Ideker, T, Galitski, T, Hood, L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2001, 2:343–372.
Hartwell, LH, Hopfield, JJ, Leibler, S, Murray, AW. From molecular to modular cell biology. Nature 1999, 402:C47–52.
Cereijido, M, Contreras, RG, Shoshani, L. Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol Rev 2004, 84:1229–1262.
Shin, K, Fogg, VC, Margolis, B. Tight junctions and cell polarity. Annu Rev Cell Dev Biol 2006, 22:207–235.
Tepass, U, Tanentzapf, G, Ward, R, Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 2001, 35:747–784.
Humbert, PO, Dow, LE, Russell, SM. The scribble and par complexes in polarity and migration: friends or foes? Trends Cell Biol 2006, 16:622–630.
Itoh, M, Nagafuchi, A, Yonemura, S, Kitani‐Yasuda, T, Tsukita, S. The 220‐kD protein colocalizing with cadherins in non‐epithelial cells is identical to ZO‐1, a tight junction‐associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993, 121:491–502.
St Johnston, D, Ahringer, J. Polarity in eggs and epithelia: parallels and diversity. Cell 2010, 141:757–774.
Zhan, L, Rosenberg, A, Bergami, KC, Yu, M, Xuan, Z, Jaffe, AB, Allred, C, Muthuswamy, SK. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 2008, 135:865–878.
McCaffrey, LM, Macara, IG. The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 2009, 23:1450–1460.
Moreno‐Bueno, G, Portillo, F, Cano, A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 2008, 27:6958–6969.
Devenport, D, Fuchs, E. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nat Cell Biol 2008, 10:1257–1268.
Wu, J, Mlodzik, M. A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol 2009, 19:295–305.
Amonlirdviman, K, Khare, NA, Tree, DR, Chen, WS, Axelrod, JD, Tomlin, CJ. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 2005, 307:423–426.
Lawrence, PA, Struhl, G, Casal, J. Planar cell polarity: one or two pathways? Nat Rev Genet 2007, 8:555–563.
Martin, AC, Kaschube, M, Wieschaus, EF. Pulsed contractions of an actin‐myosin network drive apical constriction. Nature 2009, 457:495–499.
Lecuit, T, Lenne, PF. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 2007, 8:633–644.
Hickson, GR, Echard, A, O`Farrell, PH. Rho‐kinase controls cell shape changes during cytokinesis. Curr Biol 2006, 16:359–370.
Ivanov, AI, Hopkins, AM, Brown, GT, Gerner‐Smidt, K, Babbin, BA, Parkos, CA, Nusrat, A. Myosin II regulates the shape of three‐dimensional intestinal epithelial cysts. J Cell Sci 2008, 121:1803–1814.
Gibson, MC, Patel, AB, Nagpal, R, Perrimon, N. The emergence of geometric order in proliferating metazoan epithelia. Nature 2006, 442:1038–1041.
Farhadifar, R, Roper, JC, Aigouy, B, Eaton, S, Julicher, F. The influence of cell mechanics, cell‐cell interactions, and proliferation on epithelial packing. Curr Biol 2007, 17:2095–2104.
Rauzi, M, Verant, P, Lecuit, T, Lenne, PF. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 2008, 10: 1401–1410.
Sawyer, JM, Harrell, JR, Shemer, G, Sullivan‐Brown, J, Roh‐Johnson, M, Goldstein, B. Apical constriction: a cell shape change that can drive morphogenesis. Dev Biol 2010, 341:5–19.
Bryant, DM, Mostov, KE. From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 2008, 9:887–901.
Andrew, DJ, Ewald, AJ. Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev Biol 2010, 341:34–55.
Lubarsky, B, Krasnow, MA. Tube morphogenesis: making and shaping biological tubes. Cell 2003, 112:19–28.
Rasmussen, JP, English, K, Tenlen, JR, Priess, JR. Notch signaling and morphogenesis of single‐cell tubes in the C. elegans digestive tract. Dev Cell 2008, 14: 559–569.
Ghabrial, AS, Krasnow, MA. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 2006, 441:746–749.
Yu, W, Datta, A, Leroy, P, O`Brien, LE, Mak, G, Jou, TS, Matlin, KS, Mostov, KE, Zegers, MM. β1‐integrin orients epithelial polarity via Rac1 and laminin. Mol Biol Cell 2005, 16:433–445.
Tawk, M, Araya, C, Lyons, DA, Reugels, AM, Girdler, GC, Bayley, PR, Hyde, DR, Tada, M, Clarke, JDW. A mirror‐symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature 2007, 446: 797–800.
Jaffe, AB, Kaji, N, Durgan, J, Hall, A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol 2008, 183:625–633.
Bryant, DM, Datta, A, Rodriguez‐Fraticelli, AE, Peranen, J, Martin‐Belmonte, F, Mostov, KE. A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 2010, 12:1035–1024.
Melnick, M, Jaskoll, T. Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit Rev Oral Biol Med 2000, 11: 199–215.
Mailleux, AA, Overholtzer, M, Schmelzle, T, Bouillet, P, Strasser, A, Brugge, JS. BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 2007, 12:221–234.
Martin‐Belmonte, F, Yu, W, Rodriguez‐Fraticelli, AE, Ewald, AJ, Werb, Z, Alonso, MA, Mostov, K. Cell‐polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol 2008, 18:507–513.
Bagnat, M, Cheung, ID, Mostov, KE, Stainier, DYR. Genetic control of single lumen formation in the zebrafish gut. Nat Cell Biol 2007, 9:954–960.
Kesavan, G, Sand, FW, Greiner, TU, Johansson, JK, Kobberup, S, Wu, X, Brakebusch, C, Semb, H. Cdc42‐mediated tubulogenesis controls cell specification. Cell 2009, 139:791–801.
Samakovlis, C, Manning, G, Steneberg, P, Hacohen, N, Cantera, R, Krasnow, MA. Genetic control of epithelial tube fusion during Drosophila tracheal development. Development 1996, 122:3531–3536.
Nakanishi, Y, Morita, T, Nogawa, H. Cell proliferation is not required for the initiation of early cleft formation in mouse embryonic submandibular epithelium in vitro. Development 1987, 99:429–437.
Oblander, SA, Zhou, Z, Galvez, BG, Starcher, B, Shannon, JM, Durbeej, M, Arroyo, AG, Tryggvason, K, Apte, SS. Distinctive functions of membrane type 1 matrix‐metalloprotease (MT1‐MMP or MMP‐14) in lung and submandibular gland development are independent of its role in pro‐MMP‐2 activation. Dev Biol 2005, 277:255–269.
