Takahashi, K, Mitsui, K, Yamanaka, S. Role of ERas in promoting tumour‐like properties in mouse embryonic stem cells. Nature 2003, 423: 541–545.
Sharov, AA, Piao, Y, Matoba, R, Dudekula, DB, Qian, Y, et al. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol 2003, 1: e74.
Brandenberger, R, Wei, H, Zhang, S, Lei, S, Murage, J, et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 2004, 22: 707–716.
Anisimov, SV, Tarasov, KV, Tweedie, D, Stern, MD, Wobus, AM, et al. SAGE identification of gene transcripts with profiles unique to pluripotent mouse R1 embryonic stem cells. Genomics 2002, 79: 169–176.
Richards, M, Tan, SP, Tan, JH, Chan, WK, Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 2004, 22: 51–64.
Miura, T, Luo, Y, Khrebtukova, I, Brandenberger, R, Zhou, D, et al. Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev 2004, 13: 694–715.
Wei, CL, Miura, T, Robson, P, Lim, SK, Xu, XQ, et al. Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 2005, 23: 166–185.
Hornshoj, H, Bendixen, E, Conley, LN, Andersen, PK, Hedegaard, J, et al. Transcriptomic and proteomic profiling of two porcine tissues using high‐throughput technologies. BMC Genomics 2009, 10: 30.
Barrett, T, Troup, DB, Wilhite, SE, Ledoux, P, Rudnev, D, et al. NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res 2007, 35: D760–D765.
Parkinson, H, Kapushesky, M, Shojatalab, M, Abeygunawardena, N, Coulson, R, et al. ArrayExpress–a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 2007, 35: D747–D750.
Smith, CM, Finger, JH, Hayamizu, TF, McCright, IJ, Eppig, JT, et al. The mouse Gene Expression Database (GXD): 2007 update. Nucleic Acids Res 2007, 35: D618–D623.
Miranda‐Saavedra, D, De, S, Trotter, MW, Teichmann, SA, Gottgens, B. BloodExpress: a database of gene expression in mouse haematopoiesis. Nucleic Acids Res 2009, 37(suppl 1): D873–D879.
Porter, CJ, Palidwor, GA, Sandie, R, Krzyzanowski, PM, Muro, EM, et al. StemBase: a resource for the analysis of stem cell gene expression data. Methods Mol Biol 2007, 407: 137–148.
Hackney, JA, Charbord, P, Brunk, BP, Stoeckert, CJ, Lemischka, IR, et al. A molecular profile of a hematopoietic stem cell niche. Proc Natl Acad Sci U S A 2002, 99: 13061–13066.
Brazma, A, Hingamp, P, Quackenbush, J, Sherlock, G, Spellman, P, et al. Minimum information about a microarray experiment (MIAME)‐toward standards for microarray data. Nat Genet 2001, 29: 365–371.
Eisen, MB, Spellman, PT, Brown, PO, Botstein, D. Cluster analysis and display of genome‐wide expression patterns. Proc Natl Acad Sci U S A 1998, 95: 14863–14868.
Toronen, P, Kolehmainen, M, Wong, G, Castren, E. Analysis of gene expression data using self‐organizing maps. FEBS Lett 1999, 451: 142–146.
Saeed, AI, Bhagabati, NK, Braisted, JC, Liang, W, Sharov, V, et al. TM4 microarray software suite. Methods Enzymol 2006, 411: 134–193.
Lepre, J, Rice, JJ, Tu, Y, Stolovitzky, G. Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data. Bioinformatics 2004, 20: 1033–1044.
de Hoon, MJ, Imoto, S, Nolan, J, Miyano, S. Open source clustering software. Bioinformatics 2004, 20: 1453–1454.
Gardiner‐Garden, M, Littlejohn, TG. A comparison of microarray databases. Brief Bioinform 2001, 2: 143–158.
Shamir, R, Maron‐Katz, A, Tanay, A, Linhart, C, Steinfeld, I, et al. EXPANDER–an integrative program suite for microarray data analysis. BMC Bioinformatics 2005, 6: 232.
Reimers, M, Carey, VJ. Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol 2006, 411: 119–134.
Bhattacharya, B, Miura, T, Brandenberger, R, Mejido, J, Luo, Y, et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 2004, 103: 2956–2964.
Ivanova, NB, Dimos, JT, Schaniel, C, Hackney, JA, Moore, KA, et al. A stem cell molecular signature. Science 2002, 298: 601–604.
Ramalho‐Santos, M, Yoon, S, Matsuzaki, Y, Mulligan, RC, Melton, DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 2002, 298: 597–600.
Masui, S, Nakatake, Y, Toyooka, Y, Shimosato, D, Yagi, R, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007, 9: 625–635.
Sperger, JM, Chen, X, Draper, JS, Antosiewicz, JE, Chon, CH, et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A 2003, 100: 13350–13355.
Westfall, SD, Sachdev, S, Das, P, Hearne, LB, Hannink, M, et al. Identification of oxygen‐sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev 2008, 17: 869–881.
The International Stem Cell Initiative. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 2007, 25: 803–816.
Bhattacharya, B, Cai, J, Luo, Y, Miura, T, Mejido, J, et al. Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies. BMC Dev Biol 2005, 5: 22.
Skottman, H, Mikkola, M, Lundin, K, Olsson, C, Stromberg, AM, et al. Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 2005, 23: 1343–1356.
Mansergh, FC, Daly, CS, Hurley, AL, Wride, MA, Hunter, SM, et al. Gene expression profiles during early differentiation of mouse embryonic stem cells. BMC Dev Biol 2009, 9: 5.
Abeyta, MJ, Clark, AT, Rodriguez, RT, Bodnar, MS, Pera, RA, et al. Unique gene expression signatures of independently‐derived human embryonic stem cell lines. Hum Mol Genet 2004, 13: 601–608.
