenchymal transition, 6(17). https://doi.org/10.18632/oncotarget.3623
Jolly,, M. K., Boareto,, M., Huang,, B., Jia,, D., Lu,, M., Ben‐Jacob,, E., … Levine,, H. (2015). Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Frontiers in Oncology, 5, 155. https://doi.org/10.3389/fonc.2015.00155
Jolly,, M. K., & Levine,, H. (2017). Computational systems biology of epithelial–hybrid–mesenchymal transitions. Current Opinion in Systems Biology, 3, 1–6. https://doi.org/10.1016/j.coisb.2017.02.004
Jolly,, M. K., Tripathi,, S. C., Jia,, D., Mooney,, S. M., Celiktas,, M., Hanash,, S. M., … Levine,, H. (2016). Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget, 7(19), 27067–27084. https://doi.org/10.18632/oncotarget.8166
Jolly,, M. K., Tripathi,, S. C., Somarelli,, J. A., Hanash,, S. M., & Levine,, H. (2017). Epithelial/mesenchymal plasticity: How have quantitative mathematical models helped improve our understanding? Molecular Oncology, 11(7), 739–754. https://doi.org/10.1002/1878-0261.12084
Kalluri,, R. (2009). EMT: When epithelial cells decide to become mesenchymal‐like cells. The Journal of Clinical Investigation, 119(6), 1417–1419. https://doi.org/10.1172/JCI39675
Kalluri,, R., & Weinberg,, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428. https://doi.org/10.1172/JCI39104
Kauffman,, S. A. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 224, 177–178. https://doi.org/10.1038/224177a0
Koplev,, S., Lin,, K., Dohlman,, A. B., & Ma`ayan,, A. (2018). Integration of pan‐cancer transcriptomics with RPPA proteomics reveals mechanisms of epithelial–mesenchymal transition. PLOS Computational Biology, 14(1), e1005911. https://doi.org/10.1371/journal.pcbi.1005911
Kumar,, S., Das,, A., & Sen,, S. (2014). Extracellular matrix density promotes EMT by weakening cell–cell adhesions. Molecular BioSystems, 10, 838–850. https://doi.org/10.1039/c3mb70431a
Lau,, K. M., & McGlade,, C. J. (2011). Numb is a negative regulator of HGF dependent cell scattering and Rac1 activation. Experimental Cell Research, 317(4), 539–551. https://doi.org/10.1016/j.yexcr.2010.12.005
Lehner,, B., Kunz,, P., Saehr,, H., & Fellenberg,, J. (2014). Epigenetic silencing of genes and microRNAs within the imprinted Dlk1‐Dio3 region at human chromosome 14.32 in giant cell tumor of bone. BMC Cancer, 14, 495. https://doi.org/10.1186/1471-2407-14-495
Li,, C., Hong,, T., & Nie,, Q. (2016). Quantifying the landscape and kinetic paths for epithelial–mesenchymal transition from a core circuit. Physical Chemistry Chemical Physics, 27, 17949–17956. https://doi.org/10.1039/c6cp03174a
Li,, Q., Tang,, H., Hu,, F., & Qin,, C. (2019). Silencing of FOXO6 inhibits the proliferation, invasion, and glycolysis in colorectal cancer cells. Journal of Cellular Biochemistry, 120(3), 3853–3860. https://doi.org/10.1002/jcb.27667
Liu, F., Heiner, M. & Gilbert, D. (2018) Fuzzy petri nets for modelling of uncertain biological systems. Briefings in Bioinformatics, 1–13. doi:https://doi.org/10.1093/bib/bby118
Lu,, M., Jolly,, M. K., Levine,, H., Onuchic,, J. N., & Ben‐Jacob,, E. (2013). MicroRNA‐based regulation of epithelial–hybrid–mesenchymal fate determination. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18144–18149. https://doi.org/10.1073/pnas.1318192110