Ewald, AJ, Brenot, A, Duong, M, Chan, BS, Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 2008, 14:570–581.
Moore, KA, Polte, T, Huang, S, Shi, B, Alsberg, E, Sunday, ME, Ingber, DE. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 2005, 232:268–281.
Gilles, C, Polette, M, Coraux, C, Tournier, JM, Meneguzzi, G, Munaut, C, Volders, L, Rousselle, P, Birembaut, P, Foidart, JM. Contribution of MT1‐MMP and of human laminin‐5 γ2 chain degradation to mammary epithelial cell migration. J Cell Sci 2001, 114:2967–2976.
Friedl, P, Wolf, K. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 2008, 68:7247–7249.
Gudjonsson, T, Ronnov‐Jessen, L, Villadsen, R, Rank, F, Bissell, MJ, Petersen, OW. Normal and tumor‐derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 2002, 115:39–50.
Davies, JA. Do different branching epithelia use a conserved developmental mechanism? Bioessays 2002, 24:937–948.
Sternlicht, MD, Sunnarborg, SW, Kouros‐Mehr, H, Yu, Y, Lee, DC, Werb, Z. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17‐dependent shedding of epithelial amphiregulin. Development 2005, 132:3923–3933.
Lu, PF, Werb, Z. Patterning mechanisms of branched organs. Science 2008, 322:1506–1509.
Ewan, KB, Shyamala, G, Ravani, SA, Tang, Y, Akhurst, R, Wakefield, L, Barcellos‐Hoff, MH. Latent transforming growth factor‐β activation in mammary gland—regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 2002, 160:2081–2093.
Nelson, CM, VanDuijn, MM, Inman, JL, Fletcher, DA, Bissell, MJ. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 2006, 314:298–300.
Debnath, J, Mills, KR, Collins, NL, Reginato, MJ, Muthuswamy, SK, Brugge, JS. The role of apoptosis in creating and maintaining luminal space within normal and oncogene‐expressing mammary acini. Cell 2002, 111:29–40.
Debnath, J, Brugge, JS. Modelling glandular epithelial cancers in three‐dimensional cultures. Nat Rev Cancer 2005, 5:675–688.
Reginato, MJ, Mills, KR, Paulus, JK, Lynch, DK, Sgroi, DC, Debnath, J, Muthuswamy, SK, Brugge, JS. Integrins and EGFR coordinately regulate the pro‐apoptotic protein Bim to prevent anoikis. Nat Cell Biol 2003, 5:733–740.
Reginato, MJ, Mills, KR, Becker, EB, Lynch, DK, Bonni, A, Muthuswamy, SK, Brugge, JS. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol 2005, 25:4591–4601.
Schmelzle, T, Mailleux, AA, Overholtzer, M, Carroll, JS, Solimini, NL, Lightcap, ES, Veiby, OP, Brugge, JS. Functional role and oncogene‐regulated expression of the BH3‐only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc Natl Acad Sci U S A 2007, 104:3787–3792.
Mills, KR, Reginato, M, Debnath, J, Queenan, B, Brugge, JS. Tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci U S A 2004, 101:3438–3443.
Fata, JE, Mori, H, Ewald, AJ, Zhang, H, Yao, E, Werb, Z, Bissell, MJ. The MAPK(ERK‐1,2) pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol 2007, 306:193–207.
Yerbes, R, Palacios, C, Reginato, MJ, Lopez‐Rivas, A. Cellular FLIP(L) plays a survival role and regulates morphogenesis in breast epithelial cells. Biochim Biophys Acta 2011, 1813:168–178.
Albeck, JG, Burke, JM, Spencer, SL, Lauffenburger, DA, Sorger, PK. Modeling a snap‐action, variable‐delay switch controlling extrinsic cell death. PLoS Biol 2008, 6:2831–2852.
Spencer, SL, Gaudet, S, Albeck, JG, Burke, JM, Sorger, PK. Non‐genetic origins of cell‐to‐cell variability in TRAIL‐induced apoptosis. Nature 2009, 459: 428–432.
Page‐McCaw, A, Ewald, AJ, Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007, 8:221–233.
Rowe, RG, Weiss, SJ. Navigating ECM barriers at the invasive front: the cancer cell‐stroma interface. Annu Rev Cell Dev Biol 2009, 25:567–595.
Rebustini, IT, Myers, C, Lassiter, KS, Surmak, A, Szabova, L, Holmbeck, K, Pedchenko, V, Hudson, BG, Hoffman, MP. MT2‐MMP‐dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis. Dev Cell 2009, 17: 482–493.
Apte, SS. A disintegrin‐like and metalloprotease (reprolysin‐type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 2009, 284:31493–31497.
McCulloch, DR, Nelson, CM, Dixon, LJ, Silver, DL, Wylie, JD, Lindner, V, Sasaki, T, Cooley, MA, Argraves, WS, Apte, SS. ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 2009, 17:687–698.
Streuli, CH. Maspin is a tumour suppressor that inhibits breast cancer tumour metastasis in vivo. Breast Cancer Res 2002, 4:137–140.
Lauffenburger, DA, Horwitz, AF. Cell migration: a physically integrated molecular process. Cell 1996, 84:359–369.
Giampieri, S, Manning, C, Hooper, S, Jones, L, Hill, CS, Sahai, E. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 2009, 11:1287–1296.
Shakya, R, Watanabe, T, Costantini, F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 2005, 8:65–74.
Larsen, M, Wei, C, Yamada, KM. Cell and fibronectin dynamics during branching morphogenesis. J Cell Sci 2006, 119:3376–3384.
Batlle, E, Henderson, JT, Beghtel, H, van den Born, MM, Sancho, E, Huls, G, Meeldijk, J, Robertson, J, van de Wetering, M, Pawson, T, et al. β‐catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002, 111:251–263.
Pearson, GW, Hunter, T. Real‐time imaging reveals that noninvasive mammary epithelial acini can contain motile cells. J Cell Biol 2007, 179:1555–1567.
Chi, X, Michos, O, Shakya, R, Riccio, P, Enomoto, H, Licht, JD, Asai, N, Takahashi, M, Ohgami, N, Kato, M, et al. Ret‐dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 2009, 17:199–209.