Player, A, Wang, Y, Bhattacharya, B, Rao, M, Puri, RK, et al. Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines. Stem Cells Dev 2006, 15: 315–323.
Ivanova, N, Dobrin, R, Lu, R, Kotenko, I, Levorse, J, et al. Dissecting self‐renewal in stem cells with RNA interference. Nature 2006, 442: 533–538.
Sun, YLH, Liu, Y, Shin, S, Mattson, MP, Rao, MS, et al. Cross‐species transcriptional profiles establish a functional portrait of embryonic stem cells. Genomics 2007, 89: 22–35.
Bhattacharya, B, Puri, S, Puri, RK. A review of gene expression profiling of human embryonic stem cell lines and their differentiated progeny. Curr Stem Cell Res Ther 2009, 4: 98–106.
Paddison, PJ, Silva, JM, Conklin, DS, Schlabach, M, Li, M, et al. A resource for large‐scale RNA‐interference‐based screens in mammals. Nature 2004, 428: 427–431.
Kittler, R, Putz, G, Pelletier, L, Poser, I, Heninger, AK, et al. An endoribonuclease‐prepared siRNA screen in human cells identifies genes essential for cell division. Nature 2004, 432: 1036–1040.
Ren, Y, Gong, W, Xu, Q, Zheng, X, Lin, D, et al. siRecords: an extensive database of mammalian siRNAs with efficacy ratings. Bioinformatics 2006, 22: 1027–1028.
Chalk, AM, Warfinge, RE, Georgii‐Hemming, P, Sonnhammer, EL. siRNAdb: a database of siRNA sequences. Nucleic Acids Res 2005, 33: D131–D134.
Boese, Q, Leake, D, Reynolds, A, Read, S, Scaringe, SA, et al. Mechanistic insights aid computational short interfering RNA design. Methods Enzymol 2005, 392: 73–96.
Chalk, AM, Wahlestedt, C, Sonnhammer, EL. Improved and automated prediction of effective siRNA. Biochem Biophys Res Commun 2004, 319: 264–274.
Fazzio, TG, Huff, JT, Panning, B. An RNAi screen of chromatin proteins identifies Tip60‐p400 as a regulator of embryonic stem cell identity. Cell 2008, 134: 162–174.
Schaniel, C, Ang, YS, Ratnakumar, K, Cormier, C, James, T, et al. Smarcc1/Baf155 couples self‐renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells 2009, 27: 2979–2991.
Hu, G, Kim, J, Xu, Q, Leng, Y, Orkin, SH, et al. A genome‐wide RNAi screen identifies a new transcriptional module required for self‐renewal. Genes Dev 2009, 23: 837–848.
Ding, L, Paszkowski‐Rogacz, M, Nitzsche, A, Slabicki, MM, Heninger, AK, et al. A genome‐scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell 2009, 4: 403–415.
Hatfield, S, Ruohola‐Baker, H. microRNA and stem cell function. Cell Tissue Res 2008, 331: 57–66.
Viswanathan, SR, Daley, GQ, Gregory, RI. Selective blockade of microRNA processing by Lin28. Science 2008, 320: 97–100.
Chen, H, Qian, K, Tang, ZP, Xing, B, Liu, N, et al. Bioinformatics and microarray analysis of microRNA expression profiles of murine embryonic stem cells, neural stem cells induced from ESCs and isolated from E8.5 mouse neural tube. Neurol Res 2009.
Griffiths‐Jones, S. miRBase: the microRNA sequence database. Methods Mol Biol 2006, 342: 129–138.
Lewis, BP, Burge, CB, Bartel, DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120: 15–20.
Maselli, V, Di Bernardo, D, Banfi, S. CoGemiR: a comparative genomics microRNA database. BMC Genomics 2008, 9: 457.
Sethupathy, P, Corda, B, Hatzigeorgiou, AG. TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 2006, 12: 192–197.
Pang, KC, Stephen, S, Engstrom, PG, Tajul‐Arifin, K, Chen, W, et al. RNAdb–a comprehensive mammalian noncoding RNA database. Nucleic Acids Res 2005, 33: D125–D130.
Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 2002, 109: 145–148.
Krek, A, Grun, D, Poy, MN, Wolf, R, Rosenberg, L, et al. Combinatorial microRNA target predictions. Nat Genet 2005, 37: 495–500.
John, B, Enright, AJ, Aravin, A, Tuschl, T, Sander, C, et al. Human MicroRNA targets. PLoS Biol 2004, 2: e363.
Papadopoulos, G, Alexiou, P, Maragkakis, M, Reczko, M, Hatzigeorgiou, A. DIANA‐mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 2009.
Wang, X, El Naqa, IM. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 2008, 24: 325–332.
Yousef, M, Jung, S, Kossenkov, AV, Showe, LC, Showe, MK. Naive Bayes for microRNA target predictions–machine learning for microRNA targets. Bioinformatics 2007, 23: 2987–2992.
Kertesz, M, Iovino, N, Unnerstall, U, Gaul, U, Segal, E. The role of site accessibility in microRNA target recognition. Nat Genet 2007, 39: 1278–1284.
Gaidatzis, D, van Nimwegen, E, Hausser, J, Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 2007, 8: 69.
Xiao, F, Zuo, Z, Cai, G, Kang, S, Gao, X, et al. miRecords: an integrated resource for microRNA‐target interactions. Nucleic Acids Res 2009, 37: D105–D110.
Antonov, AV, Dietmann, S, Wong, P, Lutter, D, Mewes, HW. GeneSet2miRNA: finding the signature of cooperative miRNA activities in the gene lists. Nucleic Acids Res 2009, 37: W323–W328.
Babiarz, JE, Ruby, JG, Wang, Y, Bartel, DP, Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor‐independent, Dicer‐dependent small RNAs. Genes Dev 2008, 22: 2773–2785.