Lu,, P., Takai,, K., Weaver,, V. M., & Werb,, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspective in Biology, 11(2), 3, a005058. https://doi.org/10.1101/cshperspect.a005058
Mak,, P. M., Tong,, P., Diao,, L., Cardnell,, R. J., Gibbons,, D. L., William,, W. N., … Averett Byers,, L. (2016). A patient‐derived, pan‐cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial to mesenchymal transition. Clinical Cancer Research, 22(3), 609–620. https://doi.org/10.1158/1078-0432.CCR-15-0876
Mendez,, M. J., Hoffman,, M. J., Cherry,, E. M., Lemmon,, C. A., & Weinberg,, S. H. (2019). Predicting TGF‐β‐induced epithelial–mesenchymal transition using data assimilation. Biophysical Journal, 116(3), 129a–130a. https://doi.org/10.1016/j.bpj.2018.11.720
Metzcar,, J., Wang,, Y., Heiland,, R., & Macklin,, P. (2019). A review of cell‐based computational modeling in cancer biology. JCO Clinical Cancer Informatics, 3, 1–13. https://doi.org/10.1200/CCI.18.00069
Mishra,, V., Subramaniam,, M., Kari,, V., Pitel,, K. S., Baumgart,, S. J., Naylor,, R. M., … Johnsen,, S. A. (2017). Kruppel‐like transcription factor KLF10 suppresses TGFβ‐induced epithelial‐to‐mesenchymal transition via a negative feedback mechanism. Cancer Research, 77(9), 2387–2400. https://doi.org/10.1158/0008-5472.CAN-16-2589
Mouneimne,, G., Hansen,, S. D., Selfors,, L. M., Petrak,, L., Hickey,, M. M., Gallegos,, L. L., … Brugge,, J. S. (2012). Differential remodeling of Actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion. Cancer Cell, 22(5), 615–630. https://doi.org/10.1016/j.ccr.2012.09.027
Nieto,, M. A. (2009). Epithelial–mesenchymal transitions in development and disease: Old views and new perspectives. The International Journal of Developmental Biology, 53, 1541–1547. https://doi.org/10.1387/ijdb.072410mn
Nieto,, M. A., Huang,, R. Y., Jackson,, R. A., & Thiery,, J. P. (2016). EMT: 2016. Cell, 166(1), 21–45. https://doi.org/10.1016/j.cell.2016.06.028
Nobile,, M. S., Votta,, G., Palorini,, R., Spolaor,, S., De Vitto,, H., Cazzaniga,, P., … Besozzi,, D. (2019). Fuzzy modeling and global optimization to predict novel therapeutic targets in cancer cells. Bioinformatics, btz868. https://doi.org/10.1093/bioinformatics/btz868
Park,, S., Gonzales,, D. G., Guirao,, B., Boucher,, J. D., Cockburn,, K., Marsh,, E. D., … Greco,, V. (2017). Tissue‐scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nature Cell Biology, 19, 155–163. https://doi.org/10.1038/ncb3472
Pastushenko,, I., & Blanpain,, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226. https://doi.org/10.1016/j.tcb.2018.12.001
Ramis‐Conde,, I., Drasdo,, D., Anderson,, A. R. A., & Chaplain,, M. A. J. (2008). Modeling the influence of the E‐cadherin‐b‐catenin pathway in cancer cell invasion: A multiscale approach. Biophysical Journal, 95, 155–165. https://doi.org/10.1529/biophysj.107.114678
Reher,, D., Klink,, B., Deutsch,, A., & Voss‐Bohme,, A. (2017). Cell adhesion heterogeneity reinforces tumour cell dissemination: Novel insights from a mathematical model. Biology Direct, 12, 18. https://doi.org/10.1186/s13062-017-0188-z
Sanker,, J., Selvakumar,, G., & Suguna,, L. (2019). Epithelial and mesenchymal transition pathway (EMT) and hepatocellular carcinoma: A mini review. Clinical Oncology, 4, 1617.