Mori, H, Gjorevski, N, Inman, JL, Bissell, MJ, Nelson, CM. Self‐organization of engineered epithelial tubules by differential cellular motility. Proc Natl Acad Sci U S A 2009, 106:14890–14895.
Rorth, P. Collective cell migration. Annu Rev Cell Dev Biol 2009, 25:407–429.
Maddugoda, MP, Crampton, MS, Shewan, AM, Yap, AS. Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell‐cell contacts in mammalian epithelial cells. J Cell Biol 2007, 178:529–540.
Paszek, MJ, Zahir, N, Johnson, KR, Lakins, JN, Rozenberg, GI, Gefen, A, Reinhart‐King, CA, Margulies, SS, Dembo, M, Boettiger, D, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005, 8:241–254.
Grose, R, Hutter, C, Bloch, W, Thorey, I, Watt, FM, Fassler, R, Brakebusch, C, Werner, S. A crucial role of β 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 2002, 129:2303–2315.
Zelenka, PS, Arpitha, P. Coordinating cell proliferation and migration in the lens and cornea. Semin Cell Dev Biol 2008, 19:113–124.
Omelchenko, T, Vasiliev, JM, Gelfand, IM, Feder, HH, Bonder, EM. Rho‐dependent formation of epithelial “leader” cells during wound healing. Proc Natl Acad Sci U S A 2003, 100:10788–10793.
Poujade, M, Grasland‐Mongrain, E, Hertzog, A, Jouanneau, J, Chavrier, P, Ladoux, B, Buguin, A, Silberzan, P. Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U S A 2007, 104:15988–15993.
Trepat, X, Wasserman, MR, Angelini, TE, Millet, E, Weitz, DA, Butler, JP, Fredberg, JJ. Physical forces during collective cell migration. Nat Phys 2009, 5: 426–430.
Ladoux, B. Biophysics: cells guided on their journey. Nat Phys 2009, 5:377–378.
Haas, P, Gilmour, D. Chemokine signaling mediates self‐organizing tissue migration in the zebrafish lateral line. Dev Cell 2006, 10:673–680.
Caussinus, E, Colombelli, J, Affolter, M. Tip‐cell migration controls stalk‐cell intercalation during Drosophila tracheal tube elongation. Curr Biol 2008, 18:1727–1734.
Ikeya, T, Hayashi, S. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea. Development 1999, 126: 4455–4463.
Greenhalgh, DG, Sprugel, KH, Murray, MJ, Ross, R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 1990, 136: 1235–1246.
O`Brien, LE, Jou, TS, Pollack, AL, Zhang, Q, Hansen, SH, Yurchenco, P, Mostov, KE. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 2001, 3:831–838.
Martin‐Belmonte, F, Gassama, A, Datta, A, Yu, W, Rescher, U, Gerke, V, Mostov, K. PTEN‐mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 2007, 128:383–397.
Wells, CD, Fawcett, JP, Traweger, A, Yamanaka, Y, Goudreault, M, Elder, K, Kulkarni, S, Gish, G, Virag, C, Lim, C, et al. A Rich1/Amot complex regulates the Cdc42 GTPase and apical‐polarity proteins in epithelial cells. Cell 2006, 125:535–548.
Qin, Y, Meisen, WH, Hao, Y, Macara, IG. Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J Cell Biol 2010, 189:661–669.
Rodriguez‐Fraticelli, AE, Vergarajauregui, S, Eastburn, DJ, Datta, A, Alonso, MA, Mostov, K, Martin‐Belmonte, F. The Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. J Cell Biol 2010, 189:725–738.
Nejsum, LN, Nelson, WJ. A molecular mechanism directly linking E‐cadherin adhesion to initiation of epithelial cell surface polarity. J Cell Biol 2007, 178:323–335.
Yu, W, Shewan, AM, Brakeman, P, Eastburn, DJ, Datta, A, Bryant, DM, Fan, QW, Weiss, WA, Zegers, MM, Mostov, KE. Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity. EMBO Rep 2008, 9:923–929.
Adams, SA, Smith, ME, Cowley, GP, Carr, LA. Reversal of glandular polarity in the lymphovascular compartment of breast cancer. J Clin Pathol 2004, 57:1114–1117.
Zegers, MM, O`Brien, LE, Yu, W, Datta, A, Mostov, KE. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol 2003, 13:169–176.
Orr, AW, Helmke, BP, Blackman, BR, Schwartz, MA. Mechanisms of mechanotransduction. Dev Cell 2006, 10:11–20.
Montesano, R, Matsumoto, K, Nakamura, T, Orci, L. Identification of a fibroblast‐derived epithelial morphogen as hepatocyte growth‐factor. Cell 1991, 67:901–908.
Bussolino, F, Direnzo, MF, Ziche, M, Bocchietto, E, Olivero, M, Naldini, L, Gaudino, G, Tamagnone, L, Coffer, A, Comoglio, PM. Hepatocyte growth‐factor is a potent angiogenic factor which stimulates endothelial‐cell motility and growth. J Cell Biol 1992, 119:629–641.
Park, M, Dean, M, Cooper, CS, Schmidt, M, O`Brien, SJ, Blair, DG, Vande Woude, GF. Mechanism of met oncogene activation. Cell 1986, 45:895–904.
Bottaro, DP, Rubin, JS, Faletto, DL, Chan, AML, Kmiecik, TE, Vandewoude, GF, Aaronson, SA. Identification of the hepatocyte growth‐factor receptor as the C‐Met protooncogene product. Science 1991, 251:802–804.
Naldini, L, Weidner, KM, Vigna, E, Gaudino, G, Bardelli, A, Ponzetto, C, Narsimhan, RP, Hartmann, G, Zarnegar, R, Michalopoulos, GK, et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 1991, 10:2867–2878.
Ponzetto, C, Bardelli, A, Zhen, Z, Maina, F, dalla Zonca, P, Giordano, S, Graziani, A, Panayotou, G, Comoglio, PM. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 1994, 77:261–271.
Birchmeier, C, Birchmeier, W, Gherardi, E, Vande Woude, GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003, 4:915–925.
Weidner, KM, Di Cesare, S, Sachs, M, Brinkmann, V, Behrens, J, Birchmeier, W. Interaction between Gab1 and the c‐Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 1996, 384:173–176.
Sakkab, D, Lewitzky, M, Posern, G, Schaeper, U, Sachs, M, Birchmeier, W, Feller, SM. Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL. J Biol Chem 2000, 275:10772–10778.