Wang, X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006, 34: 1646–1652.
Rusinov, V, Baev, V, Minkov, IN, Tabler, M. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 2005, 33: W696–W700.
Kim, SK, Nam, JW, Rhee, JK, Lee, WJ, Zhang, BT. miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 2006, 7: 411.
Miranda, KC, Huynh, T, Tay, Y, Ang, YS, Tam, WL, et al. A pattern‐based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006, 126: 1203–1217.
Rehmsmeier, M, Steffen, P, Hochsmann, M, Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10: 1507–1517.
Saetrom, O, Snove, O Jr, Saetrom, P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 2005, 11: 995–1003.
Megraw, M, Sethupathy, P, Corda, B, Hatzigeorgiou, AG. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 2007, 35: D149–D155.
Nam, S, Kim, B, Shin, S, Lee, S. miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res 2008, 36: D159–D164.
Hsu, SD, Chu, CH, Tsou, AP, Chen, SJ, Chen, HC, et al. miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 2008, 36: D165–D169.
Eran, A, Kho, A, Eisenberg, I, Galdzicki, M, Naxerova, K, et al. Proceedings of ISCB2006. 2006, Poster L‐38.
Hsu, SD, Chu, CH, Tsou, AP, Chen, SJ, Chen, HC, Hsu, PW, Wong, YH, Chen, YH, Chen, GH, Huang, HD. miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res. 2008, 36: D165–D169.
Nam, S, Li, M, Choi, K, Balch, C, Kim, S, et al. MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 2009, 37: W356–W362.
Murchison, EP, Partridge, JF, Tam, OH, Cheloufi, S, Hannon, GJ. Characterization of Dicer‐deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 2005, 102: 12135–12140.
Wang, Y, Medvid, R, Melton, C, Jaenisch, R, Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self‐renewal. Nat Genet 2007, 39: 380–385.
Wang, Y, Baskerville, S, Shenoy, A, Babiarz, JE, Baehner, L, et al. Embryonic stem cell‐specific microRNAs regulate the G1‐S transition and promote rapid proliferation. Nat Genet 2008, 40: 1478–1483.
Kanellopoulou, C, Muljo, SA, Kung, AL, Ganesan, S, Drapkin, R, et al. Dicer‐deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005, 19: 489–501.
Thomson, JM, Parker, J, Perou, CM, Hammond, SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods 2004, 1: 47–53.
Wu, H, Xu, J, Pang, ZP, Ge, W, Kim, KJ, et al. Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci U S A 2007, 104: 13821–13826.
Cao, H, Yang, C‐S, Rana, TM. Evolutionary emergence of microRNAs in human embryonic stem cells. PLoS One 2008, 3: e2820.
Boyer, LA, Lee, TI, Cole, MF, Johnstone, SE, Levine, SS, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122: 947–956.
Card, DA, Hebbar, PB, Li, L, Trotter, KW, Komatsu, Y, et al. Oct4/Sox2‐regulated miR‐302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 2008, 28: 6426–6438.
Barroso‐delJesus, A, Romero‐Lopez, C, Lucena‐Aguilar, G, Melen, GJ, Sanchez, L, et al. Embryonic stem cell‐specific miR302‐367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol 2008, 28: 6609–6619.
Xu, N, Papagiannakopoulos, T, Pan, G, Thomson, JA, Kosik, KS. MicroRNA‐145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009, 137: 647–658.
Tay, Y, Zhang, J, Thomson, AM, Lim, B, Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008, 455: 1124–1128.
Gu, P, Reid, JG, Gao, X, Shaw, CA, Creighton, C, et al. Novel microRNA candidates and miRNA‐mRNA pairs in embryonic stem (ES) cells. PLoS One 2008, 3: e2548.
Ciaudo, C, Servant, N, Cognat, V, Sarazin, A, Kieffer, E, et al. Highly dynamic and sex‐specific expression of microRNAs during early ES cell differentiation. PLoS Genet 2009, 5: e1000620.
Karginov, FV, Conaco, C, Xuan, Z, Schmidt, BH, Parker, JS, et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 2007, 104: 19291–19296.
Licatalosi, DD, Mele, A, Fak, JJ, Ule, J, Kayikci, M, et al. HITS‐CLIP yields genome‐wide insights into brain alternative RNA processing. Nature 2008, 456: 464–469.
Chi, SW, Zang, JB, Mele, A, Darnell, RB. Argonaute HITS‐CLIP decodes microRNA‐mRNA interaction maps. Nature 2009, 460: 479–486.
Jopling, CL, Norman, KL, Sarnow, P. Positive and negative modulation of viral and cellular mRNAs by liver‐specific microRNA miR‐122. Cold Spring Harb Symp Quant Biol 2006, 71: 369–376.
Iyer, VR, Horak, CE, Scafe, CS, Botstein, D, Snyder, M, et al. Genomic binding sites of the yeast cell‐cycle transcription factors SBF and MBF. Nature 2001, 409: 533–538.
Johnson, DS, Mortazavi, A, Myers, RM, Wold, B. Genome‐wide mapping of in vivo protein‐DNA interactions. Science 2007, 316: 1497–1502.
Wei, CL, Wu, Q, Vega, VB, Chiu, KP, Ng, P, et al. A global map of p53 transcription‐factor binding sites in the human genome. Cell 2006, 124: 207–219.
Vogel, MJ, Peric‐Hupkes, D, van Steensel, B. Detection of in vivo protein‐DNA interactions using DamID in mammalian cells. Nat Protoc 2007, 2: 1467–1478.
Bromberg, KD, Ma`ayan, A, Neves, SR, Iyengar, R. Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 2008, 320: 903–909.
Kim, J, Chu, J, Shen, X, Wang, J, Orkin, SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008, 132: 1049–1061.
Loh, YH, Wu, Q, Chew, JL, Vega, VB, Zhang, W, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006, 38: 431–440.