Sato,, K., Watanabe,, T., Wang,, S., Kakeno,, M., Matsuzawa,, K., Matsui,, T., … Kaibuchi,, K. (2011). Numb controls E‐cadherin endocytosis through p120 catenin with aPKC. Molecular Biology of the Cell, 22(17), 2983–3275. https://doi.org/10.1091/mbc.E11-03-0274
Steinway,, S. N., Tejeda Zanudo,, J. G., Michel,, P. J., Feith,, D. J., Loughran,, T. P., & Albert,, R. (2015). Combinatorial interventions inhibit TGFβ‐driven epithelial‐to‐mesenchymal transition and support hybrid cellular phenotypes. NPJ Systems Biology and Applications, 1, 15014. https://doi.org/10.1038/npjsba.2015.14
Thiery,, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2(6), 442–454. https://doi.org/10.1038/nrc822
Thiery,, J. P., Acloque,, H., Huang,, R. Y. J., & Nieto,, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890. https://doi.org/10.1016/j.cell.2009.11.007
Tian,, X. J., Zhang,, H., & Xing,, J. (2013). Coupled reversible and irreversible bistable switches underlying TGFβ‐induced epithelial to mesenchymal transition. Biophysical Journal, 105, 1079–1089. https://doi.org/10.1016/j.bpj.2013.07.011
Turner,, C., & Kohandel,, M. (2010). Investigating the link between epithelial–mesenchymal transition and the cancer stem cell phenotype: A mathematical approach. Journal of Theoretical Biology, 265(3), 329–335. https://doi.org/10.1016/j.jtbi.2010.05.024
Valdmanis,, P. N., Roy‐Chaudhuri,, B., Kim,, H. K., Sayles,, L. C., Zheng,, Y., Chuang,, C. H., … Kay,, M. A. (2015). Upregulation of the microRNA cluster at the Dlk1‐Dio3 locus in lung adenocarcinoma. Oncogene, 34(1), 94–103. https://doi.org/10.1038/onc.2013.523
Vargas,, D. A., Bates,, O., & Zaman,, M. H. (2013). Computational model to probe cellular mechanics during epithelial–mesenchymal transition. Cells, Tissues, Organs, 197, 435–444. https://doi.org/10.1159/000348415
Voon,, D., Huang,, R. Y., Jackson,, R. A., & Thiery,, J. P. (2017). The EMT spectrum and therapeutic opportunities. Molecular Oncology, 11(7), 878–891. https://doi.org/10.1002/1878-0261.12082
Wang,, P., Song,, C., Zhang,, H., Wu,, Z., Tian,, X. J., & Xing,, J. (2014). Epigenetic state network approach for describing cell phenotypic transitions. Interface Focus, 4(3), 20130068. https://doi.org/10.1098/rsfs.2013.0068
Wang,, R.‐S., Saadatpour,, A., & Albert,, R. (2012). Boolean modeling in systems biology: An overview of methodology and applications. Physical Biology, 9(5), 055001. https://doi.org/10.1088/1478-3975/9/5/055001
Wang,, X., Sun,, Z., Zimmermann,, M. T., Bugrim,, A., & Kocher,, J.‐P. (2019). Predict drug sensitivity of cancer cells with pathway activity inference. BMC Medical Genomics, 12, 15. https://doi.org/10.1186/s12920-018-0449-4
Wang,, Z., Li,, Y., Kong,, D., & Sarkan,, F. H. (2011). The role of Notch signaling pathway in epithelial–mesenchymal transition (EMT) during development and tumor aggressiveness. Current Drug Targets, 11(6), 745–751. https://doi.org/10.2174/138945010791170860
Wang,, Z., Sandiford,, S., Wu,, C., & Li,, S. S. (2009). Numb regulates cell–cell adhesion and polarity in response to tyrosine kinase signalling. The EMBO Journal, 28(16), 2360–2373. https://doi.org/10.1038/emboj.2009.190
Wynn,, M. L., Consul,, N., Merajver,, S. D., & Schnell,, S. (2012). Logic‐based models in systems biology: A predictive and parameter‐free network analysis method. Integrative Biology, 4(11). https://doi.org/10.1039/c2ib20193c
Yamaguchi,, H., & Condeelis,, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773(5), 642–652. https://doi.org/10.1016/j.bbamcr.2006.07.001
Yu,, M., Bardia,, A., Wittner,, B. S., Stott,, S. L., Smas,, M. E., Ting,, D. T., … Maheswaran,, S. (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339(6119), 580–584. https://doi.org/10.1126/science.1228522
Zhang,, J., Goliwas,, K. F., Wang,, W., Taufalele,, P. V., Bordeleau,, F., & Reinhart‐King,, C. A. (2019). Energetic regulation of coordinated leader–follower dynamics during collective invasion of breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 116(16), 7867–7872. https://doi.org/10.1073/pnas.1809964116
Zhang,, J., Shao,, X., Sun,, H., Liu,, K., Ding,, Z., Chen,, J., … Li,, H. (2016). NUMB negatively regulates the epithelial‐mesenchymal transition of triple‐negative breast cancer by antagonizing Notch signaling. Oncotarget, 7(38), 61036–61053. https://doi.org/10.18632/oncotarget.11062
Zhang,, J., Tian,, X. J., & Xing,, J. (2016). Signal transduction pathways of EMT induced by TGF‐β, SHH, and WNT and their crosstalks. Journal of Clinical Medicine, 5(4), E41. https://doi.org/10.3390/jcm5040041
Zhang,, Y., Li,, F., Song,, Y., Sheng,, X., Ren,, F., Xiong,, K., … Yu,, Z. (2016). Numb and Numbl act to determine mammary myoepithelial cell fate, maintain epithelial identity, and support lactogenesis. The FASEB Journal, 30(10), 3474–3488. https://doi.org/10.1096/fj.201600387R