Xiao, GH, Jeffers, M, Bellacosa, A, Mitsuuchi, Y, Vande Woude, GF, Testa, JR. Anti‐apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3‐kinase/Akt and mitogen‐activated protein kinase pathways. Proc Natl Acad Sci U S A 2001, 98:247–252.
Kennedy, SG, Wagner, AJ, Conzen, SD, Jordan, J, Bellacosa, A, Tsichlis, PN, Hay, N. The PI 3‐kinase/Akt signaling pathway delivers an anti‐apoptotic signal. Genes Dev 1997, 11:701–713.
Franke, R, Muller, M, Wundrack, N, Gilles, ED, Klamt, S, Kahne, T, Naumann, M. Host‐pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c‐Met signal transduction. BMC Syst Biol 2008, 2:4.
Saez‐Rodriguez, J, Alexopoulos, LG, Epperlein, J, Samaga, R, Lauffenburger, DA, Klamt, S, Sorger, PK. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 2009, 5:331.
Turner, N, Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 2010, 10:116–129.
Schlessinger, J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 2004, 306:1506–1507.
Peters, K, Werner, S, Liao, X, Wert, S, Whitsett, J, Williams, L. Targeted expression of a dominant‐negative Fgf receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. Embo J 1994, 13:3296–3301.
Ornitz, DM, Itoh, N. Fibroblast growth factors. Genome Biol 2001, 2:REVIEWS3005.
Lowenstein, EJ, Daly, RJ, Batzer, AG, Li, W, Margolis, B, Lammers, R, Ullrich, A, Skolnik, EY, Bar‐Sagi, D, Schlessinger, J. The SH2 and SH3 domain‐containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 1992, 70:431–442.
Kouhara, H, Hadari, YR, Spivak‐Kroizman, T, Schilling, J, Bar‐Sagi, D, Lax, I, Schlessinger, J. A lipid‐anchored Grb2‐binding protein that links FGF‐receptor activation to the Ras/MAPK signaling pathway. Cell 1997, 89:693–702.
Prudovsky, I, Savion, N, Zhan, X, Friesel, R, Xu, J, Hou, J, McKeehan, WL, Maciag, T. Intact and functional fibroblast growth factor (FGF) receptor‐1 trafficks near the nucleus in response to FGF‐1. J Biol Chem 1994, 269:31720–31724.
Zhan, X, Plourde, C, Hu, X, Friesel, R, Maciag, T. Association of fibroblast growth factor receptor‐1 with c‐Src correlates with association between c‐Src and cortactin. J Biol Chem 1994, 269:20221–20224.
Sandilands, E, Akbarzadeh, S, Vecchione, A, McEwan, DG, Frame, MC, Heath, JK. Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors. EMBO Rep 2007, 8:1162–1169.
Faeder, JR, Blinov, ML, Goldstein, B, Hlavacek, WS. Combinatorial complexity and dynamical restriction of network flows in signal transduction. Syst Biol (Stevenage) 2005, 2:5–15.
Furdui, CM, Lew, ED, Schlessinger, J, Anderson, KS. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell 2006, 21:711–717.
Gaffney, EA, Heath, JK, Kwiatkowska, MZ. A mass action model of a fibroblast growth factor signaling pathway and its simplification. Bull Math Biol 2008, 70:2229–2263.
Cohen, S. The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol 1965, 12:394–407.
Yarden, Y, Sliwkowski, MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001, 2:127–137.
Wiley, HS, Shvartsman, SY, Lauffenburger, DA. Computational modeling of the EGF‐receptor system: a paradigm for systems biology. Trends Cell Biol 2003, 13:43–50.
Schoeberl, B, Eichler‐Jonsson, C, Gilles, ED, Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 2002, 20:370–375.
Chen, WW, Schoeberl, B, Jasper, PJ, Niepel, M, Nielsen, UB, Lauffenburger, DA, Sorger, PK. Input‐output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 2009, 5:239.
Nakakuki, T, Birtwistle, MR, Saeki, Y, Yumoto, N, Ide, K, Nagashima, T, Brusch, L, Ogunnaike, BA, Okada‐Hatakeyama, M, Kholodenko, BN. Ligand‐specific c‐Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 2010, 141:884–896.
Koff, A, Ohtsuki, M, Polyak, K, Roberts, JM, Massague, J. Negative regulation of G1 in mammalian‐cells—inhibition of cyclin‐E‐dependent kinase by Tgf‐β. Science 1993, 260:536–539.
Schmierer, B, Hill, CS. TGFβ‐SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007, 8:970–982.
Moses, HL, Yang, EY, Pietenpol, JA. TGF‐β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 1990, 63:245–247.
Shi, Y, Massague, J. Mechanisms of TGF‐β signaling from cell membrane to the nucleus. Cell 2003, 113:685–700.
He, W, Li, AG, Wang, D, Han, S, Zheng, B, Goumans, MJ, Ten Dijke, P, Wang, XJ. Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J 2002, 21:2580–2590.
Chen, F, Weinberg, RA. Biochemical evidence for the autophosphorylation and transphosphorylation of transforming growth factor β receptor kinases. Proc Natl Acad Sci U S A 1995, 92:1565–1569.
Furuhashi, M, Yagi, K, Yamamoto, H, Furukawa, Y, Shimada, S, Nakamura, Y, Kikuchi, A, Miyazono, K, Kato, M. Axin facilitates Smad3 activation in the transforming growth factor β signaling pathway. Mol Cell Biol 2001, 21:5132–5141.
Heldin, CH, Miyazono, K, tenDijke, P. TGF‐β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390:465–471.
Kavsak, P, Rasmussen, RK, Causing, CG, Bonni, S, Zhu, H, Thomsen, GH, Wrana, JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF β receptor for degradation. Mol Cell 2000, 6:1365–1375.
Koli, KM, Arteaga, CL. Predominant cytosolic localization of type II transforming growth factor β receptors in human breast carcinoma cells. Cancer Res 1997, 57:970–977.
Vilar, JMG, Jansen, R, Sander, C. Signal processing in the TGF‐β superfamily ligand‐receptor network. Plos Comput Biol 2006, 2:36–45.
Hendriks, BS, Opresko, LK, Wiley, HS, Lauffenburger, D. Quantitative analysis of HER2‐mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo‐ and heterodimers depends on relative HER2 levels. J Biol Chem 2003, 278:23343–23351.
Logan, CY, Nusse, R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20:781–810.