Chen, X, Xu, H, Yuan, P, Fang, F, Huss, M, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008, 133: 1106–1117.
Mikkelsen, TS, Ku, M, Jaffe, DB, Issac, B, Lieberman, E, et al. Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells. Nature 2007, 448: 553–560.
Boyer, LA, Plath, K, Zeitlinger, J, Brambrink, T, Medeiros, LA, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006, 441: 349–353.
Kidder, BL, Yang, J, Palmer, S. Stat3 and c‐Myc genome‐wide promoter occupancy in embryonic stem cells. PLoS One 2008, 3: e3932.
Johnson, R, Teh, CH, Kunarso, G, Wong, KY, Srinivasan, G, et al. REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol 2008, 6: e256.
Cole, MF, Johnstone, SE, Newman, JJ, Kagey, MH, Young, RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 2008, 22: 746–755.
Liu, X, Huang, J, Chen, T, Wang, Y, Xin, S, et al. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res 2008, 18: 1177–1189.
Sandelin, A, Alkema, W, Engstrom, P, Wasserman, WW, Lenhard, B. JASPAR: an open‐access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 2004, 32: D91–D94.
Matys, V, Fricke, E, Geffers, R, Gossling, E, Haubrock, M, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003, 31: 374–378.
Zhao, F, Xuan, Z, Liu, L, Zhang, MQ. TRED: a Transcriptional Regulatory Element Database and a platform for in silico gene regulation studies. Nucleic Acids Res 2005, 33: D103–D107.
Teixeira, MC, Monteiro, P, Jain, P, Tenreiro, S, Fernandes, AR, et al. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 2006, 34: D446–D451.
Gama‐Castro, S, Jimenez‐Jacinto, V, Peralta‐Gil, M, Santos‐Zavaleta, A, Penaloza‐Spinola, MI, et al. RegulonDB (version 6.0): gene regulation model of Escherichia coli K‐12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 2008, 36: D120–D124.
Ishii, T, Yoshida, K, Terai, G, Fujita, Y, Nakai, K. DBTBS: a database of Bacillus subtilis promoters and transcription factors. Nucleic Acids Res 2001, 29: 278–280.
Macarthur, BD, Ma`ayan, A, Lemischka, IR. Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 2009, 10: 672–681.
Bucher, P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 1990, 212: 563–578.
Stormo, GD. DNA binding sites: representation and discovery. Bioinformatics 2000, 16: 16–23.
Roider, HG, Manke, T, O`Keeffe, S, Vingron, M, Haas, SA. PASTAA: identifying transcription factors associated with sets of co‐regulated genes. Bioinformatics 2009, 25: 435–442.
Chekmenev, DS, Haid, C, Kel, AE. P‐Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res 2005, 33: W432–W437.
Zambelli, F, Pesole, G, Pavesi, G. Pscan: finding over‐represented transcription factor binding site motifs in sequences from co‐regulated or co‐expressed genes. Nucleic Acids Res 2009, 37: W247–W252.
Roider, HG, Kanhere, A, Manke, T, Vingron, M. Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics 2007, 23: 134–141.
Marson, A, Levine, SS, Cole, MF, Frampton, GM, Brambrink, T, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008, 134: 521–533.
Down, TA, Hubbard, TJ. NestedMICA: sensitive inference of over‐represented motifs in nucleic acid sequence. Nucleic Acids Res 2005, 33: 1445–1453.
Pavesi, G, Mauri, G, Pesole, G. An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 2001, 17(suppl 1): S207–S214.
Sharov, A, Masui, S, Sharova, L, Piao, Y, Aiba, K, et al. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome‐wide chromatin immunoprecipitation data. BMC Genomics 2008, 9: 269.
Hinsby, AM, Olsen, JV, Mann, M. Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate‐4. J Biol Chem 2004, 279: 46438–46447.
Gembitsky, DS, Lawlor, K, Jacovina, A, Yaneva, M, Tempst, P. A prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation. Mol Cell Proteomics 2004, 3: 1102–1118.
Pimienta, G, Chaerkady, R, Pandey, A. SILAC for global phosphoproteomic analysis. Methods Mol Biol 2009, 527: 107–116, x.
Prokhorova, TA, Rigbolt, KT, Johansen, PT, Henningsen, J, Kratchmarova, I, et al. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self‐renewing and differentiating human embryonic stem cells. Mol Cell Proteomics 2009, 8: 959–970.
Wang, Y, Mulligan, C, Denyer, G, Delom, F, Dagna‐Bricarelli, F, et al. Quantitative proteomics characterization of a mouse embryonic stem cell model of down syndrome. Mol Cell Proteomics 2009, 8: 585–595.
Williamson, AJK, Smith, DL, Blinco, D, Unwin, RD, Pearson, S, et al. Quantitative proteomics analysis demonstrates post‐transcriptional regulation of embryonic stem cell differentiation to hematopoiesis. Mol Cell Proteomics 2008, 7: 459–472.
Pelech, S, Sutter, C, Zhang, H. Kinetworks protein kinase multiblot analysis. Methods Mol Biol 2003, 218: 99–111.
Farriol‐Mathis, N, Garavelli, JS, Boeckmann, B, Duvaud, S, Gasteiger, E, et al. Annotation of post‐translational modifications in the Swiss‐Prot knowledge base. Proteomics 2004, 4: 1537–1550.
Diella, F, Cameron, S, Gemund, C, Linding, R, Via, A, et al. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics 2004, 5: 79.
Diella, F, Gould, CM, Chica, C, Via, A, Gibson, TJ. Phospho.ELM: a database of phosphorylation sites–update 2008. Nucleic Acids Res 2008, 36: D240–D244.
Keshava Prasad, TS, Goel, R, Kandasamy, K, Keerthikumar, S, Kumar, S, et al. Human protein reference database–2009 update. Nucleic Acids Res 2009, 37: D767–D772.