Willert, K, Brown, JD, Danenberg, E, Duncan, AW, Weissman, IL, Reya, T, Yates, JR , III. Nusse, R. Wnt proteins are lipid‐modified and can act as stem cell growth factors. Nature 2003, 423:448–452.
Jamora, C, DasGupta, R, Kocieniewski, P, Fuchs, E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003, 422:317–322.
Stark, K, Vainio, S, Vassileva, G, McMahon, AP. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt‐4. Nature 1994, 372:679–683.
Brisken, C, Heineman, A, Chavarria, T, Elenbaas, B, Tan, J, Dey, SK, McMahon, JA, McMahon, AP, Weinberg, RA. Essential function of Wnt‐4 in mammary gland development downstream of progesterone signaling. Genes Dev 2000, 14:650–654.
Bhanot, P, Brink, M, Samos, CH, Hsieh, JC, Wang, Y, Macke, JP, Andrew, D, Nathans, J, Nusse, R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996, 382:225–230.
Clevers, H. Wnt/β‐catenin signaling in development and disease. Cell 2006, 127:469–480.
Tamai, K, Semenov, M, Kato, Y, Spokony, R, Liu, C, Katsuyama, Y, Hess, F, Saint‐Jeannet, JP, He, X. LDL‐receptor‐related proteins in Wnt signal transduction. Nature 2000, 407:530–535.
Ikeda, S, Kishida, S, Yamamoto, H, Murai, H, Koyama, S, Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3β and β‐catenin and promotes GSK‐3β‐dependent phosphorylation of β‐catenin. EMBO J 1998, 17:1371–1384.
Behrens, J, Jerchow, BA, Wurtele, M, Grimm, J, Asbrand, C, Wirtz, R, Kuhl, M, Wedlich, D, Birchmeier, W. Functional interaction of an axin homolog, conductin, with β‐catenin, APC, and GSK3β. Science 1998, 280:596–599.
Papkoff, J, Rubinfeld, B, Schryver, B, Polakis, P. Wnt‐1 regulates free pools of catenins and stabilizes APC‐catenin complexes. Mol Cell Biol 1996, 16: 2128–2134.
Xing, Y, Clements, WK, Le Trong, I, Hinds, TR, Stenkamp, R, Kimelman, D, Xu, W. Crystal structure of a β‐catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol Cell 2004, 15:523–533.
Peters, JM, McKay, RM, McKay, JP, Graff, JM. Casein kinase I transduces Wnt signals. Nature 1999, 401:345–350.
Zeng, X, Tamai, K, Doble, B, Li, S, Huang, H, Habas, R, Okamura, H, Woodgett, J, He, X. A dual‐kinase mechanism for Wnt co‐receptor phosphorylation and activation. Nature 2005, 438:873–877.
Kimelman, D, Xu, W. β‐catenin destruction complex: insights and questions from a structural perspective. Oncogene 2006, 25:7482–7491.
Yang‐Snyder, J, Miller, JR, Brown, JD, Lai, CJ, Moon, RT. A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 1996, 6:1302–1306.
Zeng, X, Huang, H, Tamai, K, Zhang, X, Harada, Y, Yokota, C, Almeida, K, Wang, J, Doble, B, Woodgett, J, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 2008, 135:367–375.
Giese, K, Kingsley, C, Kirshner, JR, Grosschedl, R. Assembly and function of a TCR α enhancer complex is dependent on LEF‐1‐induced DNA bending and multiple protein‐protein interactions. Genes Dev 1995, 9:995–1008.
Huber, O, Korn, R, McLaughlin, J, Ohsugi, M, Herrmann, BG, Kemler, R. Nuclear localization of β‐catenin by interaction with transcription factor LEF‐1. Mech Dev 1996, 59:3–10.
Behrens, J, von Kries, JP, Kuhl, M, Bruhn, L, Wedlich, D, Grosschedl, R, Birchmeier, W. Functional interaction of β‐catenin with the transcription factor LEF‐1. Nature 1996, 382:638–642.
Morin, PJ, Sparks, AB, Korinek, V, Barker, N, Clevers, H, Vogelstein, B, Kinzler, KW. Activation of β‐catenin‐Tcf signaling in colon cancer by mutations in β‐catenin or APC. Science 1997, 275:1787–1790.
Salic, A, Lee, E, Mayer, L, Kirschner, MW. Control of β‐catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 2000, 5:523–532.
Lee, E, Salic, A, Kruger, R, Heinrich, R, Kirschner, MW. The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 2003, 1:E10.
Tolwinski, NS, Wehrli, M, Rives, A, Erdeniz, N, DiNardo, S, Wieschaus, E. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and axin independently of Zw3/Gsk3β activity. Dev Cell 2003, 4:407–418.
Yamamoto, H, Kishida, S, Kishida, M, Ikeda, S, Takada, S, Kikuchi, A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase‐3β regulates its stability. J Biol Chem 1999, 274:10681–10684.
Kirschner, MW. The meaning of systems biology. Cell 2005, 121:503–504.
Gumbiner, BM. Regulation of cadherin‐mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 2005, 6:622–634.
Yamada, S, Nelson, WJ. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell‐cell adhesion. J Cell Biol 2007, 178:517–527.
Onder, TT, Gupta, PB, Mani, SA, Yang, J, Lander, ES, Weinberg, RA. Loss of E‐cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008, 68:3645–3654.
Yang, J, Weinberg, RA. Epithelial‐mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008, 14:818–829.
Peinado, H, Marin, F, Cubillo, E, Stark, HJ, Fusenig, N, Nieto, MA, Cano, A. Snail and E47 repressors of E‐cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 2004, 117:2827–2839.
Wang, X, Zheng, M, Liu, G, Xia, W, McKeown‐Longo, PJ, Hung, MC, Zhao, J. Kruppel‐like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res 2007, 67:7184–7193.
Sobrado, VR, Moreno‐Bueno, G, Cubillo, E, Holt, LJ, Nieto, MA, Portillo, F, Cano, A. The class I bHLH factors E2‐2A and E2‐2B regulate EMT. J Cell Sci 2009, 122:1014–1024.
Ramis‐Conde, I, Drasdo, D, Anderson, AR, Chaplain, MA. Modeling the influence of the E‐cadherin‐β‐catenin pathway in cancer cell invasion: a multiscale approach. Biophys J 2008, 95:155–165.
Frixen, UH, Behrens, J, Sachs, M, Eberle, G, Voss, B, Warda, A, Lochner, D, Birchmeier, W. E‐cadherin‐mediated cell‐cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991, 113: 173–185.
Bessho, Y, Kageyama, R. Oscillations, clocks and segmentation. Curr Opin Genet Dev 2003, 13:379–384.
Dale, JK, Maroto, M, Dequeant, ML, Malapert, P, McGrew, M, Pourquie, O. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 2003, 421:275–278.
Mazzone, M, Selfors, LM, Albeck, J, Overholtzer, M, Sale, S, Carroll, DL, Pandya, D, Lu, Y, Mills, GB, Aster, JC, et al. Dose‐dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc Natl Acad Sci U S A 2010, 107:5012–5017.
Stylianou, S, Clarke, RB, Brennan, K. Aberrant activation of notch signaling in human breast cancer. Cancer Res 2006, 66:1517–1525.
Webb, SD, Owen, MR. Oscillations and patterns in spatially discrete models for developmental intercellular signalling. J Math Biol 2004, 48:444–476.
Kimble, J, Simpson, P. The LIN‐12/Notch signaling pathway and its regulation. Annu Rev Cell Dev Biol 1997, 13:333–361.
de Celis, JF, Bray, S. Feed‐back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 1997, 124: 3241–3251.
Jorgensen, C, Sherman, A, Chen, GI, Pasculescu, A, Poliakov, A, Hsiung, M, Larsen, B, Wilkinson, DG, Linding, R, Pawson, T. Cell‐specific information processing in segregating populations of Eph receptor ephrin‐expressing cells. Science 2009, 326:1502–1509.
Batlle, E, Bacani, J, Begthel, H, Jonkheer, S, Gregorieff, A, van de Born, M, Malats, N, Sancho, E, Boon, E, Pawson, T, et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005, 435:1126–1130.
Cortina, C, Palomo‐Ponce, S, Iglesias, M, Fernandez‐Masip, JL, Vivancos, A, Whissell, G, Huma, M, Peiro, N, Gallego, L, Jonkheer, S, et al. EphB‐ephrin‐B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet 2007, 39: 1376–1383.
Gehler, S, Baldassarre, M, Lad, Y, Leight, JL, Wozniak, MA, Riching, KM, Eliceiri, KW, Weaver, VM, Calderwood, DA, Keely, PJ. Filamin A‐β1 integrin complex tunes epithelial cell response to matrix tension. Mol Biol Cell 2009, 20:3224–3238.
Alexander, NR, Branch, KM, Parekh, A, Clark, ES, Iwueke, IC, Guelcher, SA, Weaver, AM. Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 2008, 18:1295–1299.
Levental, KR, Yu, H, Kass, L, Lakins, JN, Egeblad, M, Erler, JT, Fong, SF, Csiszar, K, Giaccia, A, Weninger, W, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139: 891–906.
Gudjonsson, T, Villadsen, R, Nielsen, HL, Ronnov‐Jessen, L, Bissell, MJ, Petersen, OW. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 2002, 16:693–706.
Villadsen, R, Fridriksdottir, AJ, Ronnov‐Jessen, L, Gudjonsson, T, Rank, F, LaBarge, MA, Bissell, MJ, Petersen, OW. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 2007, 177:87–101.
Asselin‐Labat, ML, Sutherland, KD, Barker, H, Thomas, R, Shackleton, M, Forrest, NC, Hartley, L, Robb, L, Grosveld, FG, van der Wees, J, et al. Gata‐3 is an essential regulator of mammary‐gland morphogenesis and luminal‐cell differentiation. Nat Cell Biol 2007, 9:201–209.
Lim, E, Vaillant, F, Wu, D, Forrest, NC, Pal, B, Hart, AH, Asselin‐Labat, ML, Gyorki, DE, Ward, T, Partanen, A, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009, 15: 907–913.
Kouros‐Mehr, H, Slorach, EM, Sternlicht, MD, Werb, Z. GATA‐3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006, 127:1041–1055.
Visvader, JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009, 23:2563–2577.
van der Flier, LG, Clevers, H. Stem cells, self‐renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009, 71:241–260.
Barker, N, van Es, JH, Kuipers, J, Kujala, P, van den Born, M, Cozijnsen, M, Haegebarth, A, Korving, J, Begthel, H, Peters, PJ, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449:1003–1007.
Zhu, L, Gibson, P, Currle, DS, Tong, Y, Richardson, RJ, Bayazitov, IT, Poppleton, H, Zakharenko, S, Ellison, DW, Gilbertson, RJ. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 2009, 457:603–607.
Sato, T, Vries, RG, Snippert, HJ, van de Wetering, M, Barker, N, Stange, DE, van Es, JH, Abo, A, Kujala, P, Peters, PJ, et al. Single Lgr5 stem cells build crypt‐villus structures in vitro without a mesenchymal niche. Nature 2009, 459:262–265.
Sangiorgi, E, Capecchi, MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008, 40:915–920.
Snippert, HJ, van der Flier, LG, Sato, T, van Es, JH, van den Born, M, Kroon‐Veenboer, C, Barker, N, Klein, AM, van Rheenen, J, Simons, BD, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010, 143:134–144.
Lopez‐Garcia, C, Klein, AM, Simons, BD, Winton, DJ. Intestinal stem cell replacement follows a pattern of neutral drift. Science 2010, 330:822–825.
Janes, KA, Wang, CC, Holmberg, KJ, Cabral, K, Brugge, JS. Identifying single‐cell molecular programs by stochastic profiling. Nat Methods 2010, 7: 311–317.
Weinstein, IB. Cancer: addiction to oncogenes—the Achilles heal of cancer. Science 2002, 297:63–64.
Luo, J, Solimini, NL, Elledge, SJ. Principles of cancer therapy: oncogene and non‐oncogene addiction. Cell 2009, 136:823–837.
Wang, F, Hansen, RK, Radisky, D, Yoneda, T, Barcellos‐Hoff, MH, Petersen, OW, Turley, EA, Bissell, MJ. Phenotypic reversion or death of cancer cells by altering signaling pathways in three‐dimensional contexts. J Natl Cancer Inst 2002, 94:1494–1503.
Barcellos‐Hoff, MH, Ravani, SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 2000, 60:1254–1260.
Weaver, VM, Petersen, OW, Wang, F, Larabell, CA, Briand, P, Damsky, C, Bissell, MJ. Reversion of the malignant phenotype of human breast cells in three‐dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 1997, 137:231–245.