Yang, CY, Chang, CH, Yu, YL, Lin, TC, Lee, SA, et al. PhosphoPOINT: a comprehensive human kinase interactome and phospho‐protein database. Bioinformatics 2008, 24: i14–i20.
Hornbeck, PV, Chabra, I, Kornhauser, JM, Skrzypek, E, Zhang, B. PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 2004, 4: 1551–1561.
Gnad, F, Ren, S, Cox, J, Olsen, JV, Macek, B, et al. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 2007, 8: R250.
Bodenmiller, B, Campbell, D, Gerrits, B, Lam, H, Jovanovic, M, et al. PhosphoPep–a database of protein phosphorylation sites in model organisms. Nat Biotechnol 2008, 26: 1339–1340.
Heazlewood, JL, Durek, P, Hummel, J, Selbig, J, Weckwerth, W, et al. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant‐specific phosphorylation site predictor. Nucleic Acids Res 2008, 36: D1015–D1021.
Gao, J, Agrawal, GK, Thelen, JJ, Xu, D. P3DB: a plant protein phosphorylation database. Nucleic Acids Res 2009, 37: D960–D962.
Lee, TY, Huang, HD, Hung, JH, Huang, HY, Yang, YS, et al. dbPTM: an information repository of protein post‐translational modification. Nucleic Acids Res 2006, 34: D622–D627.
Li, H, Xing, X, Ding, G, Li, Q, Wang, C, et al. SysPTM ‐ a systematic resource for proteomic research of post‐translational modifications. Mol Cell Proteomics 2009, 8: 1839–1849.
Linding, R, Jensen, LJ, Pasculescu, A, Olhovsky, M, Colwill, K, et al. NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 2008, 36: D695–D699.
Zanzoni, A, Ausiello, G, Via, A, Gherardini, PF, Helmer‐Citterich, M. Phospho3D: a database of three‐dimensional structures of protein phosphorylation sites. Nucleic Acids Res 2007, 35: D229–D231.
Gong, W, Zhou, D, Ren, Y, Wang, Y, Zuo, Z, et al. PepCyber:P∼PEP: a database of human protein–protein interactions mediated by phosphoprotein‐binding domains. Nucleic Acids Res 2008, 36: D679–D683.
Ryu, GM, Song, P, Kim, KW, Oh, KS, Park, KJ, et al. Genome‐wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases. Nucleic Acids Res 2009, 37: 1297–1307.
Blom, N, Gammeltoft, S, Brunak, S. Sequence and structure‐based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999, 294: 1351–1362.
Mackey, AJ, Haystead, TA, Pearson, WR. CRP: cleavage of radiolabeled phosphoproteins. Nucleic Acids Res 2003, 31: 3859–3861.
Iakoucheva, LM, Radivojac, P, Brown, CJ, O`Connor, TR, Sikes, JG, et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004, 32: 1037–1049.
Ingrell, CR, Miller, ML, Jensen, ON, Blom, N. NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 2007, 23: 895–897.
Miller, ML, Soufi, B, Jers, C, Blom, N, Macek, B, et al. NetPhosBac ‐ a predictor for Ser/Thr phosphorylation sites in bacterial proteins. Proteomics 2009, 9: 116–125.
Tang, YR, Chen, YZ, Canchaya, CA, Zhang, Z. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Protein Eng Des Sel 2007, 20: 405–412.
Koenig, M, Grabe, N. Highly specific prediction of phosphorylation sites in proteins. Bioinformatics 2004, 20: 3620–3627.
de Castro, E, Sigrist, CJ, Gattiker, A, Bulliard, V, Langendijk‐Genevaux, PS, et al. ScanProsite: detection of PROSITE signature matches and ProRule‐associated functional and structural residues in proteins. Nucleic Acids Res 2006, 34: W362–W365.
Hulo, N, Bairoch, A, Bulliard, V, Cerutti, L, Cuche, BA, et al. The 20 years of PROSITE. Nucleic Acids Res 2008, 36: D245–D249.
Puntervoll, P, Linding, R, Gemund, C, Chabanis‐Davidson, S, Mattingsdal, M, et al. ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 2003, 31: 3625–3630.
Rajasekaran, S, Balla, S, Gradie, P, Gryk, MR, Kadaveru, K, et al. Minimotif miner 2nd release: a database and web system for motif search. Nucleic Acids Res 2009, 37: D185–D190.
Amanchy, R, Periaswamy, B, Mathivanan, S, Reddy, R, Tattikota, SG, et al. A curated compendium of phosphorylation motifs. Nat Biotechnol 2007, 25: 285–286.
Brinkworth, RI, Breinl, RA, Kobe, B. Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci U S A 2003, 100: 74–79.
Saunders, NF, Brinkworth, RI, Huber, T, Kemp, BE, Kobe, B. Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites. BMC Bioinformatics 2008, 9: 245.
Obenauer, JC, Cantley, LC, Yaffe, MB. Scansite 2.0: proteome‐wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 2003, 31: 3635–3641.
Blom, N, Sicheritz‐Ponten, T, Gupta, R, Gammeltoft, S, Brunak, S. Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004, 4: 1633–1649.
Kim, JH, Lee, J, Oh, B, Kimm, K, Koh, I. Prediction of phosphorylation sites using SVMs. Bioinformatics 2004, 20: 3179–3184.
Xue, Y, Ren, J, Gao, X, Jin, C, Wen, L, et al. GPS 2.0, a tool to predict kinase‐specific phosphorylation sites in hierarchy. Mol Cell Proteomics 2008, 7: 1598–1608.
Xue, Y, Li, A, Wang, L, Feng, H, Yao, X. PPSP: prediction of PK‐specific phosphorylation site with Bayesian decision theory. BMC Bioinformatics 2006, 7: 163.