Hanahan, D, Weinberg, RA. The hallmarks of cancer. Cell 2000, 100:57–70.
Hanahan, D, Weinberg, RA. Hallmarks of cancer: the next generation. Cell 2011, 144:646–674.
Hay, ED. An overview of epithelio‐mesenchymal transformation. Acta Anat (Basel) 1995, 154:8–20.
Oft, M, Akhurst, RJ, Balmain, A. Metastasis is driven by sequential elevation of H‐ras and Smad2 levels. Nat Cell Biol 2002, 4:487–494.
Hogan, C, Dupre‐Crochet, S, Norman, M, Kajita, M, Zimmermann, C, Pelling, AE, Piddini, E, Baena‐Lopez, LA, Vincent, JP, Itoh, Y, et al. Characterization of the interface between normal and transformed epithelial cells. Nat Cell Biol 2009, 11:460–467.
Muthuswamy, SK, Li, D, Lelievre, S, Bissell, MJ, Brugge, JS. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 2001, 3:785–792.
Schafer, ZT, Grassian, AR, Song, L, Jiang, Z, Gerhart‐Hines, Z, Irie, HY, Gao, S, Puigserver, P, Brugge, JS. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461:109–113.
Vander Heiden, MG, Cantley, LC, Thompson, CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029–1033.
Owens, LV, Xu, L, Craven, RJ, Dent, GA, Weiner, TM, Kornberg, L, Liu, ET, Cance, WG. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 1995, 55:2752–2755.
Benlimame, N, He, Q, Jie, S, Xiao, D, Xu, YJ, Loignon, M, Schlaepfer, DD, Alaoui‐Jamali, MA. FAK signaling is critical for ErbB‐2/ErbB‐3 receptor cooperation for oncogenic transformation and invasion. J Cell Biol 2005, 171:505–516.
Hsia, DA, Mitra, SK, Hauck, CR, Streblow, DN, Nelson, JA, Ilic, D, Huang, S, Li, E, Nemerow, GR, Leng, J, et al. Differential regulation of cell motility and invasion by FAK. J Cell Biol 2003, 160:753–767.
Wu, X, Gan, B, Yoo, Y, Guan, JL. FAK‐mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1‐MMP and promotes ECM degradation. Dev Cell 2005, 9:185–196.
Avizienyte, E, Frame, MC. Src and FAK signalling controls adhesion fate and the epithelial‐to‐mesenchymal transition. Curr Opin Cell Biol 2005, 17:542–547.
Cicchini, C, Laudadio, I, Citarella, F, Corazzari, M, Steindler, C, Conigliaro, A, Fantoni, A, Amicone, L, Tripodi, M. TGFβ‐induced EMT requires focal adhesion kinase (FAK) signaling. Exp Cell Res 2008, 314:143–152.
van Nimwegen, MJ, van de Water, B. Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 2007, 73:597–609.
Lim, ST, Chen, XL, Tomar, A, Miller, NL, Yoo, J, Schlaepfer, DD. Knock‐in mutation reveals an essential role for focal adhesion kinase activity in blood vessel morphogenesis and cell motility‐polarity but not cell proliferation. J Biol Chem 2010, 285:21526–21536.
Brent, R. A partnership between biology and engineering. Nat Biotechnol 2004, 22:1211–1214.
Yamada, KM, Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007, 130:601–610.
Kleinman, HK, Martin, GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005, 15:378–386.
Pampaloni, F, Reynaud, EG, Stelzer, EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 2007, 8:839–845.
Montesano, R, Schaller, G, Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast‐derived soluble factors. Cell 1991, 66:697–711.
Wang, AZ, Ojakian, GK, Nelson, WJ. Steps in the morphogenesis of a polarized epithelium. II. Disassembly and assembly of plasma membrane domains during reversal of epithelial cell polarity in multicellular epithelial (MDCK) cysts. J Cell Sci 1990, 95 (Pt 1):153–165.
Saxen, L, Sariola, H. Early organogenesis of the kidney. Pediatr Nephrol 1987, 1:385–392.
McAteer, JA, Evan, AP, Gardner, KD. Morphogenetic clonal growth of kidney epithelial cell line MDCK. Anat Rec 1987, 217:229–239.
Chen, X, Macara, IG. RNA interference techniques to study epithelial cell adhesion and polarity. Methods Enzymol 2006, 406:362–374.
Debnath, J, Muthuswamy, SK, Brugge, JS. Morphogenesis and oncogenesis of MCF‐10A mammary epithelial acini grown in three‐dimensional basement membrane cultures. Methods 2003, 30:256–268.
Hariharan, IK, Haber, DA. Yeast, flies, worms, and fish in the study of human disease. N Engl J Med 2003, 348:2457–2463.
Moffat, J, Grueneberg, DA, Yang, X, Kim, SY, Kloepfer, AM, Hinkle, G, Piqani, B, Eisenhaure, TM, Luo, B, Grenier, JK, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high‐content screen. Cell 2006, 124:1283–1298.
Schluter, MA, Pfarr, CS, Pieczynski, J, Whiteman, EL, Hurd, TW, Fan, SL, Liu, CJ, Margolis, B. Trafficking of crumbs3 during cytokinesis is crucial for lumen formation. Mol Biol Cell 2009, 20:4652–4663.
Aranda, V, Haire, T, Nolan, ME, Calarco, JP, Rosenberg, AZ, Fawcett, JP, Pawson, T, Muthuswamy, SK. Par6‐aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 2006, 8:1235–1245.
Richard, NR, Anderson, JA, Weiss, JL, Binder, PS. Air/liquid corneal organ culture: a light microscopic study. Curr Eye Res 1991, 10:739–749.
Foreman, DM, Pancholi, S, Jarvis‐Evans, J, McLeod, D, Boulton, ME. A simple organ culture model for assessing the effects of growth factors on corneal re‐epithelialization. Exp Eye Res 1996, 62:555–564.
Xu, KP, Li, XF, Yu, FS. Corneal organ culture model for assessing epithelial responses to surfactants. Toxicol Sci 2000, 58:306–314.
Lu, Z, Hasse, S, Bodo, E, Rose, C, Funk, W, Paus, R. Towards the development of a simplified long‐term organ culture method for human scalp skin and its appendages under serum‐free conditions. Exp Dermatol 2007, 16:37–44.