Wong, YH, Lee, TY, Liang, HK, Huang, CM, Wang, TY, et al. KinasePhos 2.0: a web server for identifying protein kinase‐specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 2007, 35: W588–W594.
Li, T, Li, F, Zhang, X. Prediction of kinase‐specific phosphorylation sites with sequence features by a log‐odds ratio approach. Proteins 2008, 70: 404–414.
Neuberger, G, Schneider, G, Eisenhaber, F. pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase‐substrate binding model. Biol Dir 2007, 2: 1.
Dang, TH, Van Leemput, K, Verschoren, A, Laukens, K. Prediction of kinase‐specific phosphorylation sites using conditional random fields. Bioinformatics 2008, 24: 2857–2864.
Plewczynski, D, Tkacz, A, Wyrwicz, LS, Rychlewski, L, Ginalski, K. AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update. J Mol Model 2008, 14: 69–76.
Wan, J, Kang, S, Tang, C, Yan, J, Ren, Y, et al. Meta‐prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection. Nucleic Acids Res 2008, 36: e22.
Li, L, Wu, C, Huang, H, Zhang, K, Gan, J, et al. Prediction of phosphotyrosine signaling networks using a scoring matrix‐assisted ligand identification approach. Nucleic Acids Res 2008, 36: 3263–3273.
Huang, H, Li, L, Wu, C, Schibli, D, Colwill, K, et al. Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics 2008, 7: 768–784.
Miller, ML, Jensen, LJ, Diella, F, Jorgensen, C, Tinti, M, et al. Linear motif atlas for phosphorylation‐dependent signaling. Sci Signal 2008, 1: ra2.
Yoo, PD, Ho, YS, Zhou, BB, Zomaya, AY. SiteSeek: post‐translational modification analysis using adaptive locality‐effective kernel methods and new profiles. BMC Bioinformatics 2008, 9: 272.
Schwartz, D, Gygi, SP. An iterative statistical approach to the identification of protein phosphorylation motifs from large‐scale data sets. Nat Biotechnol 2005, 23: 1391–1398.
Schwartz, D, Chou, MF, Church, GM. Predicting protein post‐translational modifications using meta‐analysis of proteome scale data sets. Mol Cell Proteomics 2009, 8: 365–379.
Ritz, A, Shakhnarovich, G, Salomon, AR, Raphael, BJ. Discovery of phosphorylation motif mixtures in phosphoproteomics data. Bioinformatics 2009, 25: 14–21.
Wang, Y, Klemke, RL. PhosphoBlast, a computational tool for comparing phosphoprotein signatures among large datasets. Mol Cell Proteomics 2008, 7: 145–162.
Yuan, X, Hu, ZZ, Wu, HT, Torii, M, Narayana‐ swamy, M, et al. An online literature mining tool for protein phosphorylation. Bioinformatics 2006, 22: 1668–1669.
Lachmann, A, Ma`ayan, A. KEA: kinase enrichment analysis. Bioinformatics 2009, 25: 684–686.
Ren, J, Wen, L, Gao, X, Jin, C, Xue, Y, et al. DOG 1.0: illustrator of protein domain structures. Cell Res 2009, 19: 271–273.
Ruttenberg, BE, Pisitkun, T, Knepper, MA, Hoffert, JD. PhosphoScore: an open‐source phosphorylation site assignment tool for MSn data. J Proteome Res 2008, 7: 3054–3059.
Beausoleil, SA, Villen, J, Gerber, SA, Rush, J, Gygi, SP. A probability‐based approach for high‐throughput protein phosphorylation analysis and site localization. Nat Biotechnol 2006, 24: 1285–1292.
Lu, B, Ruse, CI, Yates, JR 3rd. Colander: a probability‐based support vector machine algorithm for automatic screening for CID spectra of phosphopeptides prior to database search. J Proteome Res 2008, 7: 3628–3634.
Lu, B, Ruse, C, Xu, T, Park, SK, Yates, J 3rd. Automatic validation of phosphopeptide identifications from tandem mass spectra. Anal Chem 2007, 79: 1301–1310.
Jiang, X, Han, G, Feng, S, Ye, M, Yao, X, et al. Automatic validation of phosphopeptide identifications by the MS2/MS3 target‐decoy search strategy. J Proteome Res 2008, 7: 1640–1649.
Payne, SH, Yau, M, Smolka, MB, Tanner, S, Zhou, H, et al. Phosphorylation‐specific MS/MS scoring for rapid and accurate phosphoproteome analysis. J Proteome Res 2008, 7: 3373–3381.
Du, X, Yang, F, Manes, NP, Stenoien, DL, Monroe, ME, et al. 2nd Linear discriminant analysis‐based estimation of the false discovery rate for phosphopeptide identifications. J Proteome Res 2008, 7: 2195–2203.
Kocher, T, Savitski, MM, Nielsen, ML, Zubarev, RA. PhosTShunter: a fast and reliable tool to detect phosphorylated peptides in liquid chromatography Fourier transform tandem mass spectrometry data sets. J Proteome Res 2006, 5: 659–668.
Wan, Y, Cripps, D, Thomas, S, Campbell, P, Ambulos, N, et al. PhosphoScan: a probability‐based method for phosphorylation site prediction using MS2/MS3 pair information. J Proteome Res 2008, 7: 2803–2811.
Linding, R, Jensen, LJ, Ostheimer, GJ, van Vugt, MA, Jorgensen, C, et al. Systematic discovery of in vivo phosphorylation networks. Cell 2007, 129: 1415–1426.
Wang, L, Schulz, TC, Sherrer, ES, Dauphin, DS, Shin, S, et al. Self‐renewal of human embryonic stem cells requires insulin‐like growth factor‐1 receptor and ERBB2 receptor signaling. Blood 2007, 110: 4111–4119.
Brill, LM, Xiong, W, Lee, KB, Ficarro, SB, Crain, A, et al. Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 2009, 5: 204–213.