Sato, T, van Es, JH, Snippert, HJ, Stange, DE, Vries, RG, van den Born, M, Barker, N, Shroyer, NF, van de Wetering, M, Clevers, H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2010, 469:415–418.
Nelson, CM, Inman, JL, Bissell, MJ. Three‐dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat Protoc 2008, 3:674–678.
Elowitz, M, Lim, WA. Build life to understand it. Nature 2010, 468:889–890.
Rejniak, KA, Anderson, AR. Hybrid models of tumor growth. WIREs Syst Biol Med 2011, 3:115–125.
Edelman, LB, Eddy, JA, Price, ND. In silico models of cancer. WIREs Syst Biol Med 2010, 2:438–459.
Smallwood, R. Computational modeling of epithelial tissues. WIREs Syst Biol Med 2009, 1:191–201.
Turing, AM. The chemical basis of morphogenesis. Proc R Soc Lond B Biol Sci 1952, 237:37–72.
Franks, SJ, Byrne, HM, Underwood, JC, Lewis, CE. Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast. J Theor Biol 2005, 232:523–543.
Sherratt, JA, Dallon, JC. Theoretical models of wound healing: past successes and future challenges. C R Biol 2002, 325:557–564.
Mi, Q, Swigon, D, Riviere, B, Cetin, S, Vodovotz, Y, Hackam, DJ. One‐dimensional elastic continuum model of enterocyte layer migration. Biophys J 2007, 93:3745–3752.
Edwards, CM, Chapman, SJ. Biomechanical modelling of colorectal crypt budding and fission. Bull Math Biol 2007, 69:1927–1942.
Fisher, RA. The wave of advance of advantageous genes. Ann Eugenics 1937, 7:353–369.
Savla, U, Olson, LE, Waters, CM. Mathematical modeling of airway epithelial wound closure during cyclic mechanical strain. J Appl Physiol 2004, 96: 566–574.
Haugh, JM. Deterministic model of dermal wound invasion incorporating receptor‐mediated signal transduction and spatial gradient sensing. Biophys J 2006, 90:2297–2308.
Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 1969, 25:1–47.
Kim, SH, Yu, W, Mostov, K, Matthay, MA, Hunt, CA. A computational approach to understand in vitro alveolar morphogenesis. PLoS One 2009, 4:e4819.
Kim, SH, Matthay, MA, Mostov, K, Hunt, CA. Simulation of lung alveolar epithelial wound healing in vitro. J R Soc Interface 2010, 7:1157–1170.
Grant, MR, Mostov, KE, Tlsty, TD, Hunt, CA. Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput Biol 2006, 2:e129.
Walker, DC, Hill, G, Wood, SM, Smallwood, RH, Southgate, J. Agent‐based computational modeling of wounded epithelial cell monolayers. IEEE Trans Nanobioscience 2004, 3:153–163.
Walker, DC, Georgopoulos, NT, Southgate, J. Anti‐social cells: predicting the influence of E‐cadherin loss on the growth of epithelial cell populations. J Theor Biol 2010, 262:425–440.
Rejniak, KA. A single‐cell approach in modeling the dynamics of tumor microregions. Math Biosci Eng 2005, 2:643–655.
Rejniak, KA, Anderson, AR. A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure. Bull Math Biol 2008, 70:677–712.
Rejniak, KA, Anderson, AR. A computational study of the development of epithelial acini: II. Necessary conditions for structure and lumen stability. Bull Math Biol 2008, 70:1450–1479.
Rejniak, KA, Wang, SE, Bryce, NS, Chang, H, Parvin, B, Jourquin, J, Estrada, L, Gray, JW, Arteaga, CL, Weaver, AM, et al. Linking changes in epithelial morphogenesis to cancer mutations using computational modeling. PLoS Comput Biol 2010, 6:1–12.
Wang, SE, Narasanna, A, Perez‐Torres, M, Xiang, B, Wu, FY, Yang, S, Carpenter, G, Gazdar, AF, Muthuswamy, SK, Arteaga, CL. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 2006, 10:25–38.
Gevertz, J, Torquato, S. Growing heterogeneous tumors in silico. Phys Rev E Stat Nonlin Soft Matter Phys 2009, 80:051910.
Cickovski, T, Aras, K, Alber, MS, Izaguirre, JA, Swat, M, Glazier, JA, Merks, RM, Glimm, T, Hentschel, HG, Newman, SA. From genes to organisms via the cell: a problem‐solving environment for multicellular development. Comput Sci Eng 2007, 9:50–60.
Walker, D, Wood, S, Southgate, J, Holcombe, M, Smallwood, R. An integrated agent‐mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. J Theor Biol 2006, 242:774–789.
Anderson, AR, Chaplain, M, Newman, EL, Steele, RJ, Thompson, AM. Mathematical modelling of tumour invasion and metastasis. J Theoret Med 2000, 2:129–154.
Anderson, AR. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 2005, 22:163–186.
Anderson, AR, Weaver, AM, Cummings, PT, Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 2006, 127:905–915.
Gerlee, P, Anderson, AR. An evolutionary hybrid cellular automaton model of solid tumour growth. J Theor Biol 2007, 246:583–603.
Rejniak, KA. An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 2007, 247:186–204.
Anderson, AR, Hassanein, M, Branch, KM, Lu, J, Lobdell, NA, Maier, J, Basanta, D, Weidow, B, Narasanna, A, Arteaga, CL, et al. Microenvironmental independence associated with tumor progression. Cancer Res 2009, 69:8797–8806.
Anderson, AR, Rejniak, KA, Gerlee, P, Quaranta, V. Microenvironment driven invasion: a multiscale multimodel investigation. J Math Biol 2009, 58:579–624.
Jeon, J, Quaranta, V, Cummings, PT. An off‐lattice hybrid discrete‐continuum model of tumor growth and invasion. Biophys J 2010, 98:37–47.
Schoeberl, B, Pace, E, Howard, S, Garantcharova, V, Kudla, A, Sorger, PK, Nielsen, UB. A data‐driven computational model of the ErbB receptor signaling network. Conf Proc IEEE Eng Med Biol Soc 2006, 1:53–54.
Janes, KA, Reinhardt, HC, Yaffe, MB. Cytokine‐induced signaling networks prioritize dynamic range over signal strength. Cell 2008, 135:343–354.
Miller‐Jensen, K, Janes, KA, Brugge, JS, Lauffenburger, DA. Common effector processing mediates cell‐specific responses to stimuli. Nature 2007, 448:604–608.