Van Hoof, D, Munoz, J, Braam, SR, Pinkse, MW, Linding, R, et al. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 2009, 5: 214–226.
Saxe, JP, Tomilin, A, Scholer, HR, Plath, K, Huang, J. Post‐translational regulation of Oct4 transcriptional activity. PLoS One 2009, 4: e4467.
Walhout, AJ, Vidal, M. High‐throughput yeast two‐hybrid assays for large‐scale protein interaction mapping. Methods 2001, 24: 297–306.
Anderson, L, Hunter, CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006, 5: 573–588.
Gerber, SA, Rush, J, Stemman, O, Kirschner, MW, Gygi, SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 2003, 100: 6940–6945.
Stark, C, Breitkreutz, BJ, Reguly, T, Boucher, L, Breitkreutz, A, et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34: D535–D539.
Mishra, GR, Suresh, M, Kumaran, K, Kannabiran, N, Suresh, S, et al. Human protein reference database–2006 update. Nucleic Acids Res 2006, 34: D411–D414.
Chatr‐aryamontri, A, Ceol, A, Palazzi, LM, Nardelli, G, Schneider, MV, et al. MINT: the Molecular INTeraction database. Nucleic Acids Res 2007, 35: D572–D574.
Kerrien, S, Alam‐Faruque, Y, Aranda, B, Bancarz, I, Bridge, A, et al. IntAct–open source resource for molecular interaction data. Nucleic Acids Res 2007, 35: D561–D565.
Matthews, L, Gopinath, G, Gillespie, M, Caudy, M, Croft, D, et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 2009, 37: D619–D622.
Jansen, R, Yu, H, Greenbaum, D, Kluger, Y, Krogan, NJ, et al. A bayesian networks approach for predicting protein‐protein interactions from genomic data. Science 2003, 302: 449–453.
Snel, B, Lehmann, G, Bork, P, Huynen, MA. STRING: a web‐server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 2000, 28: 3442–3444.
Wang, J, Rao, S, Chu, J, Shen, X, Levasseur, DN, et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006, 444: 364–368.
Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, et al. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000, 25: 25–29.
Dennis, G Jr, Sherman, BT, Hosack, DA, Yang, J, Gao, W, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003, 4: P3.
Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, et al. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci U S A 2005, 102: 15545–15550.
Backes, C, Keller, A, Kuentzer, J, Kneissl, B, Comtesse, N, et al. GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res 2007, 35: W186–W192.
Masseroli, M, Galati, O, Pinciroli, F. GFINDer: genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res 2005, 33: W717–W723.
Al‐Shahrour, F, Diaz‐Uriarte, R, Dopazo, J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 2004, 20: 578–580.
Huang da, W, Sherman, BT, Lempicki, RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37: 1–13.
Khatri, P, Draghici, S, Ostermeier, GC, Krawetz, SA. Profiling gene expression using onto‐express. Genomics 2002, 79: 266–270.
Robinson, MD, Grigull, J, Mohammad, N, Hughes, TR. FunSpec: a web‐based cluster interpreter for yeast. BMC Bioinformatics 2002, 3: 35.
Doniger, SW, Salomonis, N, Dahlquist, KD, Vranizan, K, Lawlor, SC, et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene‐expression profile from microarray data. Genome Biol 2003, 4: R7.
Martinez‐Cruz, LA, Rubio, A, Martinez‐Chantar, ML, Labarga, A, Barrio, I, et al. GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data. Bioinformatics 2003, 19: 2158–2160.
Hosack, DA, Dennis, G Jr, Sherman, BT, Lane, HC, Lempicki, RA. Identifying biological themes within lists of genes with EASE. Genome Biol 2003, 4: R70.
Zhang, B, Kirov, S, Snoddy, J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005, 33: W741–W748.
Kokocinski, F, Delhomme, N, Wrobel, G, Hummerich, L, Toedt, G, et al. FACT–a framework for the functional interpretation of high‐throughput experiments. BMC Bioinformatics 2005, 6: 161.
Wrobel, G, Chalmel, F, Primig, M. goCluster integrates statistical analysis and functional interpretation of microarray expression data. Bioinformatics 2005, 21: 3575–3577.
Newman, JC, Weiner, AM. L2L: a simple tool for discovering the hidden significance in microarray expression data. Genome Biol 2005, 6: R81.
Vencio, RZ, Koide, T, Gomes, SL, Pereira, CA. BayGO: Bayesian analysis of ontology term enrichment in microarray data. BMC Bioinformatics 2006, 7: 86.
Reimand, J, Kull, M, Peterson, H, Hansen, J, Vilo, J. g:Profiler–a web‐based toolset for functional profiling of gene lists from large‐scale experiments. Nucleic Acids Res 2007, 35: W193–W200.
Breitling, R, Amtmann, A, Herzyk, P. Iterative Group Analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics 2004, 5: 34.
Henegar, C, Cancello, R, Rome, S, Vidal, H, Clement, K, et al. Clustering biological annotations and gene expression data to identify putatively co‐regulated biological processes. J Bioinform Comput Biol 2006, 4: 833–852.
Kim, SB, Yang, S, Kim, SK, Kim, SC, Woo, HG, et al. GAzer: gene set analyzer. Bioinformatics 2007, 23: 1697–1699.
Al‐Shahrour, F, Arbiza, L, Dopazo, H, Huerta‐Cepas, J, Minguez, P, et al. From genes to functional classes in the study of biological systems. BMC Bioinformatics 2007, 8: 114.
Alibes, A, Canada, A, Diaz‐Uriarte, R. PaLS: filtering common literature, biological terms and pathway information. Nucleic Acids Res 2008, 36: W364–W367.
Prifti, E, Zucker, JD, Clement, K, Henegar, C. FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics 2008, 24: 2636–2638.
Storm, MP, Kumpfmueller, B, Thompson, B, Kolde, R, Vilo, J, et al. Characterization of the phosphoinositide 3‐kinase‐dependent transcriptome in murine embryonic stem cells: identification of novel regulators of pluripotency. Stem Cells 2009, 27: 764–775.
Ma`ayan, A, Blitzer, RD, Iyengar, R. Toward predictive models of mammalian cells. Annu Rev Biophys Biomol Struct 2005, 34: 319–349.
Ma`ayan, A, Iyengar, R. From components to regulatory motifs in signalling networks. Brief Funct Genomic Proteomic 2006, 5: 57–61.
Ma`ayan, A. Insights into the organization of biochemical regulatory networks using graph theory analyses. J Biol Chem 2009, 284: 5451–5455.
Ma`ayan, A. Network integration and graph analysis in mammalian molecular systems biology. IET Syst Biol 2008, 2: 206–221.
Thiele, I, Jamshidi, N, Fleming, RM, Palsson, BO. Genome‐scale reconstruction of Escherichia coli`s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 2009, 5: e1000312.
Ma`ayan, A, Jenkins, SL, Neves, S, Hasseldine, A, Grace, E, et al. Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 2005, 309: 1078–1083.
Berger, S, Posner, J, Ma`ayan, A. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases. BMC Bioinformatics 2007, 8: 372.
Hanisch, D, Zien, A, Zimmer, R, Lengauer, T. Co‐clustering of biological networks and gene expression data. Bioinformatics 2002, 18(suppl 1): S145–S154.
Ulitsky, I, Shamir, R. Identification of functional modules using network topology and high‐throughput data. BMC Syst Biol 2007, 1: 8.
Lu, R, Markowetz, F, Unwin, RD, Leek, JT, Airoldi, EM, et al. Systems‐level dynamic analyses of fate change in murine embryonic stem cells. Nature 2009, 462: 358–362.
Hwang, D, Lee, IY, Yoo, H, Gehlenborg, N, Cho, J‐H, et al. A systems approach to prion disease. Mol Syst Biol 2009, 5.
Abdi, A, Tahoori, MB, Emamian, ES. Fault diagnosis engineering of digital circuits can identify vulnerable molecules in complex cellular pathways. Sci Signal 2008, 1: ra10–ra10.
Mani, KM, Lefebvre, C, Wang, K, Lim, WK, Basso, K, et al. A systems biology approach to prediction of oncogenes and molecular perturbation targets in B‐cell lymphomas. Mol Syst Biol 2008, 4: 169.
Chuang, H‐Y, Lee, E, Liu, Y‐T, Lee, D, Ideker, T. Network‐based classification of breast cancer metastasis. Mol Syst Biol 2007, 3: 141.
Yeung, MK, Tegnér, J, Collins, JJ. Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci U S A 2002, 99: 6163–6168.
Basso, K, Margolin, AA, Stolovitzky, G, Klein, U, Dalla‐Favera, R, et al. Reverse engineering of regulatory networks in human B cells. Nat Genet 2005, 37: 382–390.
Faith, JJ, Hayete, B, Thaden, JT, Mogno, I, Wierzbowski, J, et al. Large‐scale mapping and validation of %3C named‐content xmlns:xlink = “http://www. w3.org/1999/xlink” content‐type = “genus‐species” xlink:type = “simple”> Escherichia coli < /named‐content > transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007, 5: e8.
Friedman, N. Inferring cellular networks using probabilistic graphical models. Science 2004, 303: 799–805.
Segal, E, Shapira, M, Regev, A, Pe`er, D, Botstein, D, et al. Module networks: identifying regulatory modules and their condition‐specific regulators from gene expression data. Nat Genet 2003, 34: 166–176.
Liao, JC, Boscolo, R, Yang, Y‐L, Tran, LM, Sabatti, C, et al. Network component analysis: Reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci U S A 2003, 100: 15522–15527.
Wang, K, Saito, M, Bisikirska, BC, Alvarez, MJ, Lim, WK, et al. Genome‐wide identification of post‐translational modulators of transcription factor activity in human B cells. Nat Biotechnol 2009, 27: 829–837.
Chen, CC, Zhong, S. Inferring gene regulatory networks by thermodynamic modeling. BMC Genomics 2008, 9(suppl 2): S19.
Marcotte, EM, Xenarios, I, Eisenberg, D. Mining literature for protein‐protein interactions. Bioinformatics 2001, 17: 359–363.
Mason, MJ, Fan, G, Plath, K, Zhou, Q, Horvath, S. Signed weighted gene co‐expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 2009, 10: 327.
Woolf, PJ, Prudhomme, W, Daheron, L, Daley, GQ, Lauffenburger, DA. Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 2005, 21: 741–753.
Yeang, CH, Ideker, T, Jaakkola, T. Physical network models. J Comput Biol 2004, 11: 243–262.
Chavez, L, Bais, AS, Vingron, M, Lehrach, H, Adjaye, J, et al. In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach. BMC Genomics 2009, 10: 314.
Muller, FJ, Laurent, LC, Kostka, D, Ulitsky, I, Williams, R, et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature 2008, 455: 401–405.
MacArthur, BD, Ma`ayan, A, Lemischka, IR. Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 2009, 10: 672–681.
McAdams, HH, Arkin, A. Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 1997, 94: 814–819.
Sigal, A, Milo, R, Cohen, A, Geva‐Zatorsky, N, Klein, Y, et al. Variability and memory of protein levels in human cells. Nature 2006, 444: 643–646.
Rao, CV, Wolf, DM, Arkin, AP. Control, exploitation and tolerance of intracellular noise. Nature 2002, 420: 231–237.
Lachmann, A, Ma`ayan, A. Lists2Networks: Integrated analysis of gene/protein lists. BMC Bioinformatics 2010, 11: 87.